动物营养学报    2022, Vol. 34 Issue (11): 6894-6903    PDF    
影响羔羊肠道发育因素研究进展
朱振宇1 , 杨成1 , 王明根1 , 郭雪峰1,2     
1. 塔里木大学动物科学与技术学院, 阿拉尔 843300;
2. 塔里木畜牧科技兵团重点实验室, 阿拉尔 843300
摘要: 羔羊时期肠道发育直接影响成年后的生产性能。羔羊肠道发育受多种因素影响,如母体营养水平,饲粮能量、蛋白质和纤维物质,以及肠道微生物等,其中饲粮能量和蛋白质是主要的影响因素,早期能量和蛋白质缺乏会抑制肠道组织生长。本文综述了羔羊肠道的结构和功能,以及影响羔羊肠道发育的主要因素,为羔羊的早期科学饲养提供参考,并对羔羊肠道的研究方向提出展望。
关键词: 羔羊    肠道发育    消化吸收    饲粮组成    
Research Progress on Factors Affecting Intestinal Development of Lambs
ZHU Zhenyu1 , YANG Cheng1 , WANG Minggen1 , GUO Xuefeng1,2     
1. College of Animal Science and Technology, Tarim University, Alar 843300, China;
2. Tarim Key Laboratory of Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, China
Abstract: Intestinal development during the lamb period directly affects the performance of adulthood. The development of lambs' intestines is affected by a variety of factors, such as maternal nutrient level, feed energy, protein and fiber substances, and intestinal microorganisms, the feed energy and protein are the main influencing factors, and early energy and protein deficiency will inhibit the growth of intestinal tissue. This paper reviewed the structure and function of lambs' intestines, and the main factors affecting the development of lambs' intestines, provides a reference for the early scientific feeding methods of lambs, and puts forward prospects for the research direction of lambs' gastrointestinal tract.
Key words: lambs    intestinal development    digestion and absorption    dietary component    

羔羊肠道发育始于胚胎早期,羔羊出生后,肠道快速进行结构和功能完善,以此来适应不同饲粮类型的转变[1]。Trahair等[2]报道,从母体妊娠27 d开始观察到胎儿肠道发育,到母体妊娠50 d胎儿小肠出现绒毛结构。相对于身体其他组织器官,肠道的生长发育速度随着胎儿的发育逐渐加快,妊娠最后3个月,胎儿肠道长度增加1倍[3-5]。研究发现,新生羔羊肠道占整个消化道的比例为70%~80%,随着日龄的增长和饲粮类型的转变,羔羊肠道的结构和功能趋于完善[6-7]。新生羔羊随着日龄增长,小肠占消化道的比例逐渐下降,大肠占消化道的比例基本保持不变,瘤胃占消化道的比例则逐渐上升,这与开食料中补饲粗纤维刺激瘤胃的发育有关[8]。羔羊时期胃肠道发育水平决定了其成年时期生产性能的高低,因此在幼龄期就需要对其肠道发育进行调控,尽早使其肠道结构和功能完善。

肠道健康包括肠道结构的完整性、肠道发育状况、肠道微生物菌群组成以及肠道免疫屏障的状态等。肠黏膜免疫屏障是由肠道相关淋巴样组织、肠系膜淋巴结、分泌型抗体构成的可以对抗毒素、抗原及潜在的有害生物侵害的重要屏障[9]。沿小肠末端延伸1~2 m的回肠派尔斑是B细胞发育的主要淋巴器官,参与组成肠黏膜免疫屏障以及诱导和活化肠黏膜免疫反应[10-11]。目前,有关单胃动物肠道发育以及影响因素报道较多,而对反刍动物消化道的研究主要集中在瘤胃上,关于影响反刍动物肠道发育的研究报道较少。新生羔羊肠道发育不健全,此阶段肠道发育状况会直接影响羔羊后期的生长发育,若饲养管理不当或营养供应不足可能会引发一系列消化道疾病。尤其在断奶时期,突然性断奶使饮食结构骤然变化,导致了回肠细胞氧化损伤,羔羊产生应激反应,发生腹泻[12]。Sharif等[13]也报道,幼龄反刍动物腹泻发病率要高于成年动物,而腹泻会导致较高的死亡率。因此,系统地了解羔羊肠道发育及影响羔羊肠道发育的因素,对羔羊健康养殖具有重要意义。

1 羔羊肠道结构和功能

肠道具有黏膜层、黏膜下层、肌层及浆膜层[14]。肠上皮是动物机体最大的黏膜,其中的隐窝和绒毛覆盖约400 m2表面积[15]。肠道黏膜的生长与绒毛和微绒毛的密度、大小以及直径的变化具有十分紧密的联系,黏膜为肠道绒毛和微绒毛提供足够的生长空间[5]。肠道黏膜、绒毛和微绒毛的发育使肠道成为接触各种营养物质、药物、代谢产物、毒素和细菌的场所[16]。此外,肠道在动物生长过程发挥营养物质和电解质的吸收、机体新陈代谢、激素分泌以及先天免疫等功能[17]。Aleksandersen等[18]通过细胞荧光测定法在25%的淋巴细胞和空肠淋巴细胞上检测到T细胞标志物,几乎所有的T细胞都表达了该分子。肠道的微观结构组成是胃肠道发挥功能的结构基础,保证肠道结构的完整,才能促进其功能的发挥。

1.1 小肠

小肠是消化道参与消化吸收的结构,储备肠道长度是肠道功能是否良好的决定因素[19]。王彩莲等[20]报道,在28日龄左右,羔羊小肠长度基本保持恒定,约为体长的25倍。羔羊真胃刺激食道沟分流初乳,启动下肠道的消化和吸收[21]。肠道绒毛是动物进行消化吸收的结构基础,母体妊娠的后3个月,胎儿肠道绒毛和微绒毛开始生长[22-23]。隐窝也是小肠的功能性单位,其主要负责分泌消化液和发挥免疫作用[24-25]。据报道,小肠隐窝区的潘氏细胞可以分泌防御素,防御素的趋化作用趋化炎症效应细胞及效应分子向感染部位流动,使机体能更有效地杀灭病原微生物,为天然免疫提供桥梁[26-27]。潘氏细胞内的溶菌酶等也具有抗菌活性,这也是肠道发挥免疫功能的机制之一[28]

