2. 中国农业大学动物科技学院, 北京 100193
2. College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
随着肉鸡高密度集约化和规模化养殖的发展以及全球温室效应的加剧,肉鸡养殖业面临严重的热应激危害[1-2]。热应激肉鸡表现出激素(皮质酮)分泌亢进、机体电解质发生紊乱以及体温升高[3-4],直接导致采食量和体增重降低、免疫力减退、抗氧化能力下降[5-6],甚至造成体内转氨酶活性升高、脂肪代谢功能障碍[4, 7]等。这些生理、生产现象与热应激肉鸡的机体氧化损伤和过度的炎症反应相关[2, 6, 8]。除了通过改进养殖设施设备、加强舍内环境控制达到降温目的外,营养调控策略也是缓减畜禽热应激的方法,例如在饲粮中添加微生态制剂[9]、中草药[6, 10]、氨基酸[11]、维生素[12]和矿物质[13]等抗热应激饲料添加剂。
橡胶树广泛种植于东南亚及我国云南等地区,橡胶籽作为生产橡胶的副产物,其大部分被丢弃而浪费,因此橡胶籽资源有待于得到有效开发并利用[14]。橡胶籽含油量达40%~50%,压榨出的橡胶籽油(rubber seed oil,RSO)中不饱和脂肪酸含量达82.67%[15],亚麻酸含量高达22%,是豆油的3~4倍,其中n-3/n-6多不饱和脂肪酸(PUFA)比值高达1:2[16-17],是一种潜在的功能性畜禽饲料植物油[18]。研究表明,添加RSO可安全有效地富集畜禽产品中二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)含量[18-20],并对机体细胞具有较强的抗氧化能力[21]。本课题组前期体外试验研究发现RSO可有效缓解RAW 267.4巨噬细胞脂多糖(LPS)诱导的炎症与氧化应激反应[15],并在体内LPS诱导蛋鸡试验中得到了验证[22]。基于RSO在抗炎和抗氧化方面发挥的重要作用,那么RSO是否能够缓解肉鸡热应激,进而促进肉鸡生长,此类研究迄今未见报道。因此,本试验通过研究RSO对热应激肉鸡生长性能及血浆生化、抗氧化和免疫指标的影响,为饲粮中添加RSO以缓解肉鸡热应激提供数据和理论依据。
1 材料与方法 1.1 试验设计试验采用单因子试验设计,选取1日龄爱拔益加(Arbor Acres,AA)肉仔鸡864只,随机分为4个组,每组12个重复,每个重复18只鸡,公母各占1/2,各重复之间体重无显著差异(P < 0.05)。对照组饲喂基础饲粮(含1%大豆油),试验组分别饲喂含1%(Ⅰ组)、2%(Ⅱ组)和4% RSO(Ⅲ组)的试验饲粮。试验期42 d。
RSO营养成分参考文献[15],脂肪酸组成为棕榈酸9.23%、硬脂酸7.49%、油酸25.26%、亚油酸37.26%、亚麻酸19.43%、其他脂肪酸1.33%,总酚含量1 032.60 mg/kg(没食子酸标准曲线计算),总黄酮含量304.31 mg/kg(芦丁标准曲线计算)。饲粮参照《鸡饲养标准》(NY/T 33—2004)和NRC(1994)配制,各组饲粮营养水平保持一致,试验饲粮组成及营养水平见表 1。
![]() |
表 1 试验饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of experimental diets (air-dry basis) |
试验在中国农业科学院南口中试基地进行,采用单层式笼养,24 h光照,自由采食和饮水。环境温度在每日09:00—17:00维持在(34±2) ℃,其余时间维持在(26±2) ℃,采用电暖器补温。使用加湿器将环境相对湿度维持在60%~70%。其他饲养管理要求参照《AA肉鸡饲养管理规程》进行。
1.3 样品采集42日龄时,每个重复挑选接近平均体重的肉鸡1只,采用10 mL抗凝管(内含肝素)翅下静脉采血,并轻缓地上下倒转几次混匀,3 500 r/min离心10 min制备血浆,分装于1.5 mL EP管中,-20 ℃保存备测。
1.4 指标测定 1.4.1 生长性能指标分别在1、21和42日龄以重复为单位对肉鸡进行称重,统计肉仔鸡1~21日龄、22~42日龄和1~42日龄采食量,并计算平均日采食量(ADFI)、平均日增重(ADG)和料重比(F/G)。
1.4.2 血浆生化和免疫指标血浆总蛋白(TP)、白蛋白(ALB)、甘油三酯(TG)、总胆固醇(TC)、尿酸(UA)含量及丙氨酸氨基转移酶(ALT)、天冬氨酸转氨酶(AST)、碱性磷酸酶(ALP)、肌酸激酶(CK)、乳糖脱氢酶(LDH)活性在日立7600全自动生化仪上测定,球蛋白(GLB)含量等于TP含量减去ALB含量。血浆三碘甲状腺原氨酸(T3)、四碘甲状腺原氨酸(T4)、免疫球蛋白A(IgA)、免疫球蛋白G(IgG)、免疫球蛋白M(IgM)含量采用酶联免疫吸附分析(ELISA)法测定。试剂盒均购自南京建成生物工程研究所。
1.4.3 血浆抗氧化指标血浆丙二醛(MDA)含量采用硫代巴比妥酸(TBA)法测定,总超氧化物歧化酶(T-SOD)活性采用羟胺法测定,过氧化氢酶(CAT)活性采用钼酸铵法测定,谷胱甘肽过氧化物酶(GSH-Px)活性采用5, 5′-二硫双(2-硝基苯甲酸)(DTNB)法测定,总抗氧化能力(T-AOC)采用比色法测定。试剂盒均购自南京建成生物工程研究所。
1.5 统计分析试验数据采用SAS 8.0软件进行单因子方差分析(one-way ANOVA),并采用Duncan氏法进行多重比较。结果以平均值±标准差(mean±SD)表示,P < 0.05为差异显著,P < 0.01为差异极显著。
