浓缩料是指由蛋白质饲料、矿物质饲料及添加剂预混料配制而成的配合饲料半成品。浓缩料蛋白质含量在30%~75%,占全价配合饲料的10%~40%[1]。浓缩料不能单独使用,需要按一定比例与能量饲料互相配合,混合均匀后饲喂[2]。浓缩料中的蛋白质部分主要包括鱼粉和豆粕,其中豆粕属于植物性蛋白质饲料原料,凭借价格低廉、来源广泛等优点被广泛应用于饲料中。我国作为豆粕的生产消费大国,产量居世界第二,消费量居世界第一,仅2015年就已达到近5 600万t,近年来产量和消费量也是不断增加[3]。在《中国饲料成分及营养价值表(第30版)》中,豆粕粗蛋白质含量为47.9%,猪的豆粕粗蛋白质消化率达到85%,鸡的豆粕粗蛋白质消化率更是达到了91%。但豆粕中存在植酸、寡糖、胰蛋白酶抑制剂和脲酶等抗营养因子,降低了豆粕的营养价值。
小麦麸作为一种使用广泛的饲料原料,也可以适量的添加到浓缩料中。小麦麸是小麦加工后的主要副产品,是小麦籽粒的最外层部分,占小麦粒重的40%,世界和中国的小麦麸年产量分别达到了187万和3 200万t[4]。小麦麸存在复杂的复合结构,其中外皮含有高水平的纤维素和木质素,糊粉层含有小麦籽粒中大部分β-葡聚糖、蛋白质和矿物质,同时富含维生素和酚类化合物[5]。小麦麸中膳食纤维的含量是小麦麸总重量的50%以上,其中90%以上为不溶性膳食纤维[6]。小麦麸中的不溶性膳食纤维具有促进畜禽肠道蠕动、改善肠道菌群构成等功能,但同时不溶性膳食纤维含量较高也会影响营养物质的消化,降低饲料的饲用价值[7]。
发酵能将动植物副产品等原料通过微生物、复合酶的发酵作用分解成富含菌体蛋白、脂肪、有机酸和小肽类氨基酸等营养物质的生物饲料[8]。发酵饲料具有营养物质丰富、抗营养因子水平低、适口性好等优点,且饲料经过发酵后饲喂畜禽能够提高营养物质的消化率,改善免疫功能,维护肠道菌群平衡[9]。Czech等[10]研究发现,饲喂发酵豆粕能够提高断奶仔猪的平均日增重(ADG),减少饲料消耗量,提高血清中免疫球蛋白G(IgG)、免疫球蛋白(IgM)和免疫球蛋白(IgA)含量。Qiu等[11]研究发现,饲喂发酵饲料能够显著降低育肥猪的肌肉滴水损失和剪切力,从而达到改善猪肉品质的目的。发酵浓缩料具有众多优点,但其在生长育肥猪生产中应用的研究很少。因此,本试验旨在研究发酵浓缩料对生长育肥猪生长性能、免疫功能、胴体品质及肉品质的影响,为发酵饲料在养猪业中的应用提供理论依据。
1 材料与方法 1.1 试验材料试验猪由绥化市六顺农业科技有限公司提供。试验用浓缩料、干发酵浓缩料和湿发酵浓缩料均来自讷河市某农牧科技发展有限公司。
湿发酵浓缩料制备方法:先将普通豆粕和小麦麸分别进行除杂、粉碎,加入水,使用枯草芽孢杆菌、产朊假丝酵母、乳酸杆菌等发酵菌种协同木聚糖酶、β-葡聚糖酶,搅拌,使普通豆粕和小麦麸分别与水和菌液充分混合,密封发酵48 h,发酵完成后将发酵豆粕与发酵小麦麸与其他原料混合,得到湿发酵浓缩料,湿发酵浓缩料含水量约为21%。将湿发酵浓缩料装入单向呼吸袋中储存并进一步发酵。
干发酵浓缩料制备方法:按照湿发酵浓缩料的制备方法得到发酵豆粕和发酵小麦麸,然后将发酵豆粕和发酵小麦麸烘干,再与其他原料混合得到干发酵浓缩料,干发酵浓缩料使用单向呼吸袋储存。
1.2 试验设计及饲养管理选取体重(27.17±0.15) kg的健康“杜×长×大”三元杂交猪225头,随机分为3组,每组3个重复,每个重复25头猪。将猪生长育肥阶段分为3个阶段:25~50 kg、51~75 kg、76 kg~出栏。各阶段对照组饲喂的基础饲粮分别为70%玉米+30%浓缩料、75%玉米+25%浓缩料和80%玉米+20%浓缩料,干发酵组和湿发酵组分别饲喂以等量干发酵浓缩料和湿发酵浓缩料替代基础饲粮中全部浓缩料的试验饲粮。试验所用饲粮参考NRC(2012)猪营养需要进行配制,营养水平满足各阶段猪的需求,基础饲粮组成及营养水平见表 1,浓缩料组成见表 2。试验期为116 d(25~50 kg阶段36 d,51~75 kg阶段32 d,76 kg~出栏阶段48 d),试验期间生长育肥猪按照常规饲养管理,自由采食和饮水,饲粮配制成粉状进行饲喂,每日饲喂4次。
![]() |
表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of basal diets (air-dry basis) |
![]() |
表 2 浓缩料组成(风干基础) Table 2 Composition of the concentrated feed (air-dry basis) |
在试验每个阶段的开始和结束时称量试验猪空腹重,以计算ADG;每周记录1次采食量,以计算平均日采食量(ADFI);根据ADG和ADFI计算料重比(F/G)。
1.3.2 血浆免疫球蛋白含量在试验结束后,每组随机选3头猪,空腹12 h,次日称重后对猪进行前腔静脉采血,采集的血液先装于肝素钠抗凝管中,随后以3 000 r/min在4 ℃低温高速离心机中离心15 min。离心后立即分装血浆于若干1.5 mL EP管中,做好标记并保存在-80 ℃冰箱中,待测。血浆IgA、IgG和IgM含量采用酶联免疫吸附测定(ELISA)试剂盒测定,试剂盒购自江苏酶免实业有限公司。