1.2 大肠

小肠中未被消化的物质,在结肠和盲肠微生物的作用下继续分解[8]。经大肠进行水分、电解质和微生物发酵产物的吸收,挥发性脂肪酸在到达直肠之前就被吸收[29-30]。盲肠是仅次于瘤胃的发酵器官,瘤胃和盲肠中存在大量的微生物[31]。羔羊刚断奶时瘤胃微生物菌群未完全建立,此时盲肠不仅执行消化、分泌和吸收功能,还承担部分对食物的发酵作用[31]。当出现饲粮变化、环境改变以及动物机体内环境稳态失调等情况时,如饲粮营养成分过剩或小肠对营养物质吸收不完全,大量营养物质从前肠直接进入后肠,盲肠发酵过度,代谢异常[32]。大肠是消化道的最后部分,不仅参与对部分物质的消化吸收,也参与微生物的发酵。

2 影响羔羊肠道发育的因素

消化道的发育程度决定动物的生长速度[33]。肠道健康发育是动物生长发育的重要环节,是营养物质消化吸收和减少动物疾病的关键[34]。羔羊肠道发育受多种因素影响,如动物饲粮类型[35]、母体营养水平[36]、环境、外源酶制剂[37]、日龄[38]以及肠道微生物等[39]。此外,羔羊消化道组织发育受代谢能摄入量、蛋白质摄入量和膳食能量水平的影响[40]。营养限制导致肠道抗氧化能力下降,还会影响肠道对营养物质的消化和吸收[41]

2.1 母体营养水平对羊胎儿肠道发育的影响

羔羊胃肠道在母体妊娠期间已经开始发育,母体营养不足会胎儿组织器官和胃肠道的生长受阻[42]。Vonnahme等[43]报道,对妊娠母羊进行能量和蛋白质限制,降低了胎儿出生后肠道的重量。母体营养物质供应不足,胎儿小肠重量、小肠和大肠的肠径以及黏膜面积均显著降低,此外,在营养受限的胎儿中,肠细胞的成熟也被延迟[5]。胎盘作为胎儿与母体之间物质交换的器官,供应胎儿发育所需要的营养物质,其功能状态反映胎儿在宫腔内发育状况[44]。当母体营养物质供应长期缺乏时,胎盘供给营养物质减少,胃肠道生长受阻,特别是小肠的生长受阻[45]。妊娠中期,胎儿开始吞咽羊水,刺激胃肠道腔体黏膜分化[46-47]。妊娠末期是胎儿肠道生长的关键时期[2]。在妊娠末期的绵羊中发现,母体10 d内营养不良,导致胎儿生长减慢,并在母体补充营养后胎儿生长速度恢复[48]。Girard[49]研究发现,妊娠末期出现的母体相对低血糖与胎儿生长增加了葡萄糖的利用有直接的关系。作为子宫内成功发育的一个判断,胃肠道必须具有足够的表面积和健全的功能,以便在肠内喂养开始时消化和吸收营养物质[5]。因此,生产中应加强对妊娠母羊的饲养管理,保证母体营养充足,以减少对胎儿的不良影响,促进胎儿生长和器官的早期发育。

2.2 饲粮营养组成对羔羊肠道发育的影响

肠道与身体的其他组织和器官相比,呈现更快的生长速度[4]。早期营养不足,机体组织器官和肠道发育受阻,严重时甚至会损害肠道功能[50]。Meyer等[36]报道,饲粮的营养组成影响肠道的发育,主要包括饲粮能量、蛋白质以及纤维物质等。

2.2.1 能量

在羔羊早期发育时期,肠道对膳食营养非常敏感,羔羊自出生至2月龄处于快速生长阶段,能量限制会延长肠道达到恒定重量的时间,使肠道不能最大程度发挥其生长效能,发育缓慢[36, 51]。Burton等[52]报道,肠道占身体质量的5%~7%,却消耗全身15%~20%的氧气,需要更多的能量供应。Lima等[53]发现限制饲粮能量水平,肠道吸收面积下降,这与肠道黏膜以及绒毛的发育程度有关。动物摄取能量优先供应生长发育的需求,再去满足一些功能上的消耗,低采食量摄入能量缺乏,不能满足生长发育需求,肠道屏障功能就会受到损伤[54]。不同来源能量对肠道的影响也不尽相同,于洋洋[55]通过比较不同来源淀粉对羔羊肠道的影响,发现相比于玉米淀粉,豌豆淀粉可显著改善羔羊小肠的形态结构,增加肠道黏膜面积。另外,饲粮能量和肠道菌群也有一定的关联,适宜的饲粮精粗比可调节肠道菌群平衡,这与肠道细菌的生存环境有关,采食饲粮精粗比例不同,肠道内容物存在差异,使不同菌群丰度存在一定差异[56]。饲粮能量缺乏阻碍羔羊肠道发育,在生产中要满足羔羊不同生长时期的能量需求,提供合适的饲粮能量水平,减少因能量缺乏造成的不良影响。

2.2.2 蛋白质

蛋白质和能量是瘤胃乳头发育和空肠绒毛生长的关键因素,肠道发育早期蛋白质或能量缺乏可能会抑制这些组织的生长[57]。蛋白质是构成肌层肌纤维的主要物质,生长发育初期,蛋白质缺乏,肠道黏膜发育不良,肠道屏障遭到破坏,可利用的营养素不能被充分吸收[33]。而蛋白质水平过高,大量的含氮物质无法被吸收,引发营养性腹泻[58]。在羔羊饲粮中提供适宜水平的蛋白质,既保证羔羊的正常生长发育,促进肠道健康,又减少饲料的浪费。

