动物营养学报    2022, Vol. 34 Issue (11): 7082-7093    PDF    
枯草芽孢杆菌对球虫和产气荚膜梭菌混合攻毒肉鸡生长性能及肠道健康的影响
邓沛杰1,2 , 宋泽和2 , 罗国升3 , 刘亚力3 , 蒋小丰3 , 刘自逵1,2 , 贺喜2     
1. 湖南农业大学动物医学院, 长沙 410128;
2. 湖南农业大学动物科学技术学院, 湖南家禽安全生产工程技术中心, 长沙 410128;
3. 湖南普菲克生物科技有限公司, 长沙 410128
摘要: 本试验旨在研究枯草芽孢杆菌对球虫和产气荚膜梭菌混合攻毒肉鸡生长性能及肠道健康的影响。选用1日龄雄性爱拔益加肉鸡720只,随机分成8个组,每组6个重复,每个重复15只。试验采用2×4因子设计,在攻毒与不攻毒的基础下,分别设置4个处理,分别饲喂基础饲粮、基础饲粮+300 mg/kg枯草芽孢杆菌、基础饲粮+500 mg/kg枯草芽孢杆菌、基础饲粮+12 mg/kg恩拉霉素。攻毒组肉鸡分别于14日龄攻毒球虫、19~21日龄攻毒产气荚膜梭菌。肉鸡笼养,自由采食和饮水,试验期为42 d。结果表明:1)攻毒显著提高了肉鸡22~42日龄的料重比(P < 0.05),显著提高了肉鸡28、35日龄血清二胺氧化酶活性及35日龄血清脂多糖含量(P < 0.05),显著降低了肉鸡28、35日龄空肠和回肠绒毛高度、绒毛高度/隐窝深度(P < 0.05),显著提高了肉鸡28、35日龄空肠和回肠隐窝深度(P < 0.05),显著提高了肉鸡28、35日龄空肠肿瘤坏死因子-α(TNF-α)、干扰素-γ(IFN-γ)、核转录因子-κB(NF-κB)、白细胞介素-6(IL-6)mRNA表达量(P < 0.05),显著提高了肉鸡28日龄空肠白细胞介素-12(IL-12)mRNA表达量(P < 0.05)。2)与基础饲粮、添加500 mg/kg枯草芽孢杆菌相比,添加300 mg/kg枯草芽孢杆菌显著提高了肉鸡1~21日龄、22~42日龄的平均日增重、末重(P < 0.05),显著降低了肉鸡22~42日龄的料重比(P < 0.05)。与基础饲粮相比,添加500 mg/kg枯草芽孢杆菌显著降低了肉鸡28日龄血清脂多糖含量(P < 0.05),添加300 mg/kg枯草芽孢杆菌显著提高了肉鸡28、35日龄的回肠的绒毛高度(P < 0.05),添加12 mg/kg恩拉霉素、300 mg/kg枯草芽孢杆菌显著降低了肉鸡35日龄的空肠TNF-αNF-κBIL-6 mRNA表达量(P < 0.05)。3)攻毒与饲粮对肉鸡22~42日龄料重比、35日龄肠道形态(除空肠隐窝深度)、28日龄空肠NF-κBIL-6 mRNA表达量以及35日龄空肠TNF-αNF-κBIL-6 mRNA表达量的影响存在交互效应(P < 0.05)。由此可见,枯草芽孢杆菌能缓解球虫和产气荚膜梭菌混合攻毒对肉鸡造成的负面影响,一定程度上提长生产性能、改善肠道健康,且添加300 mg/kg枯草芽孢杆菌的效果优于添加500 mg/kg。
关键词: 枯草芽孢杆菌    肉鸡    产气荚膜梭菌    生长性能    肠道健康    
Effects of Bacillus subtilis on Growth Performance and Intestinal Health of Broilers Attacked by Coccidia and Clostridium perfringens
DENG Peijie1,2 , SONG Zehe2 , LUO Guosheng3 , LIU Yali3 , JIANG Xiaofeng3 , LIU Zikui1,2 , HE Xi2     
1. College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China;
2. Hunan Poultry Safety Production Engineering Technology Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
3. Hunan Perfly Biotech Co., Ltd., Changsha 410128, China
Abstract: This experiment was conducted to investigate the effects of Bacillus subtilis on growth performance and intestinal health of broilers attacked by coccidia and Clostridium perfringens. A total of 720 one-day-old Arbor Acres male broilers were selected and randomly divided into 8 groups with 6 replicates in each group and 15 birds in each replicate. The experiment was set up in a 2×4 factorial design with four treatments on the basis of attack and no attack, which feeding the basal diet, basal diet+300 mg/kg Bacillus subtilis, basal diet+500 mg/kg Bacillus subtilis and basal diet+12 mg/kg enramycin, respectively. Broilers in the attack groups were attacked by coccidia at 14 days of age and attacked by Clostridium perfringens at 19 to 21 days of age. Broilers were caged and fed and watered ad libitum for a trial period of 42 days. The results were as follows: 1) the attack significantly increased the feed to gain ratio of broilers during 22 to 42 days of age (P < 0.05), significantly increased the serum diamine oxidase activity at 28 and 35 days of age and serum lipopolysaccharide content at 35 days of age of broilers (P < 0.05), significantly decreased the villus height and villus height/crypt depth in jejunum and ileum at 28 and 35 days of age of broilers (P < 0.05), significantly increased the crypt depth in jejunum and ileum at 28 and 35 days of age of broilers (P < 0.05), significantly increased the mRNA relative expression levels of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), nuclear transcription factor-κB (NF-κB) and interleukin-6 (IL-6) in jejunum at 28 and 35 days of age of broilers (P < 0.05), and significantly increased the mRNA relative expression level of interleukin-12 (IL-12) in jejunum at 28 days of age of broilers (P < 0.05). 2) Compared with the basal diet and addition of 500 mg/kg Bacillus subtilis, the addition of 300 mg/kg Bacillus subtilis significantly increased the average daily gain and final body weight of broilers during 1 to 21 days of age and 22 to 42 days of age (P < 0.05), and significantly decreased the feed to gain ratio of broilers during 22 to 42 days of age (P < 0.05). Compared with the basal diet, the addition of 500 mg/kg Bacillus subtilis significantly decreased the serum lipopolysaccharide content at 28 days of age of broilers (P < 0.05), the addition of 300 mg/kg Bacillus subtilis significantly increased the ileum villi height at 28 and 35 days of age of broilers (P < 0.05), and the addition of 12 mg/kg enramycin and 300 mg/kg Bacillus subtilis significantly increased the mRNA expression levels of TNF-α, NF-κB and IL-6 in jejunum at 35 days of age of broilers (P < 0.05). 3) There were interactive effects on of attack and diet on the feed to gain ratio of broilers during 22 to 42 days of age, the intestinal morphology (except jejunal crypt depth) at 35 days of age, the mRNA relative expression levels of NF-κB and IL-6 in jejunum at 28 days of age, and the mRNA relative expression levels of TNF-α, NF-κB and IL-6 in jejunum at 35 days of age (P < 0.05). In conclusion, the Bacillus subtilis can alleviate the negative impact of broilers attacked by coccidia and Clostridium perfringens, improve the growth performance and intestinal health to a certain extent, and the addition of 300 mg/kg Bacillus subtilis is better than the addition of 500 mg/kg.
Key words: Bacillus subtilis    broilers    Clostridium perfringens    growth performance    intestinal health    