2 结果 2.1 RSO对热应激肉鸡生长性能的影响由表 2可知,与对照组相比,Ⅲ组21日龄体重极显著升高(P < 0.01),Ⅰ组、Ⅱ组和Ⅲ组42日龄体重极显著升高(P < 0.01);Ⅰ组、Ⅱ组和Ⅲ组22~42日龄和1~42日龄ADFI极显著升高(P < 0.01);Ⅲ组1~21日龄ADG极显著升高(P < 0.01),Ⅰ组、Ⅱ组和Ⅲ组22~42日龄和1~42日龄ADG极显著升高(P < 0.01);Ⅲ组1~21日龄F/G极显著降低(P < 0.01),Ⅰ组、Ⅱ组和Ⅲ组22~42日龄和1~42日龄F/G极显著降低(P < 0.01)。
![]() |
表 2 RSO对热应激肉鸡生长性能的影响 Table 2 Effects of RSO on growth performance of broilers under heat stress |
由表 3可知,与对照组相比,Ⅰ组和Ⅲ组血浆TP含量显著降低(P < 0.05),Ⅰ组、Ⅱ组和Ⅲ组血浆ALB含量极显著降低(P < 0.01),Ⅰ组、Ⅱ组和Ⅲ组血浆TC含量显著降低(P < 0.05),Ⅱ组和Ⅲ组血浆ALT活性显著降低(P < 0.05),Ⅰ组和Ⅱ组血浆ALP活性显著降低(P < 0.05),Ⅰ组、Ⅱ组和Ⅲ组血浆T3和T4含量显著降低(P < 0.05)。各组之间其他血浆生化及免疫指标无显著差异(P>0.05)。
![]() |
表 3 RSO对热应激肉鸡血浆生化及免疫指标的影响 Table 3 Effects of RSO on plasma biochemical and immune parameters of broilers under heat stress |
由表 4可知,与对照组相比,Ⅰ组、Ⅱ组和Ⅲ组血浆MDA含量显著降低(P < 0.05),Ⅰ组、Ⅱ组和Ⅲ组血浆T-SOD活性显著升高(P < 0.05),Ⅱ组和Ⅲ组血浆T-AOC显著升高(P < 0.05)。各组之间其他血浆抗氧化指标无显著差异(P>0.05)。
![]() |
表 4 RSO对热应激肉鸡血浆抗氧化指标的影响 Table 4 Effects of RSO on plasma antioxidant parameters of broilers under heat stress |
已有大量研究报道表明,肉鸡的生长性能在热应激条件下显著下降,主要由于机体为减少热量产生而降低能量摄入,从而表现为采食量下降,进而造成ADG降低和F/G升高[3, 6, 11],同时造成机体的氧化损伤和过度炎症反应,而通过营养调控可以缓解热应激的损害[10-12]。植物精油含有丰富的黄酮和酚类物质,具有抑菌、抗炎和抗应激作用[23-24]。Mohammadi[23]报道,饲粮中添加丁香精油可以提高热应激肉鸡ADFI和ADG。尚相龙等[24]报道,饲粮中添加广藿香油可以提高热应激肉牛干物质采食量和ADG。橡胶树主产区位于热带、亚热带地区,特殊的气候造就其独特的生理特点,利用橡胶树种子粗提的植物精油RSO富含黄酮和酚类物质[15]。本试验结果显示,在1~21日龄,Ⅰ组、Ⅱ组与对照组生长性能无显著差异;随着日龄增加,肉鸡代谢强度与产热量增大,生长性能受热应激影响更加明显[2]。在饲粮中添加相同水平(1%)植物油的情况下,Ⅰ组相比对照组22~42日龄ADFI、ADG及42日龄体重极显著提高,F/G极显著降低;这种效果随着RSO添加水平的增加更加明显,尤其是Ⅲ组在1~21日龄就表现出了ADG的极显著升高与F/G的极显著降低,且21日龄体重极显著升高,与前人研究结果一致。这表明饲粮中添加RSO可能通过提高采食量和促进对营养物质的消化利用来改善热应激肉鸡的生长性能,但RSO是否能够促进肉鸡对营养物质的消化利用还需进一步研究。
3.2 RSO对热应激肉鸡血浆生化及免疫指标的影响热应激会影响肉鸡脂质代谢[9],血液中高TC含量反映脂质代谢紊乱[25]。Ibrahim等[26]报道,n-3 PUFA可以提高肉鸡血清高密度脂蛋白胆固醇(HDL-C)含量,增强血液胆固醇向肝脏转运代谢,从而降低血液中TC含量。本试验结果显示,饲粮中添加RSO(富含n-3 PUFA)的Ⅰ组、Ⅱ组和Ⅲ组血浆TC含量显著低于对照组,增强了热应激肉鸡脂质代谢能力,与上述结果一致。ALT、AST、ALP对维持机体正常代谢具有重要作用,主要存在于肝脏等组织细胞中,只有发生组织损伤、细胞破裂时才会进入血液,血液中高活性的ALT、AST、ALP是肝脏损伤的重要标志[27-28]。王乙茹等[9]报道,热应激会对肉鸡肝脏造成氧化损伤,表现为血清ALT、AST活性升高。钟光等[28]报道,持续热应激使黄羽肉鸡血清ALT、AST、ALP活性升高。在本试验中,Ⅱ组和Ⅲ组血浆ALT活性显著低于对照组,Ⅰ组和Ⅱ组血浆ALP活性显著低于对照组,表明RSO可以缓解肉鸡肝脏氧化损伤,这可能是RSO能够提高热应激肉鸡生长性能的重要原因之一;但Ⅲ组血浆ALP活性与对照组无显著差异,这可能是更多油脂添加水平增加了肝脏脂质代谢负荷[29],但总体上表明RSO可以减轻热应激引起的肉鸡肝脏氧化损伤。肝脏是脂质代谢的主要场所,RSO能够减轻肝脏氧化损伤是改善脂质代谢的重要原因之一。甲状腺激素能够加快糖脂代谢,T3由T4分解产生,是能量代谢和产热的主要调控因子,动物发生热应激时会减少其生成以减少产热[3],血浆甲状腺激素含量下降是耐热性增强的标志[30]。Beckford等[3]研究发现,在高温环境下肉鸡为减少产热以维持正常体温,血清T3含量显著降低。在本试验中,Ⅰ组、Ⅱ组和Ⅲ组与对照组相比血浆T3、T4含量均显著降低,在一定程度上表明饲粮中添加RSO可以增强肉鸡的耐热性。以上结果表明,饲粮中添加RSO可以改善热应激肉鸡脂质代谢,缓解氧化损伤,这可能是RSO中PUFA、黄酮和酚类物质发挥了重要作用,但具体作用机理仍需要进一步研究。