2.2.3 纤维物质

纤维物质是反刍动物饲粮的组成部分,对提高反刍动物生产力和维持肠道健康有关键作用[59]。在开食料中增加纤维物质代替液体饲粮可以促进胃肠道蠕动,刺激肠道表皮,进而促进其功能性结构的发育,在羔羊开食料中添加一定比例的粗纤维能促进羔羊消化器官组织发育和消化机能发育[60]。周力等[61]报道,饲粮中补饲纤维物质促进羔羊空肠和盲肠的发育,提高羊对纤维素的降解能力。饲粮纤维影响盲肠发酵过程和盲肠结构发育,纤维水平适宜时,发酵产生的短链脂肪酸较多,有利于促进肠道发育,当纤维水平较高时,肠道副交感神经兴奋性增加,促进肠道蠕动,使食糜在盲肠内停留时间变短[12]。除了饲粮纤维水平,纤维来源、物理形态和饲喂方式等也能调控羔羊肠道的发育。羔羊早期发育的过程中,适量的补充纤维物质有助于肠道尤其是盲肠的发育,在生产中,要根据羔羊不同生长阶段,在饲粮中提供适宜的纤维物质,以确保肠道可以正常发育。

2.3 胃肠道微生物对羔羊肠道发育的影响

胃肠道微生物区系是影响胃肠道正常消化功能的因素之一[62]。肠道微生物不仅参与营养物质的消化吸收,同时可调节宿主代谢和健康[63]。微生物通过影响肠上皮增殖和分化、肠道形态、营养物质消化和吸收以及肠道屏障调控肠道发育模式[64]。肠上皮细胞在维持共生微生物的耐受和防御之间的平衡中起着关键的作用。反过来,肠道微生物群调节肠道上皮的消化、吸收和屏障功能[26]。在生产中,有时会通过饲喂一些有益微生物来促进羔羊肠道功能的完善。目前可饲喂的益生菌主要有乳酸菌属(Lactobacillus)、双歧杆菌属(Bifidobacterium)、丙酸菌属(Propionbacterium)、肠球菌属(Enterococcus.)、片球菌属(Pediococcus)和芽孢杆菌属(Bacillus)等[65]

微生物定植和肠道屏障的构建,建立了一种黏膜细胞与共生细菌共居的稳态[66]。新生儿和母体的接触所获得微生物是肠道健康和发育的组成部分[67]。当胎儿在子宫内吞咽羊水,微生物就已经开始在胎儿胃肠道中定植[66]。在绵羊胎儿中研究发现,妊娠早期消除液体摄入会导致严重的胃肠道特异性生长迟缓,如果胎儿吞咽恢复,这些影响可以逆转,主要是与吞咽后进入肠道的微生物有关[54]。在出生后最初的几个小时,羔羊经阴道分娩获得微生物,随后通过初乳以及与环境的多次接触定植[68]。Zhang等[69]报道,相比于十二指肠,回肠和盲肠具有更高且更稳定的微生物菌群,十二指肠前连接真胃,其酸性内容物以及腺体分泌的胰液、胆汁等创造的消化性环境不利于微生物的生存,而回肠和盲肠相对靠后,内容物周转缓慢,更适于微生物生存。Stanley等[70]研究发现,肠道微生物的丰富度和多样性降低后,肠道的免疫状态也会改变,机体对肠道内的病原微生物的易感性增加。建立稳定的共生微生物菌群,促进肠道的发育和肠道屏障功能的完善,才能够更好地利用肠道微生物来提高动物机体的免疫力,减少胃肠道疾病的发生。

2.4 日龄对羔羊肠道发育的影响

日龄是影响羔羊肠道发育的关键因素之一,肠道的结构和功能随着羔羊日龄的增长而逐渐发育完善,其不同日龄饲粮类型的改变也是刺激肠道功能健全的因素之一[71]。韩铖星等[72]报道,肠道的长度和重量随日龄的增加而逐渐增大,42日龄十二指肠、回肠的绒毛高度和隐窝深度比值均高于8和21日龄。在羔羊的管理中,要根据不同日龄羔羊对营养物质的需求,通过精细化饲养管理调控不同饲粮水平来干预其肠道的发育。

2.5 其他添加成分对羔羊肠道发育的影响

一些植物提取物[73]、益生菌[74]、微量元素[75]等也对早期羔羊的肠道发育和肠道功能具有影响。研究发现,单宁可改善肠道内环境,降低肠道内pH,提高小肠消化酶的活性,保护肠道屏障,维持肠道的健康[76]。据报道,在饲粮中添加嗜酸乳杆菌提高了肠道中乳杆菌属等有益菌的丰度,增强了肠道屏障功能[77]。Johnson[78]研究发现,胃泌素对小肠黏膜具有营养作用,给动物服用胃泌素可以促进胰腺和小肠的生长,这种促进生长的作用可能是胃泌素在胎儿中的主要功能。谷氨酸对肠上皮的保护作用体现在维持肠道屏障功能正常运转,主要包括肠黏膜机械屏障、化学屏障和免疫屏障[79]。饲粮中添加微量元素会影响羔羊肠道发育,因此,在羔羊饲养过程中需考虑添加剂类型及添加水平,以促进肠道发育。

3 系统集成型调控肠道发育实用技术 3.1 肠道类器官

近年来对肠道研究模型及肠道类器官的研究比较热门。为了在实验室环境中研究肠道发育过程、肠道生理以及肠道屏障功能等,肠道体外模型的研究逐渐成熟[80]。类器官的引入为研究肠道功能提供了一种先进的技术,其被广泛用于肠上皮的体外研究上[81-82]。但因类器官仍然缺乏肠道生理的特定部分,例如基质、脉管系统、免疫系统和微生物组,不能完全代表体内情况,这也限制了类器官在一些方面的应用[83]。荷兰科学家开发了一种肠道离体组织模型,用于研究生物、营养或药物化合物肠壁上的易位和吸收[84],在该模型中处理离体组织的组织可用性和活力受到限制[85]。为了延长组织活力,研究人员已将肠道离体组织模型改进一种称为肠外植体屏障芯片微流体模型,该模型组织活力可维持24 h之久[86]。微流控片上肠道模型已成为一种通过将多种细胞类型或肠道微生物组纳入系统来研究肠道功能的新方法,基于细胞和类器官的芯片上肠道模型缺乏不同的细胞类型,这仍然是充分研究肠道结构和微环境的阻碍[87]。2009年,Clevers团队首次培养出了3D肠道类器官,离体的肠道干细胞在基质胶以及多种生长因子中培养可不断增殖,并保留了肠道干细胞的自我更新及分化能力[81]。2015年,Wang等[88]利用成体干细胞体外培养和气液界面三维分化技术,成功培养出可在体外长期保持良好自我更新状态的干细胞,可自发形成各种3D肠上皮组织,该上皮组织具有完善的上皮屏障结构和功能。肠道类器官不仅包含了机体肠组织中的几乎全部细胞种类,并且表现出与机体相似的功能,如吸收、分泌功能[89]

