全球气候变暖问题已迫使世界各国着力研究和发展低碳经济模式[1]。据联合国粮农组织(Food and Agriculture Organization of the United Nations, FAO)报道,畜牧业生产系统中的温室气体排放量约占全球人为排放总量的14.5%,且主要来源于动物、粪便、饲料生产和耕地占用等[2]。反刍动物胃肠道发酵和粪污分解每年会产生57亿t二氧化碳当量(CO2-eq)的温室气体,约占畜牧业排放总量的80%,其中生产牛肉和牛奶过程中的温室气体排放总量约占畜牧业排放总量的65%,水牛和小型反刍动物的温室气体排放总量分别占畜牧业排放总量的8.7%和6.7%,而单胃动物(主要是猪、家禽)的温室气体排放总量仅占畜牧业排放总量的17%。随着我国消费者膳食结构的调整,预测2030年畜产品(肉蛋奶)需求量较2020年增长20.03%,若不采取措施,反刍动物生产系统的温室气体排放总量也将随之剧增,从而对环境造成更大的生态压力。反刍动物的胃肠道甲烷(CH4)排放量约占全球人为CH4排放总量的17%,占反刍动物温室气体排放总量的47%,损失2%~12%的饲料总能[3-4]。
为了加速实现“碳达峰和碳中和”目标,我国“十四五”应对气候变化的专项规划中将畜牧业温室气体列为重要减排领域,研究反刍动物的CH4减排的策略,对减缓全球温室效应和实现可持续发展具有深远意义。
1 反刍动物CH4排放的影响因素反刍动物生产系统中的碳排放是畜牧业温室气体增长的重要源头。诸多研究表明,反刍动物通过胃肠道、排泄物和畜产品生产等途径释放二氧化碳(CO2)、CH4和氧化亚氮(N2O)等温室气体[5-6],并且同体积的CH4、N2O增温潜势分别为CO2的25倍、298倍[4],而大气中CH4的半衰期却仅为CO2的1/10。反刍动物产生CH4的机理是瘤胃和后肠道的微生物发酵碳水化合物为合成CH4提供底物[7],如氢、CO2、甲酸盐、乙酸盐和甲基化合物等,而产甲烷菌主要利用氢气(H2)和CO2的还原反应路径产生CH4。同时有研究发现,相较于低产甲烷率(CH4排放量/干物质采食量,g/kg)的动物,高产甲烷率的动物中此路径的相关基因表达量显著提高[8]。
反刍动物CH4排放主要受以下因素的影响:1)存栏量和排泄物量[9];2)动物品种和遗传因素[10],不同动物品种的产CH4效率由动物消化生理特性所决定,而这种差异来源于遗传因素;3)动物不同生长阶段瘤胃发育程度和瘤胃微生物区系的差异,以及不同生理阶段[11]如初产与经产、泌乳阶段和胎次;4)粪污堆肥贮存的环境温度[12],夏季为排放高涨期;5)饲粮组成、粗饲料加工方式和饲粮中精粗比[13]。因此,基于反刍动物的CH4生成的机理和影响因素为切入点,可以制定具有针对性和长期稳定的CH4减排措施。
2 营养干预瘤胃CH4排放反刍动物瘤胃产CH4的机制表明,瘤胃微生物产H2过程和产甲烷菌与合成CH4之间存在密切联系,营养干预瘤胃内CH4生成途径的任一环节,即能有效降低CH4产量[14-16]。
2.1 降低合成CH4的底物氢水平反刍动物瘤胃产CH4速率和产量与饲粮中碳水化合物发酵产生合成CH4的底物量相关,其中结构性碳水化合物(纤维素和半纤维素)发酵产生乙酸和丁酸,增加瘤胃内H2含量,而非结构性碳水化合物(淀粉)与之相反,更有利于发酵产生丙酸,并且前者产生CH4的效率是后者的2~5倍[17]。提高饲料原料(粗饲料)品质和调整饲粮中精粗比可以改变反刍动物瘤胃发酵模式和终产物的类型与比例,降低瘤胃内CH4合成底物的生成量。占今舜等[18]在不同精粗比饲粮对湖羊羔羊瘤胃发酵试验中发现,高精饲粮可使瘤胃趋于丙酸发酵模式,增加代谢能的利用,减少H2的产生;Giger-Reverdin等[19]也得到相似的研究结果。然而,诸多学者认为与调整饲粮精粗比相比,非结构性碳水化合物与中性洗涤纤维的比例(NFC/NDF)可以更加准确反映饲粮中碳水化合物的结构组成[20]。饲粮中不同的NFC/NDF会改变瘤胃发酵模式,但需要多方面考虑这种改变对反刍动物生理功能的影响,研究表明过高或过低的NFC/NDF对瘤胃pH、瘤胃微生物活性和营养物质消化有负面影响[20-21]。此外,粗饲料原料品质和物理特性也会影响CH4排放[22]。郭同军等[23]研究发现,在秸秆配合颗粒饲料中粗饲料粉碎粒度为16 mm时可有效提高绵羊的生产性能,降低CH4排放量,其原因主要是该粒度下饲粮中适宜的物理有效中性洗涤纤维水平刺激了瘤胃发酵。除此之外,青贮发酵、生物发酵、蒸汽爆破、氨化和酶制剂预处理等技术都可以提升粗饲料的品质和消化率[24-25],进而改善反刍动物瘤胃发酵模式,提高瘤胃流通速率,降低瘤胃内H2的产生量。