3.3 RSO对热应激肉鸡血浆抗氧化指标的影响热应激会导致氧化应激,表现为活性氧(ROS)过度产生和积累,造成机体氧化还原平衡发生改变[6]。MDA是ROS攻击细胞膜脂造成脂质过氧化的主要产物,反映RSO在体内的累积程度,是发生氧化应激的重要标志[31]。动物体内存在一整套抗氧化酶系统。超氧化物歧化酶(SOD)是一种重要的抗氧化酶,包括存在于细胞质中的铜锌超氧化物歧化酶(Cu/ZnSOD)和存在于线粒体中的锰超氧化物歧化酶(MnSOD),可以将超氧阴离子自由基(O2-·)转化为过氧化氢(H2O2)[32]。随后H2O2可以被CAT催化直接分解为水,也可以在GSH-Px的作用下与谷胱甘肽(GSH)反应生成水和氧化型谷胱甘肽(GSSG)[32]。上述过程是抗氧化系统清除ROS、维持氧化还原平衡的重要途径。Zhang等[6]报道,热应激会导致肉鸡血清MDA含量升高,肝脏GSH相关酶的表达量降低。Hu等[10]报道,热应激肉鸡血清MDA含量升高,SOD、CAT活性和T-AOC降低。在本试验中,与对照组相比,Ⅰ组、Ⅱ组和Ⅲ组血浆MDA含量显著降低,T-SOD活性显著降低,并且Ⅱ组和Ⅲ组血浆T-AOC显著升高;但血浆MDA含量降低和抗氧化酶活性升高并没有随着RSO添加水平的增加而更加显著,这可能是由于n-3 PUFA在组织中的沉积,特别是在膜脂中的沉积,增强了细胞对脂质过氧化敏感性[33]。本课题组最近研究发现,RSO在LPS诱导RAW 267.4巨噬细胞试验中表现出抗氧化特性,降低细胞中ROS和MDA含量,提高T-AOC,同时促进核因子E2相关因子2(Nrf2)、血红素氧合酶-1(HO-1)、醌氧化还原酶1(NQO1)等抗氧化基因的表达[15],与本试验结果一致。这表明饲粮中添加RSO通过提高热应激肉鸡血浆中抗氧化酶活性增强机体清除ROS能力,从而缓解氧化应激。但RSO缓解肉鸡氧化应激的具体作用机理尚不清楚,仍需进一步研究。
4 结论饲粮中添加RSO可改善热应激肉鸡生长性能,提高机体免疫和抗氧化能力。
[1] |
宁章勇, 刘思当, 赵德明, 等. 热应激对肉仔鸡呼吸、消化和内分泌器官的形态和超微结构的影响[J]. 畜牧兽医学报, 2003, 34(6): 558-561. NING Z Y, LIU S D, ZHAO D M, et al. The influence of heat stress on morphological and ultrastructure change of respiratory, digestive and endocrine tissues in broilers[J]. Acta Veterinaria et Zootechnica Sinica, 2003, 34(6): 558-561 (in Chinese). DOI:10.3321/j.issn:0366-6964.2003.06.008 |
[2] |
FARAG M R, ALAGAWANY M. Physiological alterations of poultry to the high environmental temperature[J]. Journal of Thermal Biology, 2018, 76: 101-106. DOI:10.1016/j.jtherbio.2018.07.012 |
[3] |
BECKFORD R C, ELLESTAD L E, PROSZKOWIEC-WEGLARZ M, et al. Effects of heat stress on performance, blood chemistry, and hypothalamic and pituitary mRNA expression in broiler chickens[J]. Poultry Science, 2020, 99(12): 6317-6325. DOI:10.1016/j.psj.2020.09.052 |
[4] |
ZAGLOOL A W, ROUSHDY E M, EL-TARABANY M S. Impact of strain and duration of thermal stress on carcass yield, metabolic hormones, immunological indices and the expression of HSP90 and myogenin genes in broilers[J]. Research in Veterinary Science, 2019, 122: 193-199. DOI:10.1016/j.rvsc.2018.11.027 |
[5] |
LAN R X, LI Y X, CHANG Q Q, et al. Dietary chitosan oligosaccharides alleviate heat stress-induced intestinal oxidative stress and inflammatory response in yellow-feather broilers[J]. Poultry Science, 2020, 99(12): 6745-6752. DOI:10.1016/j.psj.2020.09.050 |
[6] |