3.2 早期断奶技术

羔羊早期断奶是高效养殖的技术措施之一,在提高母羊繁殖力、节约生产成本等方面具有重要意义。羔羊断奶时间很关键,断奶时间过早,易造成羔羊心理应激,发病率提高;断奶时间过晚,则影响羔羊胃肠道发育,还不利于母羊的体况恢复,延长繁殖周期[90]。目前国内对羔羊早期断奶的标准尚未形成定论,不同品种、管理方式及地域差异对羔羊断奶时间的要求都不尽相同。目前比较被认可的断奶方式主要有以下2种:第1种是根据羔羊出生日龄断奶[91]。朱晓芳等[90]报道,羔羊15日龄实施完全断奶,饲喂代乳粉发育正常;王志有[92]报道,小尾寒羊可在45日龄断奶。第2种是根据羔羊体重断奶[93]。有报道称,羔羊达到比初生重大2倍时体重断奶最佳[90]。还有根据羔羊采食量进行早期断奶的报道。柴建民等[94]认为羔羊日采食量达到300 g时断奶,对后期生长更加有利。早期断奶技术逐步在规模化养殖场实施,饲喂代乳料或开食料是羔羊早期断奶基本手段,补饲可促进羔羊胃肠道发育,有效阻断来自母体的疾病传播[90]。早期断奶的羔羊经补饲代乳粉,可促进羔羊后期生产性能的发挥,这主要与补饲代乳粉加快了羔羊肠道的发育有关。

4 小结与展望

了解肠道的结构和功能以及不同时期的发育状态和发育水平,提供合理的饲粮促进肠道的发育,可提高羔羊生产性能。羔羊肠道的发育受多因素影响,其中饲粮营养水平尤其是能量和蛋白质水平是影响肠道发育的最主要的因素。低能量和蛋白质水平导致肠道的发育缓慢,损害肠道屏障功能;纤维物质主要刺激羔羊盲肠的发育,但含量过低影响盲肠结构和功能的完善。妊娠期母羊的营养水平过低也会限制胎儿的肠道发育。肠道微生物是维持肠道稳态的关键因素,肠道微生物菌群稳态直接反映了肠道的健康水平。添加单宁和枯草芽孢杆菌等也可改善羔羊小肠屏障功能,维持肠道健康。系统集成性肠道研究技术发展迅速,但仍有很大的改进空间。肠道的发育过程是一个动态变化的过程,优化管理模式、调节营养水平和饲粮组成,根据肠道的生理特性,阶段性、系统性地促进肠道整体的发育,才能最大程度发挥肠道的功能,提高效益。

肠道微生物既是饲粮营养成分消化的直接载体,同时肠道微生物又是肠道免疫屏障构建的关键所在,因此,进一步探索羔羊肠道微生物定植和羔羊肠道发育之间的关系及共作用机制是值得研究的领域之一。另外,现阶段对羔羊肠道发育的研究主要集中在不同因素对其肠道发育的影响上,而关于各因素对羔羊肠道发育具体影响机制的研究较少,也是后续研究的主要方向。尽管肠道离体模型已广泛用于研究胃肠道的研究,然而,对肠道生理和功能整体的研究在很大程度上仍然是未知的,需要进一步探索。