在饲粮中添加耗氢化合物以消耗或竞争的方式增加瘤胃内H2的释放途径也可减少CH4产生。诸多体内、体外试验发现,不饱和脂肪酸、硝酸盐、硫酸盐、延胡索酸及其盐等物质在保障瘤胃正常发酵的前提下,可调节瘤胃内耗氢微生物的活性和改变合成CH4底物氢的利用去向,从而降低产甲烷菌对H2的利用率[26]。Wang等[27]研究表明,在泌乳期奶牛的低蛋白饲粮中添加硝酸盐(14.6 g/kg DM)显著提高了奶牛瘤胃微生物蛋白、丙酸的比例和产奶量,并且有效减少约15%的CH4排放量,这与Lee等[28]研究结果相似,其机理是硝酸盐对氢的竞争性强以及其还原中间体亚硝酸盐对瘤胃微生物的毒性,进而影响瘤胃内产甲烷菌的活性和H2的水平。但Shi等[29]研究发现,绵羊饲粮中添加硝酸盐对CH4的产生没有抑制作用,这可能与动物品种、饲粮类型以及在体内外的试验条件有关。硫酸盐与硝酸盐抑制瘤胃CH4生成的机理一致[30],但二者在动物饲粮中的适宜添加量仍需进一步探究。
2.2 调控瘤胃微生物区系瘤胃微生物的种类和活性决定了瘤胃发酵产物,并且原虫、细菌和真菌与甲烷古菌之间的共生、黏附和伴生的关系也是影响瘤胃内H2水平的因素。有报道称,植物次级代谢产物如皂苷、萜类、植物油、单宁和酚类化合物等能够直接或间接影响产甲烷菌、原虫和纤维降解菌的细胞膜渗透性和细胞膜上呼吸酶的活性,抑制或抑杀产甲烷菌和原虫,改善瘤胃微生物菌群结构,从而降低CH4合成量[31-32]。Sallam等[33]利用体外产气法证实,在精粗比为50∶50的饲粮中添加25、50、100和150 μL的桉树油可分别降低26.8%、46.8%、73.3%和85.3%的CH4产量。Chandrasekharaiah等[34]利用体外产气法在瘤胃液中添加不同水平的香茅油、白珠树油和丁香油,发现瘤胃CH4产量呈线性降低,而对瘤胃发酵没有负面影响。Goel等[35]利用体外产气法在瘤胃液中添加不同水平的皂苷,结果发现,添加6%可显著降低49.66%的CH4产量。然而,诸多植物提取物抑制瘤胃CH4的试验基于体外法,与在动物体内的添加量和耐受量存在明显的差异,并且瘤胃微生物的自我调节能力会制约植物提取物抑制CH4产生的效果[36]。此外,微生态制剂因能够改善瘤胃和后肠道微生物结构也具有减少CH4产生的潜力。肖怡[37]研究发现,肉羊饲粮中添加2.4×108、2.4×109和2.4×1010 CFU/(只·d)水平的地衣芽孢杆菌可以显著减少瘤胃中产甲烷菌和原虫的数量,并且提高饲料的利用效率,降低CH4排放量;孙凯佳[38]在肉牛饲粮中添加米曲霉菌也得到相似的结论。谢明欣等[39]在绵羊不同精粗比的饲粮中添加相同剂量的复合益生菌,发现复合益生菌在精粗比为3∶7的饲粮中可以显著增加瘤胃中乳酸利用菌和纤维降解菌的数量,而产甲烷菌与纤维降解菌的变化趋势一致,可减少H2的产生,从而改善瘤胃中有益菌的数量,在保障纤维素利用的同时,降低CH4的合成。一些抗生素也表现出良好的抑制CH4生成的能力,已知莫能菌素抑制产甲烷菌的活性效果最好[7, 40],但由于担心抗生素类药物在畜产品中残留等因素而被限制或禁止使用。此外,饮水品质和温度对不同生长或生理阶段反刍动物瘤胃微生物区系和瘤胃生理功能有重要影响,可间接改变瘤胃发酵模式和终产物的类型,减少CH4的产生[41-42]。
2.3 抑制合成CH4关键酶的活性瘤胃CH4的生成也是许多关键酶和辅酶参与的过程,包括甲基辅酶M、甲酰甲烷呋喃脱氢酶和甲酸脱氢酶等,其中甲基辅酶M是所有瘤胃CH4生成途径的关键酶,也是产甲烷菌特有的酶[43]。因此,失活CH4生成途径中关键酶位点的活性,可有效阻断CH4合成途径和阻碍瘤胃内产甲烷菌对氢的利用率,减少瘤胃内CH4的产生。3-硝基氧丙醇(3-nitrooxypropanol, 3-NOP)具有与甲基辅酶M相似的结构,可替代甲基辅酶M与甲基辅酶M还原酶(methyl-coenzyme M reductase, MCR)的活性位点结合,进而氧化其活性位点Ni(Ⅰ)而失活MCR,降低瘤胃内20%~40%的CH4生成[44-45],并且具有减少产甲烷菌数量的特性[46]。Vyas等[40]在育肥肉牛高精和高粗饲粮中分别添加200 mg/kg DM的3-NOP,发现高精饲粮组CH4排放量显著降低37%,其原因是饲喂高精饲粮牛的瘤胃中MCR的浓度低,而3-NOP能高效失活关键酶的结合位点。Dijkstra等[47]研究发现,3-NOP抑制瘤胃CH4生成的效率也会因为牛的品种而存在明显差异,添加等量3-NOP奶牛的效果优于肉牛,并且间断添加3-NOP,CH4减排效果减弱。3-NOP具有水溶特性可在瘤胃中被快速代谢,因此在不同反刍动物生产上的添加水平和方式以及使用周期也是抑制瘤胃CH4生成效率的重要因素[48]。此外,3-NOP毒药物动力学试验结果表明,3-NOP在小鼠血浆中无遗传毒性和致突变型[49],但仍然要将评估3-NOP对反刍动物的安全性作为研究重点。