ZHANG J F, BAI K W, SU W P, et al. Curcumin attenuates heat-stress-induced oxidant damage by simultaneous activation of GSH-related antioxidant enzymes and Nrf2-mediated phase Ⅱ detoxifying enzyme systems in broiler chickens[J]. Poultry Science, 2018, 97(4): 1209-1219. DOI:10.3382/ps/pex408 |
[7] |
LIU M J, LU Y L, GAO P, et al. Effect of curcumin on laying performance, egg quality, endocrine hormones, and immune activity in heat-stressed hens[J]. Poultry Science, 2020, 99(4): 2196-2202. DOI:10.1016/j.psj.2019.12.001 |
[8] |
SIDDIQUI S H, KANG D, PARK J, et al. Chronic heat stress regulates the relation between heat shock protein and immunity in broiler small intestine[J]. Scientific Reports, 2020, 10(1): 18872. DOI:10.1038/s41598-020-75885-x |
[9] |
王乙茹, 柳成东, 白华毅, 等. 凝结芽孢杆菌对热应激肉鸡生长性能及血清指标的影响[J]. 动物营养学报, 2020, 32(5): 2148-2157. WANG Y R, LIU C D, BAI H Y, et al. Effects of Bacillus coagulans on growth performance and serum indices of broiler chickens under heat stress[J]. Chinese Journal of Animal Nutrition, 2020, 32(5): 2148-2157 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.05.023 |
[10] |
HU H, BAI X, XU K X, et al. Effect of phloretin on growth performance, serum biochemical parameters and antioxidant profile in heat-stressed broilers[J]. Poultry Science, 2021, 100(8): 101217. DOI:10.1016/j.psj.2021.101217 |
[11] |
ZEITZ J O, FLEISCHMANN A, EHBRECHT T, et al. Effects of supplementation of DL-methionine on tissue and plasma antioxidant status during heat-induced oxidative stress in broilers[J]. Poultry Science, 2020, 99(12): 6837-6847. DOI:10.1016/j.psj.2020.08.082 |
[12] |
ZEFERINO C P, KOMIYAMA C M, PELÍCIA V C, et al. Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress[J]. Animal, 2016, 10(1): 163-171. DOI:10.1017/S1751731115001998 |
[13] |
ZHU Y W, LU L, LI W X, et al. Effect of dietary manganese on antioxidant status and expression levels of heat-shock proteins and factors in tissues of laying broiler breeders under normal and high environmental temperatures[J]. British Journal of Nutrition, 2015, 114(12): 1965-1974. DOI:10.1017/S0007114515003803 |
[14] |
NG W P Q, LIM M T, BT MOHAMAD IZHAR S M, et al. Overview on economics and technology development of rubber seed utilisation in Southeast Asia[J]. Clean Technologies and Environmental Policy, 2014, 16(3): 439-453. DOI:10.1007/s10098-013-0667-6 |
[15] |
LIU J, ZHAO L L, CAI H Y, et al. Antioxidant and anti-inflammatory properties of rubber seed oil in lipopolysaccharide-induced RAW 267.4 macrophages[J]. Nutrients, 2022, 14(7): 1349. DOI:10.3390/nu14071349 |