参考文献
[1]
李贞, 王波, 李鹤琼, 等. 反刍动物肠道发育过程及影响因素[J]. 现代畜牧兽医, 2018(11): 30-33.
LI Z, WANG B, LI H Q, et al. Intestinal development process and influencing factors of ruminants[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2018(11): 30-33 (in Chinese).
[2]
TRAHAIR J F, HARDING R, BOCKING A D, et al. The role of ingestion in the development of the small intestine in fetal sheep[J]. Quarterly Journal of Experimental Physiology, 1986, 71(1): 99-104. DOI:10.1113/expphysiol.1986.sp002973
[3]
WEAVER L T, AUSTIN S, COLE T J. Small intestinal length: a factor essential for gut adaptation[J]. Gut, 1991, 32(11): 1321-1323. DOI:10.1136/gut.32.11.1321
[4]
TRAHAIR J F, AVILA C G, ROBINSON P M. Growth of the fetal sheep small intestine[J]. Growth, 1986, 50(2): 201-216.
[5]
TRAHAIR J F, DEBARRO T M, ROBINSON J S, et al. Restriction of nutrition in utero selectively inhibits gastrointestinal growth in fetal sheep[J]. The Journal of Nutrition, 1997, 127(4): 637-641. DOI:10.1093/jn/127.4.637
[6]
CHONG C Y L, VATANEN T, OLIVER M, et al. The microbial biogeography of the gastrointestinal tract of preterm and term lambs[J]. Scientific Reports, 2020, 10(1): 9113. DOI:10.1038/s41598-020-66056-z
[7]
王世琴, 李冲, 李发弟, 等. 开食料中性洗涤纤维水平对哺乳羔羊生长性能和消化道发育的影响[J]. 动物营养学报, 2014, 26(8): 2169-2175.
WANG S Q, LI C, LI F D, et al. Effects of heutral detergent fiber level of starter on growth performance and digestive tract development of suckling lambs[J]. Chinese Journal of Animal Nutrition, 2014, 26(8): 2169-2175 (in Chinese). DOI:10.3969/j.issn.1006-267x.2014.08.019
[8]
段鹏伟, 刘婷, 李彦珍, 等. 不同NDF来源开食料对湖羊羔羊生产性能和胃肠道发育的影响[J]. 草业科学, 2020, 37(8): 1608-1619.
DUAN P W, LIU T, LI Y Z, et al. Effects of different starters with different neutral detergent fiber sources on growth performance and gastrointestinal tract development of Hu lambs[J]. Pratacultural Science, 2020, 37(8): 1608-1619 (in Chinese).
[9]
AMAGASE K, KIMURA Y, WADA A, et al. Prophylactic effect of monosodium glutamate on NSAID-induced enteropathy in rats[J]. Current Pharmaceutical Design, 2014, 20(16): 2783-2790. DOI:10.2174/13816128113199990579
[10]
YASUDA M, JENNE C N, KENNEDY L J, et al. The sheep and cattle Peyer's patch as a site of B-cell development[J]. Veterinary Research, 2006, 37(3): 401-415. DOI:10.1051/vetres:2006008
[11]
BAO C C, YUAN B Y, SUN M J, et al. Intestinal flora and its pathogenic mechanism in multiple sclerosis[J]. Medical Journal of Chinese People's Liberation Army, 2018, 43(8): 710-714.
[12]
魏志杰. 奶山羊标准化生产与健康养殖关键技术[J]. 中国乳业, 2021(1): 19-28.
WEI Z J. The key technologies for standardized production and healthy breeding of dairy goats[J]. China Dairy, 2021(1): 19-28 (in Chinese). DOI:10.16172/j.cnki.114768.2021.01.005
[13]
SHARIF L, OBEIDAT J, AL-ANI F. Risk factors for lamb and kid mortality in sheep and goat farms in Jordan[J]. Bulgarian Journal of Veterinary Medicine, 2005, 8(2): 99-108.
[14]
MOHAMMAD H J, ALI K A, AL-ALI Z A J R. Histomorphologal and histochemical structure in the duodenum of sheep (Ovis aries) and rabbit (Oryctolagus cuniculus); a comparative study[J]. Online Journal of Animal and Feed Research, 2020, 10(6): 251-258. DOI:10.51227/ojafr.2020.34
[15]
PETERSON L W, ARTIS D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis[J]. Nature Reviews Immunology, 2014, 14(3): 141-153. DOI:10.1038/nri3608
[16]
WAN M L Y, LING K H, EL-NEZAMI H, et al. Influence of functional food components on gut health[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(12): 1927-1936. DOI:10.1080/10408398.2018.1433629
[17]
CONNOR E E, LI R W, BALDWIN R L, et al. Gene expression in the digestive tissues of ruminants and their relationships with feeding and digestive processes[J]. Animal, 2010, 4(7): 993-1007. DOI:10.1017/S1751731109991285
[18]
ALEKSANDERSEN M, HEIN W R, LANDSVERK T, et al. Distribution of lymphocyte subsets in the large intestinal lymphoid follicles of lambs[J]. Immunology, 1990, 70(3): 391-397.
[19]
CAMPBELL J, BERRY J, LIANG Y. Chapter 71-anatomy and physiology of the small intestine[M]//YEO C J. Shackelford's surgery of the alimentary tract, 2 volume set. 8th ed. Philadelphia: Elsevier, 2019: 817-841.
[20]
王彩莲, 郎侠. 放牧绵羊消化器官的发育性变化[J]. 中国草食动物科学, 2013, 33(1): 21-25.
WANG C L, LANG X. Developmental change of digestive organs in grazing sheep[J]. China Herbivores, 2013, 33(1): 21-25 (in Chinese). DOI:10.3969/j.issn.2095-3887.2013.01.005
[21]
BALDWIN R L, MCLEOD K R, KLOTZ J L, et al. Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant[J]. Journal of Dairy Science, 2004, 87(Suppl.): E55-E65.
[22]
WANG J, YU X J, BAI Y Y, et al. Effects of grazing and confinement on the morphology and microflora of the gastrointestinal tract of small-tailed Han sheep[J]. Livestock Science, 2020, 241: 104208. DOI:10.1016/j.livsci.2020.104208
[23]
KHANAL P D., AXEL A M, SAFAYI S, et al. Prenatal over- and undernutrition differentially program small intestinal growth, angiogenesis, absorptive capacity, and endocrine function in sheep[J]. Physiological Reports, 2020, 8(12): e14498.
[24]
FLORES T J, NGUYEN V B, WIDDOP R E, et al. Morphology and function of the lamb ileum following preterm birth[J]. Frontiers in Pediatrics, 2018, 6: 8. DOI:10.3389/fped.2018.00008
[25]
KIELA P R, GHISHAN F K. Physiology of intestinal absorption and secretion[J]. Best Practice & Research Clinical Gastroenterology, 2016, 30(2): 145-159.