3 科学化饲养管理降低CH4排放科学化、现代化的饲养管理模式主要包括生物安全防治、饲养结构优化、营养精准与均衡和改善饲养环境与条件[50-52],可保障反刍动物机体健康,提升生产单位畜产品的效率,减少非生产性动物的数量,缩短生产性动物的饲养周期,从而减少能源和资源的消耗,降低养殖生产中温室气体的排放量。
反刍动物的饲养密度会影响生长性能和畜产品的质量与生产效率,进而影响生产单位畜产品的CH4排放量。Lee等[52]研究表明,降低饲养密度可显著改善肉牛总采食量、饲料转化效率和生长性能,增加胴体重和背最长肌眼肌面积。有研究证实,干预反刍动物光照周期可影响奶畜产奶量、绒山羊产绒量及繁殖性能[53-54],其机理是光信号通过调控反刍动物下丘脑-垂体-性腺轴上相关的褪黑素、生长激素、促黄体素、催乳素和类胰岛素生长因子等激素的分泌水平,进而提高生产性能和缩短生产单位动物产品的时间,降低反刍动物在生产周期内的CH4排放量。此外,饮水的来源、品质和温度与反刍动物瘤胃功能存在紧密相关性,也会影响CH4产生[55]。Grossi等[42]研究发现,在冬季育肥期肉牛饮用25 ℃的温水能显著提高肉牛日增重和干物质采食量,其原因在于温水能够维持肉牛瘤胃微生物的活性和正常生理功能,提高饲料转化效率和生产性能,进而减少CH4排放,这与陈昭辉等[56]的研究结果一致。泌乳期奶牛的产奶量、犊牛的生长发育也与饮水温度存在密切联系[57]。由此可知,在反刍动物的不同生长阶段、生理阶段和生存环境下对饲养密度、饮水量和饮水温度以及光照周期等方面进行科学化、精准化的管理,可以有效减少反刍动物胃肠道和排泄物产生的CH4总量。
4 遗传选育反刍动物低产甲烷性状不同品种动物间生理特征差异主要是由遗传因素导致的,其中包括瘤胃产甲烷性状,可通过遗传选育的技术手段提高反刍动物饲料利用效率,降低单位干物质采食量的CH4排放,实现反刍动物瘤胃的低甲烷产率,是有效可行的CH4减排策略[58]。
在反刍动物CH4生产遗传力度评估报道中[58],以CH4绝对排放为基础(g/d CH4),牛和羊的遗传力度分别为0.40和0.29;而以采食干物质生产量为基础(g/kg CH4),分别为0.19和0.13。Richardson等[59]对比了9种评估奶牛剩余甲烷产量(residual methane production, RMP)候选性状的方法,并采用奶牛干物质采食量和能量矫正乳间的组合进行遗传和表型回归矫正CH4产量,结果表明RMP具有0.10~0.21的遗传力度,其中能量矫正乳的表型与RMP相关性最高,可作为评价饲料利用效率和奶牛牧场CH4排放量的关键指标。剩余采食量(residual feed intake, RFI)的遗传力度为0.26~0.43,与RMP均能评价动物饲料转化率,可作为反刍动物遗传改良生产性能的首选性状[60],并且,Hegarty[61]研究发现,低RFI的安格斯牛的CH4排放量显著低于高RFI的安格斯牛。甲烷产率是CH4排放量与干物质采食量的比值,Jonker等[62]、Roehe等[63]研究发现,绵羊甲烷产率的高低不受环境和饲粮的影响,并且证实选育低甲烷产率的动物可以在短期内有效降低CH4排放。St-Pierre等[64]报道称,奶牛耐热性提高25%,其死亡率和淘汰率会分别降低0.5%和2.5%,产奶量损失降低1 000 kg/(头·年),从而使CH4排放显著降低约10%。总之,选择耐热性、抗病性、高适应性和低甲烷产率的性状可以显著增强动物免疫能力,提高动物生长性能和生产效率,缩短饲养周期和加快动物出栏率,从而降低反刍动物生产单位畜产品的CH4排放量[50, 65]。然而,有部分研究发现,基因选择低产甲烷性状会降低奶牛的产奶性能或饲料转化率[60],其原因可能与测定反刍动物排放CH4的浓度和个体动物RFI的精确度低有关。此外,遗传选育低产甲烷性状是否会影响动物生产性能和饲料消化率是未来研究的重要方向。