[16] |
GANDHI V M, CHERIAN K M, MULKY M J. Nutritional and toxicological evaluation of rubber seed oil[J]. Journal of the American Oil Chemists' Society, 1990, 67(11): 883-886. DOI:10.1007/BF02540511 |
[17] |
PI Y, MA L, WANG H R, et al. Rubber seed oil and flaxseed oil supplementation on serum fatty acid profile, oxidation stability of serum and milk, and immune function of dairy cows[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(9): 1363-1372. DOI:10.5713/ajas.18.0573 |
[18] |
WEN Z G, WU Y B, QI Z G, et al. Rubber seed oil supplementation enriches n-3 polyunsaturated fatty acids and reduces cholesterol contents of egg yolks in laying hens[J]. Food Chemistry, 2019, 301: 125198. DOI:10.1016/j.foodchem.2019.125198 |
[19] |
PI Y, GAO S T, MA L, et al. Effectiveness of rubber seed oil and flaxseed oil to enhance the α-linolenic acid content in milk from dairy cows[J]. Journal of Dairy Science, 2016, 99(7): 5719-5730. DOI:10.3168/jds.2015-9307 |
[20] |
SALIMON J, ABDULLAH B M, SALIH N. Rubber (Hevea brasiliensis) seed oil toxicity effect and linamarin compound analysis[J]. Lipids in Health and Disease, 2012, 11(1): 74. DOI:10.1186/1476-511X-11-74 |
[21] |
CHAIKUL P, LOURITH N, KANLAYAVATTANAKUL M. Antimelanogenesis and cellular antioxidant activities of rubber (Hevea brasiliensis) seed oil for cosmetics[J]. Industrial Crops and Products, 2017, 108: 56-62. DOI:10.1016/j.indcrop.2017.06.009 |
[22] |
闻治国, 吴学壮, 齐志国, 等. 橡胶籽油对脂多糖刺激蛋鸡产蛋性能、肠道形态和免疫功能的影响[J]. 中国畜牧杂志, 2020, 56(12): 145-152. WEN Z G, WU X Z, QI Z G, et al. Effect of rubber seed oil on laying performance, intestinal morphological structure, and immune function in LPS-induced laying hens[J]. Chinese Journal of Animal Science, 2020, 56(12): 145-152 (in Chinese). |
[23] |
MOHAMMADI F. Effect of different levels of clove (Syzygium aromaticum L.) essential oil on growth performance and oxidative/nitrosative stress biomarkers in broilers under heat stress[J]. Tropical Animal Health and Production, 2021, 53(1): 84. DOI:10.1007/s11250-020-02517-x |
[24] |
尚相龙, 杨梓曼, 兰剑, 等. 饲粮中添加广藿香油对热应激肉牛生长性能和血清生化指标的影响[J]. 动物营养学报, 2022, 34(1): 395-403. SHANG X L, YANG Z M, LAN J, et al. Effects of diets supplemented with Agastache rugosus essential oil on growth performance and serum biochemical indexes of beef cattle under heat stress[J]. Chinese Journal of Animal Nutrition, 2022, 34(1): 395-403 (in Chinese). DOI:10.3969/j.issn.1006-267x.2022.01.037 |