[26]
MÖLLER P, WALCZAK H, REIDL S, et al. Paneth cells express high levels of CD95 ligand transcripts: a unique property among gastrointestinal epithelia[J]. The American Journal of Pathology, 1996, 149(1): 9-13.
[27]
杨玉荣, 焦喜兰, 梁宏德. 潘氏细胞及其防御素的研究进展[J]. 中国细胞生物学学报, 2010, 32(6): 971-975.
YANG Y R, JIAO X L, LIANG H D. Progress in Paneth cell α-defensin[J]. Chinese Journal of Cell Biology, 2010, 32(6): 971-975 (in Chinese).
[28]
KORPE P S, PETRI W A Jr. Environmental enteropathy: critical implications of a poorly understood condition[J]. Trends in Molecular Medicine, 2012, 18(6): 328-336. DOI:10.1016/j.molmed.2012.04.007
[29]
吴晶. 中草药饲料添加剂在绵羊生产中的研究进展[J]. 畜牧与饲料科学, 2012, 33(2): 30-31.
WU J. Research progress of Chinese herbal feed additives in sheep production[J]. Animal Husbandry and Feed Science, 2012, 33(2): 30-31 (in Chinese). DOI:10.3969/j.issn.1672-5190.2012.02.015
[30]
DIXON R M, NOLAN J V. Studies of the large intestine of sheep.1.Fermentation and absorption in sections of the large intestine[J]. British Journal of Nutrition, 1982, 47(2): 289-300. DOI:10.1079/BJN19820038
[31]
秦龙, 姜宁, 张爱忠, 等. Cec Md衍生肽对羔羊盲肠组织、黏膜形态及腹泻的影响[J]. 黑龙江畜牧兽医, 2019(1): 96-99, 181.
QIN L, JIANG N, ZHANG A Z, et al. Effect of Cec Md derived peptide on caecal tissue, mucosal morphology and diarrhea in lambs[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(1): 96-99, 181 (in Chinese).
[32]
XIAO J X, ALUGONGO G M, CHUNG R, et al. Effects of Saccharomyces cerevisiae fermentation products on dairy calves: ruminal fermentation, gastrointestinal morphology, and microbial community[J]. Journal of Dairy Science, 2016, 99(7): 5401-5412. DOI:10.3168/jds.2015-10563
[33]
OWENS F N, DUBESKI P, HANSON C F. Factors that alter the growth and development of ruminants[J]. Journal of Animal Science, 1993, 71(11): 3138-3150. DOI:10.2527/1993.71113138x
[34]
CELI P, VERLHAC V, PÉREZ CALVO E, et al. Biomarkers of gastrointestinal functionality in animal nutrition and health[J]. Animal Feed Science and Technology, 2019, 250: 9-31. DOI:10.1016/j.anifeedsci.2018.07.012
[35]
HERATH H M G P, PAIN S J, KENYON P R, et al. Growth and body composition of artificially-reared lambs exposed to three different rearing regimens[J]. Animals, 2021, 11(12): 3370. DOI:10.3390/ani11123370
[36]
MEYER A M, CATON J S. Role of the small intestine in developmental programming: impact of maternal nutrition on the dam and offspring[J]. Advances in Nutrition, 2016, 7(1): 169-178. DOI:10.3945/an.115.010405
[37]
ZHAO M D, DI L F, TANG Z Y, et al. Effect of tannins and cellulase on growth performance, nutrients digestibility, blood profiles, intestinal morphology and carcass characteristics in Hu sheep[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(10): 1540-1547. DOI:10.5713/ajas.18.0901
[38]
GUILLOTEAU P, CORRING T, GARNOT P, et al. Effects of age and weaning on enzyme activities of abomasum and pancreas of the lamb[J]. Journal of Dairy Science, 1983, 66(11): 2373-2385. DOI:10.3168/jds.S0022-0302(83)82095-5
[39]
LI C, WANG W M, LIU T, et al. Effect of early weaning on the intestinal microbiota and expression of genes related to barrier function in lambs[J]. Frontiers in Microbiology, 2018, 9: 1431. DOI:10.3389/fmicb.2018.01431
[40]
CUI K, QI M L, WANG S Q, et al. Dietary energy and protein levels influenced the growth performance, ruminal morphology and fermentation and microbial diversity of lambs[J]. Scientific Reports, 2019, 9(1): 16612. DOI:10.1038/s41598-019-53279-y
[41]
LEEMING E R, JOHNSON A J, SPECTOR T D, et al. Effect of diet on the gut microbiota: rethinking intervention duration[J]. Nutrients, 2019, 11(12): 2862. DOI:10.3390/nu11122862
[42]
SWANSON T J, HAMMER C J, LUTHER J S, et al. Effects of gestational plane of nutrition and selenium supplementation on mammary development and colostrum quality in pregnant ewe lambs[J]. Journal of Animal Science, 2008, 86(9): 2415-2423. DOI:10.2527/jas.2008-0996
[43]
VONNAHME K A, HESS B W, HANSEN T R, et al. Maternal undernutrition from early- to mid-gestation leads to growth retardation, cardiac ventricular hypertrophy, and increased liver weight in the fetal sheep[J]. Biology of Reproduction, 2003, 69(1): 133-140. DOI:10.1095/biolreprod.102.012120
[44]
孙玲伟, 王智博, 安世钰, 等. RP-Arg和NCG对营养限饲湖羊胎盘发育的影响[J]. 南京农业大学学报, 2020, 43(1): 125-133.
SUN L W, WANG Z B, AN S Y, et al. Effects of dietary RP-Arg and NCG supplementation on development of maternal and fetal placenta in nutrient restriction Hu sheep during pregnancy[J]. Journal of Nanjing Agricultural University, 2020, 43(1): 125-133 (in Chinese).
[45]
AVILA C G, HARDING R, REES S, et al. Small intestinal development in growth-retarded fetal sheep[J]. Journal of Pediatric Gastroenterology and Nutrition, 1989, 8(4): 507-515. DOI:10.1097/00005176-198905000-00015
[46]
BRACE R A. Physiology of amniotic fluid volume regulation[J]. Clinical Obstetrics and Gynecology, 1997, 40(2): 280-289. DOI:10.1097/00003081-199706000-00005
[47]
TRAHAIR J F, HARDING R. Restitution of swallowing in the fetal sheep restores intestinal growth after midgestation esophageal obstruction[J]. Journal of Pediatric Gastroenterology and Nutrition, 1995, 20(2): 156-161. DOI:10.1097/00005176-199502000-00004
[48]