5 粪便合理资源化减少CH4排放除了重要的胃肠道CH4排放源外,反刍动物粪尿排泄物的发酵分解是CH4的第2大排放源。在堆积过程中粪便中的碳以CH4的形式损耗0.4%~9.7%[66],同时会释放CO2、N2O、硫化氢(H2S)和氨气(NH3)等有害气体。因此,如何高效资源化利用反刍动物粪便是畜牧领域CH4减排的关键环节。有研究表明,反刍动物粪便产生CH4的机制与瘤胃内相似,但粪便中微生物主要利用乙酸为底物合成CH4[67]。影响粪便CH4产量的因素包括环境温度、粪便中含水量、可挥发性固体的化学组成和贮存方式等[38, 68],可知通过控制和管理以上影响因素的方式能减少粪便堆积过程中CH4等温室气体排放量。游玉波[69]研究发现,降低贮存环境温度会显著降低肉牛粪便CH4排放量,而且CH4产量随着堆放高度单位表面积的增大而显著上升,这与Van der Weerden等[70]研究报道一致。
反刍动物粪尿成分中主要含有有机质和氮磷钾元素,有机质中可挥发性固体组成和含量因动物瘤胃微生物差异、不同类型饲粮和饲料品质而存在明显不同。诸多试验利用高温好氧堆肥技术分别与微生物菌剂[71]、无机肥料[72]和硫磺粉[73]等添加剂配伍,有效提高了牛粪堆肥营养物质品质和缩短堆肥发酵时间,提高了粪便肥料化的利用效率和化肥替代比例,降低了CH4等温室气体排放。在施肥时要考虑粪便有机肥中营养物质组成和含量与农作物营养物质需求的关系,以实现精准施肥和改善土壤肥力。反刍动物粪便发酵产生的CH4是一种高能物质,相比于传统的沼气化、乙醇化利用粪便供能的方式,Ma等[74]利用牛粪与梅花井烟煤以1∶3的比例进行共热解气化,有效提高了烟煤的利用效率,且显著降低了CH4、N2O和含硫气体的排放量,从而减轻化石能源碳排放和增加牛粪的清洁能源化利用途径。此外,蝇蛆系类昆虫可利用反刍动物粪便中的营养物质增殖,已被作为一类非常规蛋白质饲料资源应用于水产动物养殖中[75-76],但是仍需要进一步评估蝇蛆堆肥利用模式和生产方式的安全性。
6 小结在反刍动物生产系统的任一环节进行调控均可降低CH4排放水平,其中营养干预瘤胃CH4排放是短期内有效、直接的措施。目前,不同维度降低反刍动物CH4排放的措施在动物实际生产中已取得较好的效果,然而,制定长期、稳定的CH4减排措施仍然需要综合考虑以下方面:1)研究并阐明CH4减排措施在动物机体的作用机制以及对动物生产性能影响;2)CH4减排措施之间的联合应用需要建立在反刍动物实际生产中的生理特征和生存特性之上,尤其需要充分了解不同品种反刍动物瘤胃CH4排放的特点。此外,研究制定安全有效的反刍动物CH4减排措施,可保障动物及其畜产品安全,并有利于提高我国饲料资源的利用以及加速实现“双碳”事业目标。
[1] |
冯刚. 《中国气候变化蓝皮书(2021)》发布[J]. 环境, 2021(11): 75-77. FENG G. 《China Climate Change Blue Pass (2021)》publish[J]. Environment, 2021(11): 75-77 (in Chinese). |
[2] |
OPIO C, GERBER P, MOTTET A, et al. Greenhouse gas emissions from ruminant supply chains-a global life cycle assessment[R]. Rome: Food and Agriculture Organization of the United Nations, 2013.
|
[3] |
HAQUE M N. Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants[J]. Journal of Animal Science and Technology, 2018, 60(1): 15. DOI:10.1186/s40781-018-0175-7 |
[4] |
Intergovernmental Panel on Climate Change. Climate change 2013:the physical science basis: working group Ⅰ contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2014.