1.3.3 胴体品质试验结束时,每组随机选择3头试验猪,空腹24 h后屠宰。按照NY/T 825—2004《瘦肉型猪胴体性状测定技术规范》进行胴体品质测定。测定的胴体品质指标包括宰前活重、胴体重、屠宰率、胴体直长、眼肌面积、皮厚和背膘厚。
1.3.4 肉品质屠宰后20 min内取背最长肌,用于肉品质测定。按照我国农业行业标准NY/T 821—2019《猪肉品质测定技术规程》,分别测定滴水损失、蒸煮损失、剪切力和肉色,肉色分别用亮度(L*)、红度(a*)和黄度(b*)值表示。
1.4 数据处理与分析首先利用Excel 2010对试验数据进行整理,然后使用SPSS 23.0软件对试验数据进行单因素方差分析(one-way ANOVA),并采用Duncan氏法进行多重比较,数据分析结果以“平均值±标准误(SE)”表示。P < 0.05为差异显著,0.05≤P < 0.10为有趋势。
2 结果 2.1 发酵浓缩料对生长育肥猪生长性能的影响由表 3可知,各组之间的初始体重(IBW)、中期体重(MBW)、结束体重(FBW)和ADG没有显著差异(P>0.05)。与对照组相比,干发酵组第1~116天和第37~68天的ADFI显著降低(P < 0.05),而湿发酵组差异不显著(P>0.05);干发酵组第69~116天的ADFI与显著降低(P < 0.05),而湿发酵组显著提高(P < 0.05),且湿发酵组显著高于干发酵组(P < 0.05);各组之间第1~36天的ADFI没有显著差异(P>0.05)。与对照组和湿发酵组相比,干发酵组第37~68天和第69~116天的F/G显著降低(P < 0.05);各组之间第1~36天的F/G没有显著差异(P>0.05);与对照组相比,干发酵组第1~116天的F/G有降低趋势(P=0.058)。
![]() |
表 3 发酵浓缩料对生长育肥猪生长性能的影响 Table 3 Effects of fermented concentrated feed on growth performance of growing-finishing pigs |
由表 4可知,各组之间血浆IgA含量没有显著差异(P>0.05)。与对照组相比,干发酵组和湿发酵组的血浆IgM含量显著提高(P < 0.05)。与对照组和干发酵组相比,湿发酵组的血浆IgG含量显著提高(P < 0.05)。
![]() |
表 4 发酵浓缩料对生长育肥猪血浆免疫球蛋白含量的影响 Table 4 Effects of fermented concentrated feed on plasma immunoglobulin contents of growing-finishing pigs |
由表 5可知,各组之间宰前活重、胴体重、屠宰率、胴体直长、眼肌面积、皮厚和背膘厚没有显著差异(P>0.05)。
![]() |
表 5 发酵浓缩料对生长育肥猪胴体品质的影响 Table 5 Effects of fermented concentrated feed on carcass quality of finishing pigs |
由表 6可知,与对照组相比,干发酵组和湿发酵组的滴水损失和剪切力显著降低(P < 0.05),湿发酵组的蒸煮损失显著降低(P < 0.05)。与干发酵组相比,湿发酵组的肉色L*值显著降低(P < 0.05),肉色a*值显著提高(P < 0.05);与对照组和干发酵组相比,湿发酵组的肉色b*值显著降低(P < 0.05)。
![]() |
表 6 发酵浓缩料对生长育肥猪肉品质的影响 Table 6 Effects of fermented concentrated feed on meat quality of growing-finishing pigs |
发酵饲料具有营养物质丰富、适口性好等优点,能够提高猪的生长性能。Jones等[12]研究发现,饲粮中添加6%的发酵豆粕能够显著提高生长育肥猪的ADG和ADFI。Ahn等[13]研究表明,饲粮中添加5%的发酵豆粕能够改善断奶仔猪的ADG和ADFI。Czech等[10]研究表明,饲粮中添加发酵豆粕提高了断奶仔猪ADG,减少了饲料消耗量,提高了生长性能。然而这与本试验结果不太一致。本试验研究发现,干发酵浓缩料和湿发酵浓缩料对生长育肥猪的IBW、MBW、FBW和ADG没有显著影响,干发酵浓缩料显著降低了生长育肥猪第1~116天、第37~68天和第69~116天的ADFI,湿发酵浓缩料显著提高了第69~116天的ADFI,干发酵浓缩料显著降低了第37~68天和第69~116天的F/G,且第1~116天的F/G也有降低趋势。由此可见,发酵饲料对猪生长性能影响的结果并不一致,这可能与发酵原料、发酵菌种等发酵条件有关。因此,本试验后续会进一步研究发酵浓缩料对生长育肥猪生长性能的影响。