[25] |
HUO W Y, LI M, WANG J P, et al. Effects of dietary lipid sources on growth performance, nutrient digestibility, blood T lymphocyte subsets, and cardiac antioxidant status of broilers[J]. Animal Nutrition, 2019, 5(1): 68-73. DOI:10.1016/j.aninu.2018.04.004 |
[26] |
IBRAHIM D, EL-SAYED R, KHATER S I, et al. Changing dietary n-6:n-3 ratio using different oil sources affects performance, behavior, cytokines mRNA expression and meat fatty acid profile of broiler chickens[J]. Animal Nutrition, 2018, 4(1): 44-51. DOI:10.1016/j.aninu.2017.08.003 |
[27] |
HAN C, WEI Y Y, WANG X, et al. Protective effect of Salvia miltiorrhiza polysaccharides on liver injury in chickens[J]. Poultry Science, 2019, 98(9): 3496-3503. DOI:10.3382/ps/pez153 |
[28] |
钟光, 施寿荣, 邵丹, 等. 持续热应激对黄羽肉鸡生长性能、肉品质和血液指标的影响[J]. 动物营养学报, 2018, 30(10): 3923-3929. ZHONG G, SHI S R, SHAO D, et al. Effects of persistent heat stress on growth performance, meat quality and blood indexes on yellow-feathered broilers[J]. Chinese Journal of Animal Nutrition, 2018, 30(10): 3923-3929 (in Chinese). DOI:10.3969/j.issn.1006-267x.2018.10.016 |
[29] |
ALVES-BEZERRA M, COHEN D E. Triglyceride metabolism in the liver[J]. Comprehensive Physiology, 2017, 8(1): 1-8. |
[30] |
黄金明, 王根林, 刘兆彬, 等. 大豆黄酮对急性热应激条件下公鸡睾丸发育、精液品质和血清甲状腺激素水平的影响[J]. 中国畜牧杂志, 2006, 42(5): 23-25. HUANG J M, WANG G L, LIU Z B, et al. Effects of daidzein on testis development, semen quality and serum thyroid hormone level of roosters under acute heat stress[J]. Chinese Journal of Animal Science, 2006, 42(5): 23-25 (in Chinese). DOI:10.3969/j.issn.0258-7033.2006.05.009 |
[31] |
YANG L, TAN G Y, FU Y Q, et al. Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens[J]. Comparative Biochemistry and Physiology: Toxicology & Pharmacology, 2010, 151(2): 204-208. |
[32] |
SURAI P F, KOCHISH I I, FISININ V I, et al. Antioxidant defence systems and oxidative stress in poultry biology: an update[J]. Antioxidants, 2019, 8(7): 235. DOI:10.3390/antiox8070235 |
[33] |
KALAKUNTLA S, NAGIREDDY N K, PANDA A K, et al. Effect of dietary incorporation of n-3 polyunsaturated fatty acids rich oil sources on fatty acid profile, keeping quality and sensory attributes of broiler chicken meat[J]. Animal Nutrition, 2017, 3(4): 386-391. DOI:10.1016/j.aninu.2017.08.001 |