|
[5] |
O'HARA E, NEVES A L A, SONG Y, et al. The role of the gut microbiome in cattle production and health: driver or passenger?[J]. Annual Review of Animal Biosciences, 2020, 8: 199-220. DOI:10.1146/annurev-animal-021419-083952 |
[6] |
袁京, 刘燕, 唐若兰, 等. 畜禽粪便堆肥过程中碳氮损失及温室气体排放综述[J]. 农业环境科学学报, 2021, 40(11): 2428-2438. YUAN J, LIU Y, TANG R L, et al. A review of carbon and nitrogen losses and greenhouse gas emissions during livestock manure composting[J]. Journal of Agro-Environment Science, 2021, 40(11): 2428-2438 (in Chinese). DOI:10.11654/jaes.2021-0986 |
[7] |
ELLIS J L, DIJKSTRA J, KEBREAB E, et al. Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle[J]. The Journal of Agricultural Science, 2008, 146(2): 213-233. DOI:10.1017/S0021859608007752 |
[8] |
GRANDL F, LUZI S P, FURGER M, et al. Biological implications of longevity in dairy cows: 1.Changes in feed intake, feeding behavior, and digestion with age[J]. Journal of Dairy Science, 2016, 99(5): 3457-3471. DOI:10.3168/jds.2015-10261 |
[9] |
张秀敏, 王荣, 马志远, 等. 反刍家畜胃肠道甲烷排放与减排策略[J]. 农业环境科学学报, 2020, 39(4): 732-742. ZHANG X M, WANG R, MA Z Y, et al. Enteric methane emissions and mitigation strategies in ruminants[J]. Journal of Agro-Environment Science, 2020, 39(4): 732-742 (in Chinese). |
[10] |
NDAO S, TRAORÉ E H, ICKOWICZ A, et al. Estimation of enteric methane emission factors for Ndama cattle in the Sudanian zone of Senegal[J]. Tropical Animal Health and Production, 2020, 52(6): 2883-2895. DOI:10.1007/s11250-020-02280-z |
[11] |
COPPA M, JURQUET J, EUGÈNE M, et al. Repeatability and ranking of long-term enteric methane emissions measurement on dairy cows across diets and time using GreenFeed system in farm-conditions[J]. Methods, 2021, 186: 59-67. DOI:10.1016/j.ymeth.2020.11.004 |
[12] |
RODHE L K K, ASCUE J, WILLÉN A, et al. Greenhouse gas emissions from storage and field application of anaerobically digested and non-digested cattle slurry[J]. Agriculture Ecosystems & Environment, 2015, 199: 358-368. |
[13] |
HALES K E, COLE N A, MACDONALD J C. Effects of corn processing method and dietary inclusion of wet distillers grains with solubles on energy metabolism, carbon-nitrogen balance, and methane emissions of cattle[J]. Journal of Animal Science, 2012, 90(9): 3174-3185. DOI:10.2527/jas.2011-4441 |
[14] |
ZHANG X, RODOLFO F M, WANG M, et al. Effects of urea plus nitrate pretreated rice straw and corn oil supplementation on fiber digestibility, nitrogen balance, rumen fermentation, microbiota and methane emissions in goats[J]. Journal of Animal Science and Biotechnology, 2019, 10(2): 491-500. |
[15] |
VAN GASTELEN S, DIJKSTRA J, BANNINK A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep?[J]. Journal of Dairy Science, 2019, 102(7): 6109-6130. DOI:10.3168/jds.2018-15785 |
[16] |
PUCHALA R, LESHURE S, GIPSON T A, et al. Effects of different levels of lespedeza and supplementation with monensin, coconut oil, or soybean oil on ruminal methane emission by mature Boer goat wethers after different lengths of feeding[J]. Journal of Applied Animal Research, 2018, 46(1): 1127-1136. DOI:10.1080/09712119.2018.1473253 |
[17] |
董利锋, 李斌昌, 王贝, 等. 饲粮非纤维性碳水化合物/中性洗涤纤维对12月龄荷斯坦后备奶牛生长性能、营养物质表观消化率及瘤胃甲烷产量的影响[J]. 动物营养学报, 2020, 32(8): 3688-3697. DONG L F, LI B C, WANG B, et al. Effects of dietary non-fibrous carbohydrate/neutral detergent fiber on growth performance, nutrient apparent digestibility and rumen methane production of 12-month-old Holstein dairy heifers[J]. Chinese Journal of Animal Nutrition, 2020, 32(8): 3688-3697 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.08.027 |
[18] |
占今舜, 杨群, 胡耀, 等. 日粮精粗比对湖羊瘤胃发酵和菌群结构的影响[J]. 草业学报, 2020, 29(7): 122-130. ZHAN J S, YANG Q, HU Y, et al. Effects of dietary concentration: roughage ratio on rumen fermentation and flora population structure in Hu sheep[J]. Acta Prataculturae Sinica, 2020, 29(7): 122-130 (in Chinese). |
[19] |
GIGER-REVERDIN S, RIGALMA K, DESNOYERS M, et al. Effect of concentrate level on feeding behavior and rumen and blood parameters in dairy goats: relationships between behavioral and physiological parameters and effect of between-animal variability[J]. Journal of Dairy Science, 2014, 97(7): 4367-4378. DOI:10.3168/jds.2013-7383 |
[20] |
PHILIPPEAU C, LETTAT A, MARTIN C, et al. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high-or low-starch diets[J]. Journal of Dairy Science, 2017, 100(4): 2637-2650. DOI:10.3168/jds.2016-11663 |
[21] |