3.2 发酵浓缩料对生长育肥猪血浆免疫球蛋白含量的影响免疫系统是由免疫组织、器官、免疫细胞和免疫活性分子等组成,免疫球蛋白是免疫活性分子中的一类,主要包括IgG、IgA和IgM。Zhu等[14]研究发现,植物乳杆菌、枯草芽孢杆菌和酿酒酵母发酵豆粕能够显著提高断奶仔猪血液IgG和IgM含量。Liu等[15]研究表明,发酵豆粕对断奶仔猪血液IgA含量没有显著影响。Xu等[16]研究发现,相比于普通豆粕,使用发酵豆粕饲喂的猪血液IgM含量显著提高。这均与本试验结果一致。本试验结果表明,干发酵浓缩料和湿发酵浓缩料可显著提高血浆IgM含量,且湿发酵浓缩料可显著提高血浆IgG含量,说明发酵浓缩料能够通过提高血浆中免疫球蛋白含量来增强生长育肥猪的机体免疫力,发酵浓缩料提高免疫球蛋白含量可能是因为发酵产生的某些活性物质被猪吸收,从而改善猪的免疫机能,提高免疫球蛋白含量,但具体的作用机制需要进一步的试验进行探究。
3.3 发酵浓缩料对生长育肥猪胴体品质的影响胴体品质的各个指标数值越好,表明猪的育肥效果显著,从而产生更多的经济效益。发酵饲料具有较高的营养价值,有利于猪的生长发育,能够改善猪的胴体品质。本试验结果表明,干发酵浓缩料和湿发酵浓缩料对生长育肥猪的屠宰率、眼肌面积、胴体直长、皮厚和背膘厚等指标没有不利的影响,这与许多的试验结果相似。Chu等[17]研究发现,发酵蘑菇副产品对生长育肥猪的背膘厚没有显著影响。高升等[18]研究表明,饲粮中添加发酵豆粕对育肥黑猪的屠宰率和平均背膘厚没有显著影响。朱坤等[19]研究发现,发酵饲料对于生长育肥猪胴体品质指标中的屠宰率、背膘厚和眼肌面积没有显著影响。
3.4 发酵浓缩料对生长育肥猪肉品质的影响滴水损失、蒸煮损失、剪切力和肉色等均是评定猪肉品质的重要指标。滴水损失和蒸煮损失是衡量猪肉保水性的重要指标,滴水损失越小,证明猪肉品质越好。对于嫩度而言,通常使用剪切力的大小进行表示,肌肉的剪切力越小,代表肌肉越嫩,则猪肉的适口性更好[20]。肉色a*是反映肉质颜色的主要因素,a*值越大,代表肉的品质越好,而肉色b*和L*是反映肉品质的辅助性指标。Qiu等[11]研究发现,发酵饲料能够降低生长育肥猪的滴水损失和剪切力,改善肉品质。Feng等[21]研究发现,饲喂发酵豆粕的猪具有更低的烹饪损失,改善了肉品质。Yan等[22]研究表明,布拉氏酵母菌发酵葡萄渣能够提高猪肉的肉色a*值。Hao等[23]研究发现,发酵混合饲料能够降低生长育肥猪的滴水损失,提高肉色a*值,改善生长育肥猪的肉品质。这与本试验结果一致。本试验结果表明,干发酵浓缩料和湿发酵浓缩料可降低生长育肥猪的肌肉滴水损失和剪切力,且湿发酵浓缩料可降低肌肉蒸煮损失,湿发酵浓缩料可降低肌肉肉色b*和L*值,提高a*值。这可能是因为浓缩料通过发酵产生了许多生物活性物质,增强了抗氧化能力,进一步介导了肉品质的调控,改善了肉品质,具体的调控机制需要进一步的试验进行研究。
4 结论发酵浓缩料能够改善生长育肥猪的生长性能,提高血浆免疫球蛋白含量,改善肉品质。在提高生长性能方面,干发酵浓缩料优于湿发酵浓缩料;在提高免疫功能和改善肉品质方面,湿发酵浓缩料优于干发酵浓缩料。
[1] |
李新媛. 浓缩饲料利用技术[J]. 甘肃畜牧兽医, 2015, 45(4): 17. LI X Y. Concentrated feed utilization technology[J]. Gansu Animal and Veterinary Sciences, 2015, 45(4): 17 (in Chinese). DOI:10.3969/j.issn.1006-799X.2015.04.012 |
[2] |
陈丽宏. 如何选择预混料、浓缩料、全价料[J]. 农家参谋, 2015(1): 25. CHEN L H. How to choose premixes, concentrates and full price feeds[J]. The Farmers Consultant, 2015(1): 25 (in Chinese). |
[3] |
孔丹丹, 陈啸, 杨洁, 等. 不同品种豆粕的饲料加工特性分析[J]. 饲料工业, 2016, 37(21): 9-17. KONG D D, CHEN X, YANG J, et al. Processing characteristics of different varieties of soybean meal used in feed[J]. Feed Industry, 2016, 37(21): 9-17 (in Chinese). DOI:10.13302/j.cnki.fi.2016.21.002 |
[4] |
XIAO Y Q, LIU Y N, WANG X J, et al. Cellulose nanocrystals prepared from wheat bran: characterization and cytotoxicity assessment[J]. International Journal of Biological Macromolecules, 2019, 140: 225-233. DOI:10.1016/j.ijbiomac.2019.08.160 |
[5] |
MATEO ANSON N, HEMERY Y M, BAST A, et al. Optimizing the bioactive potential of wheat bran by processing[J]. Food & Function, 2012, 3(4): 362-375. |