HARDING J E, JONES C T, ROBINSON J S. Studies on experimental growth retardation in sheep.The effects of a small placenta in restricting transport to and growth of the fetus[J]. Journal of Developmental Physiology, 1985, 7(6): 427-442.
[49]
GIRARD J. Carbohydrate metabolism during fetal development[M]//KVNZEL W, JENSEN A. The endocrine control of the fetus. Berlin: Springer, 1988: 323-332.
[50]
HE Z X, SUN Z H, LIU S M, et al. Effects of early malnutrition on mental system, metabolic syndrome, immunity and the gastrointestinal tract[J]. The Journal of Veterinary Medical Science, 2009, 71(9): 1143-1150. DOI:10.1292/jvms.71.1143
[51]
DISTEL R A, VILLALBA J J, LABORDE H E. Effects of early experience on voluntary intake of low-quality roughage by sheep[J]. Journal of Animal Science, 1994, 72(5): 1191-1195. DOI:10.2527/1994.7251191x
[52]
BURTON J H, ANDERSON M, REID J T. Some biological aspects of partial starvation.The effect of weight loss and regrowth on body composition in sheep[J]. British Journal of Nutrition, 1974, 32(3): 515-527. DOI:10.1079/BJN19740105
[53]
LIMA H B, COSTA R G, DIAS-SILVA T P, et al. Performance and ruminal and intestinal morphometry of Santa Inês sheep submitted to feed restriction and refeeding[J]. Tropical Animal Health and Production, 2022, 54(1): 42. DOI:10.1007/s11250-022-03053-6
[54]
BOSI P, GREMOKOLINI C, TREVISI P. Dietary regulations of the intestinal barrier function at weaning[J]. Asian-Australasian Journal of Animal Sciences, 2003, 16(4): 596-608. DOI:10.5713/ajas.2003.596
[55]
于洋洋. 不同淀粉源对羔羊小肠发育、消化酶活性及相关基因表达量的影响[D]. 硕士学位论文. 大庆: 黑龙江八一农垦大学, 2018: 17-29.
YU Y Y. Effects of different starch sources on intestinal development, digestive enzyme activities and related gene expression in lambs[D]. Master's Thesis. Daqing: Heilongjiang Bayi Agricultural University, 2018: 17-29. (in Chinese)
[56]
于杰, 王谊鹃. 饲粮精粗比对反刍动物生产和经济效益的影响[J]. 饲料研究, 2021, 44(9): 156-159.
YU J, WANG Y J. Effect of concentrate to roughage ratio on ruminant production and economic benefit[J]. Feed Research, 2021, 44(9): 156-159 (in Chinese). DOI:10.13557/j.cnki.issn1002-2813.2021.09.038
[57]
WANG Q Y, WANG Y C, WANG X, et al. Effects of dietary energy levels on rumen fermentation, microbiota, and gastrointestinal morphology in growing ewes[J]. Food Science & Nutrition, 2020, 8(12): 6621-6632.
[58]
PATRA A K, ASCHENBACH J R. Ureases in the gastrointestinal tracts of ruminant and monogastric animals and their implication in urea-N/ammonia metabolism: a review[J]. Journal of Advanced Research, 2018, 13: 39-50. DOI:10.1016/j.jare.2018.02.005
[59]
张毕红, 苏展, 胡小芳, 等. 粗饲料的品质对反刍动物生产性能的影响[J]. 饲料研究, 2011(9): 60-62.
ZHANG B H, SU Z, HU X F, et al. Effects of roughages quality on ruminant performance[J]. Feed Research, 2011(9): 60-62 (in Chinese).
[60]
WANG L, ZHANG K, ZHANG C G, et al. Dynamics and stabilization of the rumen microbiome in yearling Tibetan sheep[J]. Scientific Reports, 2019, 9(1): 19620. DOI:10.1038/s41598-019-56206-3
[61]
周力, 张峰硕, 张春梅, 等. 日粮精粗比对青海黑藏羊小肠营养物质转运载体基因表达水平的影响[J]. 四川农业大学学报, 2022, 40(1): 105-110, 136.
ZHOU L, ZHANG F S, ZHANG C M, et al. Effects of dietary forage to concentrate ratio on gene expression level of nutrient transporter in small intestine of Qinghai black Tibetan sheep[J]. Journal of Sichuan Agricultural University, 2022, 40(1): 105-110, 136 (in Chinese).
[62]
CHENG J B, WANG W M, ZHANG D Y, et al. Distribution and difference of gastrointestinal flora in sheep with different body mass index[J]. Animals, 2022, 12(7): 880. DOI:10.3390/ani12070880
[63]
MA N, MA X. Dietary amino acids and the gut-microbiome-immune axis: physiological metabolism and therapeutic prospects[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(1): 221-242. DOI:10.1111/1541-4337.12401
[64]
LIU G M, CAO W, JIA G, et al. Calcium-sensing receptor in nutrient sensing: an insight into the modulation of intestinal homoeostasis[J]. British Journal of Nutrition, 2018, 120(8): 881-890. DOI:10.1017/S0007114518002088
[65]
BUNTYN J O, SCHMIDT T B, NISBET D J, et al. The role of direct-fed microbials in conventional livestock production[J]. Annual Review of Animal Biosciences, 2016, 4: 335-355. DOI:10.1146/annurev-animal-022114-111123
[66]
BI Y L, TU Y, ZHANG N F, et al. Multiomics analysis reveals the presence of a microbiome in the gut of fetal lambs[J]. Gut, 2021, 70(5): 853-864. DOI:10.1136/gutjnl-2020-320951
[67]
SZELIGOWSKA N, CHOLEWIŃSKA P, SMOLIÑSKI J, et al. Glutathione S-transferase (GST) and cortisol levels vs. microbiology of the digestive system of sheep during lambing[J]. BMC Veterinary Research, 2022, 18(1): 107. DOI:10.1186/s12917-022-03201-y
[68]
BAILLOU A, KASAL-HOC N, BARC C, et al. Establishment of a newborn lamb gut-loop model to evaluate new methods of enteric disease control and reduce experimental animal use[J]. Veterinary Sciences, 2021, 8(9): 170. DOI:10.3390/vetsci8090170
[69]
ZHANG H, SHAO M X, HUANG H, et al. The dynamic distribution of small-tail Han sheep microbiota across different intestinal segments[J]. Frontiers in Microbiology, 2018, 9: 32. DOI:10.3389/fmicb.2018.00032
[70]
STANLEY D, HUGHES R J, MOORE R J. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease[J]. Applied Microbiology and Biotechnology, 2014, 98(10): 4301-4310. DOI:10.1007/s00253-014-5646-2
[71]