普宣宣. 饲粮NFC/NDF对卡拉库尔羊消化、瘤胃发酵及瘤胃微生物的影响[D]. 硕士学位论文. 阿拉尔: 塔里木大学, 2020. PU X X. Effects of dietary NFC/NDF ratio on digestion, rumen fermentation and the rumen microorganism in Karakul sheep[D]. Master's Thesis. Alaer: Tarim University, 2020. (in Chinese) |
[22] |
周艳, 邓凯东, 董利锋, 等. 反刍家畜肠道甲烷的产生与减排技术措施[J]. 家畜生态学报, 2018, 39(4): 6-10, 54. ZHOU Y, DENG K D, DONG L F, et al. Intestinal tract methane production and emission reduction measures in ruminants[J]. Acta Ecologae Animalis Domastici, 2018, 39(4): 6-10, 54 (in Chinese). DOI:10.3969/j.issn.1673-1182.2018.04.002 |
[23] |
郭同军, 张志军, 张俊瑜, 等. 秸秆配合颗粒粗饲料粉碎粒度对育肥期绵羊生产性能的影响[J]. 中国饲料, 2019(3): 33-37. GUO T J, ZHANG Z J, ZHANG J Y, et al. Effect of roughage particle size of straw combined particle on production performance in fattening sheep[J]. China Feed, 2019(3): 33-37 (in Chinese). DOI:10.15906/j.cnki.cn11-2975/s.20190308 |
[24] |
杨大盛, 汪水平, 贺喜全, 等. 收获期对青贮玉米青贮品质及体外发酵特性的影响[J]. 畜牧兽医学报, 2019, 50(11): 2264-2272. YANG D S, WANG S P, HE X Q, et al. Effect of harvest time on silage quality and in vitro fermentation characteristics of silage maize[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(11): 2264-2272 (in Chinese). DOI:10.11843/j.issn.0366-6964.2019.11.010 |
[25] |
MC GEOUGH E J, O'KIELY P, HART K J, et al. Methane emissions, feed intake, performance, digestibility, and rumen fermentation of finishing beef cattle offered whole-crop wheat silages differing in grain content[J]. Journal of Animal Science, 2010, 88(8): 2703-2716. DOI:10.2527/jas.2009-2750 |
[26] |
LI Z J, LIU N N, CAO Y C, et al. Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size[J]. Journal of Animal Science and Biotechnology, 2018, 9: 21. DOI:10.1186/s40104-018-0235-3 |
[27] |
WANG R, WANG M, UNGERFELD E M, et al. Nitrate improves ammonia incorporation into rumen microbial protein in lactating dairy cows fed a low-protein diet[J]. Journal of Dairy Science, 2018, 101(11): 9789-9799. DOI:10.3168/jds.2018-14904 |
[28] |
LEE C, ARAUJO R C, KOENIG K M, et al. Effects of encapsulated nitrate on enteric methane production and nitrogen and energy utilization in beef heifers[J]. Journal of Animal Science, 2015, 93(5): 2391-2404. DOI:10.2527/jas.2014-8845 |
[29] |
SHI C X, MENG Q X, HOU X Z, et al. Response of ruminal fermentation, methane production and dry matter digestibility to microbial source and nitrate addition level in an in vitro incubation with rumen microbes obtained from wethers[J]. Journal of Animal and Veterinary Advances, 2012, 11(18): 3334-3341. DOI:10.3923/javaa.2012.3334.3341 |
[30] |
VAN ZIJDERVELD S M, GERRITS W J J, APAJALAHTI J A, et al. Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep[J]. Journal of Dairy Science, 2010, 93(12): 5856-5866. DOI:10.3168/jds.2010-3281 |
[31] |
BUSQUET M, CALSAMIGLIA S, FERRET A, et al. Plant extracts affect in vitro rumen microbial fermentation[J]. Journal of Dairy Science, 2006, 89(2): 761-771. DOI:10.3168/jds.S0022-0302(06)72137-3 |
[32] |
LI Z J, DENG Q, LIU Y F, et al. Dynamics of methanogenesis, ruminal fermentation and fiber digestibility in ruminants following elimination of protozoa: a meta-analysis[J]. Journal of Animal Science and Biotechnology, 2018, 9: 89. DOI:10.1186/s40104-018-0305-6 |
[33] |
SALLAM S M A, BUENO I C S, BRIGIDE P, et al. Efficacy of eucalyptus oil on in vitro ruminal fermentation and methane production[J]. Options Mediterraneennes, 2009, 85: 267-272. |
[34] |
CHANDRASEKHARAIAH M, THULASI A, JOSE L. Effect of supplementation of different essential oils on in vitro methanogenesis, fermentation and digestibility of finger millet straw based diet in rumen liquor of crossbred cattle[J]. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2015, 6(2): 480-486. |
[35] |
GOEL N, SIROHI S K, DWIVEDI J. Estimation of total saponins and evaluate their effect on in vitro methanogenesis and rumen fermentation pattern in wheat straw based diet[J]. Journal of Advanced Veterinary Research, 2012, 2: 120-126. |
[36] |
AROWOLO M A, HE J H. Use of probiotics and botanical extracts to improve ruminant production in the tropics: a review[J]. Animal Nutrition, 2018, 4(3): 241-249. DOI:10.1016/j.aninu.2018.04.010 |
[37] |
肖怡. 三种益生菌对肉羊甲烷排放、物质代谢和瘤胃发酵的影响[D]. 硕士学位论文. 阿拉尔: 塔里木大学, 2016. XIAO Y. Effects of three probiotics on methane emission nutrient metabolism and rumen fermentation in mutton sheep[D]. Master's Thesis. Alaer: Tarim University, 2016. (in Chinese) |
[38] |