[6] |
LI Q, SUN H R, ZHANG M, et al. Characterization of the flavor compounds in wheat bran and biochemical conversion for application in food[J]. Journal of Food Science, 2020, 85(5): 1427-1437. DOI:10.1111/1750-3841.14965 |
[7] |
ROSENFELDER P, EKLUND M, MOSENTHIN R. Nutritive value of wheat and wheat by-products in pig nutrition: a review[J]. Animal Feed Science and Technology, 2013, 185(3/4): 107-125. |
[8] |
韦春杰, 陆静, 王在贵, 等. 发酵饲料的研究与应用进展[J]. 粮食与饲料工业, 2021(5): 50-54, 58. WEI C J, LU J, WANG Z G, et al. Research and application progress of fermented feed[J]. Cereal & Feed Industry, 2021(5): 50-54, 58 (in Chinese). |
[9] |
蔡辉益. 生物发酵饲料研究与应用技术发展趋势[J]. 北方牧业, 2021(10): 25-26. CAI H Y. Trends in research and application technology of biofermented feed[J]. Northern Animal Husbandry, 2021(10): 25-26 (in Chinese). |
[10] |
CZECH A, GRELA E R, NOWAKOWICZ-DEBEK B, et al. The effects of a fermented rapeseed meal or/and soybean meal additive on the blood lipid profile and immune parameters of piglets and on minerals in their blood and bone[J]. PLoS One, 2021, 16(6): e0253744. DOI:10.1371/journal.pone.0253744 |
[11] |
QIU Y Q, LI K B, ZHAO X C, et al. Fermented feed modulates meat quality and promotes the growth of longissimus thoracis of late-finishing pigs[J]. Animals, 2020, 10(9): 1682. DOI:10.3390/ani10091682 |
[12] |
JONES C K, DEROUCHEY J M, NELSSEN J L, et al. Effects of fermented soybean meal and specialty animal protein sources on nursery pig performance[J]. Journal of Animal Science, 2010, 88(5): 1725-1732. DOI:10.2527/jas.2009-2110 |
[13] |
AHN J, DING Z Y, KIM I H. PSV-17 Effects of fermented soybean meal on growth performance, nutrient digestibility, blood profile and fecal microflora in weaning pigs[J]. Journal of Animal Science, 2019, 97(S2): 201. |
[14] |
ZHU J J, GAO M X, ZHANG R L, et al. Effects of soybean meal fermented by L. plantarum, B. subtilis and S. cerevisieae on growth, immune function and intestinal morphology in weaned piglets[J]. Microbial Cell Factories, 2017, 16(1): 191. DOI:10.1186/s12934-017-0809-3 |
[15] |