WANG S Q, MA T, ZHAO G H, et al. Effect of age and weaning on growth performance, rumen fermentation, and serum parameters in lambs fed starter with limited ewe-lamb interaction[J]. Animals, 2019, 9(10): 825. DOI:10.3390/ani9100825
[72]
韩铖星, 张成新, 李勇, 等. 湖羊羔羊早期断奶前后胃肠道发育、酶活性及发酵参数的变化研究[J]. 中国畜牧兽医, 2021, 48(12): 4442-4450.
HAN C X, ZHANG C X, LI Y, et al. Study on variations of gastrointestinal development, enzyme activity and fermentation parameters of Hu lambs pre-and post-early weaning[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(12): 4442-4450 (in Chinese). DOI:10.16431/j.cnki.1671-7236.2021.12.012
[73]
卢猛, 胡凤明, 屠焰, 等. 植物提取物对幼龄动物腹泻和肠道健康的作用[J]. 饲料工业, 2021, 42(15): 35-42.
LU M, HU F M, TU Y, et al. Effects of plant extracts on diarrhea and intestinal health of young animals[J]. Feed Industry, 2021, 42(15): 35-42 (in Chinese). DOI:10.13302/j.cnki.fi.2021.15.006
[74]
DENG Z X, HOU K W, ZHAO J C, et al. The probiotic properties of lactic acid bacteria and their applications in animal husbandry[J]. Current Microbiology, 2021, 79(1): 22.
[75]
SONG C J, SHEN X Y. Effects of environmental zinc deficiency on antioxidant system function in Wumeng semi-fine wool sheep[J]. Biological Trace Element Research, 2020, 195(1): 110-116. DOI:10.1007/s12011-019-01840-1
[76]
CORRÊA P S, MENDES L W, LEMOS L N, et al. Tannin supplementation modulates the composition and function of ruminal microbiome in lambs infected with gastrointestinal nematodes[J]. FEMS Microbiology Ecology, 2020, 96(3): fiaa024. DOI:10.1093/femsec/fiaa024
[77]
DING S J, YAN W X, MA Y, et al. The impact of probiotics on gut health via alternation of immune status of monogastric animals[J]. Animal Nutrition, 2021, 7(1): 24-30. DOI:10.1016/j.aninu.2020.11.004
[78]
JOHNSON L R. The trophic action of gastrointestinal hormones[J]. Gastroenterology, 1976, 70(2): 278-288. DOI:10.1016/S0016-5085(76)80024-8
[79]
秦颖超, 周加义, 朱敏, 等. 谷氨酸吸收转运及对肠道发育影响的研究进展[J]. 动物营养学报, 2019, 31(2): 544-552.
QIN Y C, ZHOU J Y, ZHU M, et al. Research progress of glutamate absorption and transport and its effects on intestinal development[J]. Chinese Journal of Animal Nutrition, 2019, 31(2): 544-552 (in Chinese). DOI:10.3969/j.issn.1006-267x.2019.02.008
[80]
RAHMAN S, GHIBOUB M, DONKERS J M, et al. The progress of intestinal epithelial models from cell lines to gut-on-chip[J]. International Journal of Molecular Sciences, 2021, 22(24): 13472. DOI:10.3390/ijms222413472
[81]
SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. DOI:10.1038/nature07935
[82]
SEIDLITZ T, KOO B K, STANGE D E. Gastric organoids-an in vitro model system for the study of gastric development and road to personalized medicine[J]. Cell Death and Differentiation, 2021, 28(1): 68-83. DOI:10.1038/s41418-020-00662-2
[83]
ALMEQDADI M, MANA M D, ROPER J, et al. Gut organoids: mini-tissues in culture to study intestinal physiology and disease[J]. American Journal of Physiology.Cell Physiology, 2019,, 317(3): C405-C419. DOI:10.1152/ajpcell.00300.2017
[84]
STEVENS L J, VAN LIPZIG M M H, ERPELINCK S L A, et al. A higher throughput and physiologically relevant two-compartmental human ex vivo intestinal tissue system for studying gastrointestinal processes[J]. European Journal of Pharmaceutical Sciences, 2019, 137: 104989. DOI:10.1016/j.ejps.2019.104989
[85]
VERHOECKX K, COTTER P, LÓPEZ-EXPÓSITO I, et al. The impact of food bioactives on health: in vitro and ex vivo models[M]. Cham: Springer, 2015: 263-273.
[86]
ESLAMI AMIRABADI H, DONKERS J M, WIERENGA E, et al. Intestinal explant barrier chip: long-term intestinal absorption screening in a novel microphysiological system using tissue explants[J]. Lab on a Chip, 2022, 22(2): 326-342. DOI:10.1039/D1LC00669J
[87]
DONKERS J M, ESLAMI AMIRABADI H, VAN DE STEEG E. Intestine-on-a-chip: next level in vitro research model of the human intestine[J]. Current Opinion in Toxicology, 2021, 25: 6-14. DOI:10.1016/j.cotox.2020.11.002
[88]
WANG X, YAMAMOTO Y, WILSON L H, et al. Cloning and variation of ground state intestinal stem cells[J]. Nature, 2015, 522(7555): 173-178. DOI:10.1038/nature14484
[89]
HOFER M, LUTOLF M P. Engineering organoids[J]. Nature Reviews.Materials, 2021, 6(5): 402-420. DOI:10.1038/s41578-021-00279-y
[90]
朱晓芳, 吴静静, 桑断疾, 等. 羔羊断奶补饲技术应用研究进展[J]. 养殖与饲料, 2020, 19(11): 48-49.
ZHU X F, WU J J, SANG D J, et al. Research progress in the application of supplementary feeding technology for lamb weaning[J]. Animals Breeding and Feed, 2020, 19(11): 48-49 (in Chinese). DOI:10.3969/j.issn.1671-427X.2020.11.015
[91]
DA SILVA HEIMBACH N, ÍTAVO C C B F, ÍTAVO L C V, et al. Weaning age of lambs creep-fed while grazing on Marandu pasture[J]. Journal of Agricultural Studies, 2019, 7(4): 22-37. DOI:10.5296/jas.v7i4.15354
[92]
王志有. 早期断奶日龄对羔羊生产性能的影响[J]. 黑龙江畜牧兽医, 2004(6): 26-27.
WANG Z Y. Effects of early weaning age on lamb production performance[J]. Heilongjiang Animal Science and Veterinary Medicine, 2004(6): 26-27 (in Chinese). DOI:10.3969/j.issn.1004-7034.2004.06.014
[93]
SIMEONOV M S, HARMON D L. Effects of nutritional systems on early weaned lambs[J]. Iranian Journal of Applied Animal Science, 2021, 11(1): 111-116.
[94]
柴建民, 王波, 祁敏丽, 等. 不同开食料采食量断液体饲粮对羔羊生长发育的影响[J]. 中国农业科学, 2018, 51(2): 341-350.
CHAI J M, WANG B, QI M L, et al. Effect of weaning liquid diet at different level of creep feed intake on growth and development of lambs[J]. Scientia Agricultura Sinica, 2018, 51(2): 341-350 (in Chinese).