孙凯佳. 堆积肉牛粪便的甲烷排放与米曲霉对肉牛胃肠道和粪便甲烷排放的影响及其机理[D]. 博士学位论文. 郑州: 河南农业大学, 2015. SUN K J. The methane emissions from beef cattle manure during storage and the effects of Aspergillus oryzae on enteric and manure methane emission from beef cattle and its mechanism[D]. Ph. D. Thesis. Zhengzhou: Henan Agricultural University, 2015. (in Chinese) |
[39] |
谢明欣, 李常瑞, 杨晓东, 等. 不同精粗比饲粮条件下复合益生菌对绵羊瘤胃微生物种群的影响[J]. 动物营养学报, 2020, 32(9): 4418-4428. XIE M X, LI C R, YANG X D, et al. Effects of compound probiotics on rumen microbial population in sheep fed different concentrate to roughage ratio diets[J]. Chinese Journal of Animal Nutrition, 2020, 32(9): 4418-4428 (in Chinese). |
[40] |
VYAS D, ALEMU A W, MCGINN S M, et al. The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high-forage and high-grain diets[J]. Journal of Animal Science, 2018, 96(7): 2923-2938. DOI:10.1093/jas/sky174 |
[41] |
PETERSEN M K, MUSCHA J M, MULLINIKS J T, et al. Water temperature impacts water consumption by range cattle in winter[J]. Journal of Animal Science, 2016, 94(10): 4297-4306. DOI:10.2527/jas.2015-0155 |
[42] |
GROSSI S, ROSSI L, DELL'ANNO M, et al. Effects of heated drinking water on the growth performance and rumen functionality of fattening charolaise beef cattle in winter[J]. Animals, 2021, 11(8): 2218. DOI:10.3390/ani11082218 |
[43] |
TAPIO I, SNELLING T J, STROZZI F, et al. The ruminal microbiome associated with methane emissions from ruminant livestock[J]. Journal of Animal Science and Biotechnology, 2017, 8: 7. DOI:10.1186/s40104-017-0141-0 |
[44] |
BEAUCHEMIN K A, UNGERFELD E M, ECKARD R J, et al. Review: fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation[J]. Animal, 2020, 14(supplement 1): s2-s16. |
[45] |
MARTÍNEZ-FERNÁNDEZ G, ABECIA L, ARCO A, et al. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep[J]. Journal of Dairy Science, 2014, 97(6): 3790-3799. DOI:10.3168/jds.2013-7398 |
[46] |
AGUINAGA CASAÑAS M A, RANGKASENEE N, KRATTENMACHER N, et al. Methyl-coenzyme M reductase A as an indicator to estimate methane production from dairy cows[J]. Journal of Dairy Science, 2015, 98(6): 4074-4083. DOI:10.3168/jds.2015-9310 |
[47] |
DIJKSTRA J, BANNINK A, FRANCE J, et al. Short communication: antimethanogenic effects of 3-nitrooxypropanol depend on supplementation dose, dietary fiber content, and cattle type[J]. Journal of Dairy Science, 2018, 101(10): 9041-9047. DOI:10.3168/jds.2018-14456 |
[48] |
JAYANEGARA A, SARWONO K A, KONDO M, et al. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis[J]. Italian Journal of Animal Science, 2018, 17(3): 650-656. DOI:10.1080/1828051X.2017.1404945 |
[49] |
THIEL A, SCHOENMAKERS A C M, VERBAAN I A J, et al. 3-NOP: mutagenicity and genotoxicity assessment[J]. Food and Chemical Toxicology, 2019, 123: 566-573. DOI:10.1016/j.fct.2018.11.010 |
[50] |
KNAPP J R, LAUR G L, VADAS P A, et al. Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions[J]. Journal of Dairy Science, 2014, 97(6): 3231-3261. DOI:10.3168/jds.2013-7234 |
[51] |
SHIBATA M, TERADA F. Factors affecting methane production and mitigation in ruminants[J]. Animal Science Journal, 2010, 81(1): 2-10. DOI:10.1111/j.1740-0929.2009.00687.x |
[52] |
LEE S M, KIM J Y, KIM E J. Effects of stocking density or group size on intake, growth, and meat quality of Hanwoo steers (Bos taurus coreanae)[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(11): 1553-1558. DOI:10.5713/ajas.2012.12254 |
[53] |
LACASSE P, VINET C M, PETITCLERC D. Effect of prepartum photoperiod and melatonin feeding on milk production and prolactin concentration in dairy heifers and cows[J]. Journal of Dairy Science, 2014, 97(6): 3589-3598. DOI:10.3168/jds.2013-7615 |
[54] |
LIU B, GAO F Q, GUO J, et al. A microarray-based analysis reveals that a short photoperiod promotes hair growth in the Arbas Cashmere goat[J]. PLoS One, 2016, 11(1): e0147124. DOI:10.1371/journal.pone.0147124 |
[55] |
BEWLEY J M, GROTT M W, EINSTEIN M E, et al. Impact of intake water temperatures on reticular temperatures of lactating dairy cows[J]. Journal of Dairy Science, 2008, 91(10): 3880-3887. DOI:10.3168/jds.2008-1159 |
[56] |
陈昭辉, 庞超, 靳薇, 等. 基于水温对肉牛生长性能影响的冬季恒温饮水系统优选[J]. 农业工程学报, 2015(24): 212-218. CHEN Z H, PANG C, JIN W, et al. Optimization of water supply system with constant temperature in winter based on effect of water temperature on growth performance of beef cattle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015(24): 212-218. DOI:10.11975/j.issn.1002-6819.2015.24.032 |
[57] |