LIU X, FENG J, XU Z R, et al. The effects of fermented soybean meal on growth performance and immune characteristics in weaned piglets[J]. Turkish Journal of Veterinary and Animal Sciences, 2007, 31(5): 341-345. |
[16] |
XU F Z, LI L M, LIU H J, et al. Effects of fermented soybean meal on performance, serum biochemical parameters and intestinal morphology of laying hens[J]. Journal of Animal and Veterinary Advances, 2012, 11(5): 649-654. |
[17] |
CHU G M, YANG J M, KIM H Y, et al. Effects of fermented mushroom (Flammulina velutipes) by-product diets on growth performance and carcass traits in growing-fattening Berkshire pigs[J]. Animal Science Journal, 2012, 83(1): 55-62. |
[18] |
高升, 陈哲, 柯慧, 等. 发酵豆粕对肥育黑猪生长性能、胴体性状、肉品质和肌内氨基酸含量的影响[J]. 养猪, 2020(4): 5-8. GAO S, CHEN Z, KE H, et al. Effects of fermented soybean meal on growth performance, carcass traits, meat quality and intramuscular amino acid content of fattening black pigs[J]. Swine Production, 2020(4): 5-8 (in Chinese). |
[19] |
朱坤, 毛胜勇, 朱崇淼, 等. 发酵饲料对育肥猪生长性能、胴体性状、肉品质、血清生化指标和代谢产物的影响[J]. 动物营养学报, 2018, 30(10): 4244-4250. ZHU K, MAO S Y, ZHU C M, et al. Effects of fermented feed on growth performance, carcass traits, meat quality, serum biochemical indicators and metabolites of finishing pigs[J]. Chinese Journal of Animal Nutrition, 2018, 30(10): 4244-4250 (in Chinese). |
[20] |
王晓宇, 周光宏, 徐幸莲, 等. 猪肉剪切力的测定方法[J]. 食品科学, 2012, 33(21): 64-67. WANG X Y, ZHOU G H, XU X L, et al. A methodological study of the determination of pork warner-bratzler shear force[J]. Food Science, 2012, 33(21): 64-67 (in Chinese). |
[21] |
FENG H Y, QU H, LIU Y, et al. Effect of fermented soybean meal supplementation on some growth performance, blood chemical parameters, and fecal microflora of finishing pigs[J]. Revista Brasileira de Zootecnia, 2020, 49: e20190096. |
[22] |
YAN L, KIM I H. Effect of dietary grape pomace fermented by Saccharomyces boulardii on the growth performance, nutrient digestibility and meat quality in finishing pigs[J]. Asian-Australasian Journal of Animal Sciences, 2011, 24(12): 1763-1770. |
[23] |
HAO L H, SU W F, ZHANG Y, et al. Effects of supplementing with fermented mixed feed on the performance and meat quality in finishing pigs[J]. Animal Feed Science and Technology, 2020, 266: 114501. |