李军峰. 饮水温度对奶牛生产性能的影响[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2008. LI J F. Effects of drinking water temperature on performance of lactating dairy cows[D]. Master's Thesis. Yangling: Northwest A & University, 2008. (in Chinese) |
[58] |
PICKERING N K, ODDY V H, BASARAB J, et al. Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants[J]. Animal, 2015, 9(9): 1431-1440. DOI:10.1017/S1751731115000968 |
[59] |
RICHARDSON C M, NGUYEN T T T, ABDELSAYED M, et al. Genetic parameters for methane emission traits in Australian dairy cows[J]. Journal of Dairy Science, 2021, 104(1): 539-549. DOI:10.3168/jds.2020-18565 |
[60] |
BREIDER I S, WALL E, GARNSWORTHY P C. Short communication: heritability of methane production and genetic correlations with milk yield and body weight in Holstein-Friesian dairy cows[J]. Journal of Dairy Science, 2019, 102(8): 7277-7281. DOI:10.3168/jds.2018-15909 |
[61] |
HEGARTY R S. Genotype differences and their impact on digestive tract function of ruminants: a review[J]. Australian Journal of Experimental Agriculture, 2004, 44(5): 459-467. DOI:10.1071/EA02148 |
[62] |
JONKER A, MACLEAN S, WOYIMO WOJU C, et al. Excreta emissions in progeny of low and high enteric methane yield selection line sheep fed pasture of different qualities[J]. Animal Feed Science and Technology, 2019, 257: 114289. DOI:10.1016/j.anifeedsci.2019.114289 |
[63] |
ROEHE R, DEWHURST R J, DUTHIE C A, et al. Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance[J]. PLOS Genetics, 2016, 12(2): e1005846. DOI:10.1371/journal.pgen.1005846 |
[64] |
ST-PIERRE N R, COBANOV B, SCHNITKEY G. Economic losses from heat stress by US livestock industries[J]. Journal of Dairy Science, 2003, 86: E52-E77. DOI:10.3168/jds.S0022-0302(03)74040-5 |
[65] |
张顺进, 寇浩玮, 丁晓婷, 等. 全基因组选择技术在反刍动物遗传育种中的研究进展及其应用[J]. 农业生物技术学报, 2021, 29(3): 571-578. ZHANG S J, KOU H W, DING X T, et al. The research progress and application of genomic-wide selection in ruminant genetics and breeding[J]. Journal of Agricultural Biotechnology, 2021, 29(3): 571-578 (in Chinese). |
[66] |
CHADWICK D R. Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering[J]. Atmospheric Environment, 2005, 39(4): 787-799. DOI:10.1016/j.atmosenv.2004.10.012 |
[67] |
TAUSEEF S M, PREMALATHA M, ABBASI T, et al. Methane capture from livestock manure[J]. Journal of Environmental Management, 2013, 117: 187-207. DOI:10.1016/j.jenvman.2012.12.022 |
[68] |
WANG J J, DUAN C Q, JI Y Q, et al. Methane emissions during storage of different treatments from cattle manure in Tianjin[J]. Journal of Environmental Sciences, 2010, 22(10): 1564-1569. DOI:10.1016/S1001-0742(09)60290-4 |
[69] |
游玉波. 肉牛甲烷排放测定与估算模型的研究[D]. 博士学位论文. 北京: 中国农业科学院, 2008. YOU Y B. Studies on methane emission measurement and predicting model of beef cattle[D]. Ph. D. Thesis. Beijing: The Chinese Academy of Agricultural Sciences, 2008. (in Chinese) |
[70] |
VAN DER WEERDEN T J, LUO J, DEXTER M, et al. Nitrous oxide, ammonia and methane emissions from dairy cow manure during storage and after application to pasture[J]. New Zealand Journal of Agricultural Research, 2014, 57(4): 354-369. DOI:10.1080/00288233.2014.935447 |
[71] |
ZHOU S Z, ZHANG X Y, LIAO X D, et al. Effect of different proportions of three microbial agents on ammonia mitigation during the composting of layer manure[J]. Molecules, 2019, 24(13): 2513. DOI:10.3390/molecules24132513 |
[72] |
MEN Y, ZHENG L, ZHANG L L, et al. Effects of adding zero valent iron on the anaerobic digestion of cow manure and lignocellulose[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 590200. DOI:10.3389/fbioe.2020.590200 |
[73] |
GU W J, ZHANG F B, XU P Z, et al. Effects of sulphur and Thiobacillus thioparus on cow manure aerobic composting[J]. Bioresource Technology, 2011, 102(11): 6529-6535. DOI:10.1016/j.biortech.2011.03.049 |
[74] |
MA M, BAI Y H, SONG X D, et al. Investigation into the co-pyrolysis behaviors of cow manure and coal blending by TG-MS[J]. Science of the Total Environment, 2020, 728: 138828. DOI:10.1016/j.scitotenv.2020.138828 |
[75] |
HUSSEIN M, PILLAI V V, GODDARD J M, et al. Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure[J]. PLOS One, 2017, 12(2): e0171708. DOI:10.1371/journal.pone.0171708 |
[76] |
MOTTE C, RIOS A, LEFEBVRE T, et al. Replacing fish meal with defatted insect meal (yellow mealworm Tenebrio molitor) improves the growth and immunity of pacific white shrimp (Litopenaeus vannamei)[J]. Animals, 2019, 9(5): 258. DOI:10.3390/ani9050258 |