坏死性肠炎(necrotic enteritis,NE)也被称为肠毒血症,主要由A型产气荚膜梭菌引起,在生产中常与球虫病相伴或相继发生,严重降低家禽养殖业的经济效益[1-3]。近年来,越来越多的国家与地区开始限制、禁止在畜禽饲料中使用抗生素,为了控制日益提高的鸡坏死性肠炎发病率,抗生素理想替代品的研发迫在眉睫。目前,抗生素的替代品很多,如益生菌、益生元、多酚、多糖、中草药等。其中,益生菌具有尤其独特的优势,如价格低廉、容易获取、安全无污染等。枯草芽孢杆菌(Bacillus subtilis)作为我国允许在饲料端直接饲喂的饲用益生菌之一,具有极强的抗逆性及较高的稳定性,能很好的在肠道中存活、定植[4]。研究表明,枯草芽孢杆菌进入肠道后,能通过分泌抗菌素、营养竞争等方式抑制产气荚膜梭菌等有害菌的增殖,调节肠道菌群,改善生长性能,促进肠道健康,对坏死性肠炎也有一定的治疗效果,被广泛运用于畜禽养殖业[5-8]。因此,本试验旨在研究饲粮中添加枯草芽孢杆菌对球虫和产气荚膜梭菌混合攻毒肉鸡生长性能及肠道健康的影响,以期为鸡坏死性肠炎的防治和抗生素替代品的研发提供理论依据。

1 材料与方法 1.1 试验材料

枯草芽孢杆菌(PFK1702)由湖南某生物科技有限公司提供,活菌数为1×1010 CFU/g。恩拉霉素由湖南某生物科技有限公司提供,有效含量为95%。A型产气荚膜梭菌(CVCC2030)于中国兽医微生物菌种保藏管理中心采购。

1.2 试验设计与饲养管理

选用1日龄雄性爱拔益加(AA)肉鸡720只,随机分成8个组,每组6个重复,每个重复15只鸡。试验采用2×4因子设计,在攻毒与不攻毒的基础下,分别设置4个饲粮处理,即基础饲粮、基础饲粮+300 mg/kg枯草芽孢杆菌、基础饲粮+500 mg/kg枯草芽孢杆菌、基础饲粮+12 mg/kg恩拉霉素,具体试验设计见表 1。14日龄时,攻毒组肉鸡每只灌喂1 mL卵囊数为104个/mL的混合型艾美尔球虫孢子化卵囊磷酸盐缓冲溶液(PBS),非攻毒组肉鸡每只灌喂1 mL灭菌PBS。19~21日龄时,攻毒组肉鸡连续3 d经口接种培养时间为16 h的A型产气荚膜梭菌新鲜菌液(1×108 CFU/mL),每只鸡每天接种1 mL,同时非攻毒组肉鸡每只灌喂液体硫乙醇酸盐培养基(FTG培养基)1 mL。试验期42 d。肉鸡笼养,每笼15只。试验前将鸡舍、料槽、饮水器等彻底清洗、熏蒸消毒。定期打扫并消毒,持续光照,自由饮水和采食,常规程序接种。试验开始鸡舍温度控制在32~34 ℃,第2周降低2 ℃,第3周至试验结束鸡舍温度控制在25 ℃左右。鸡舍相对湿度为50%~60%。

表 1 试验设计 Table 1 Experimental design
1.3 饲粮组成及营养水平

基础饲粮采用玉米-豆粕型饲粮,参考《鸡饲养标准》(NY/T 33—2004)配制,其组成及营养水平见表 2

表 2 基础饲粮组成及营养水平(风干基础) Table 2 Composition and nutrient levels of basal diets (air-dry basis)  
1.4 测定指标及方法 1.4.1 生长性能

分别于1、21、42日龄时,以重复为单位称重(称重前8 h断料),并统计耗料量,计算各阶段平均日增重(ADG)、平均日采食量(ADFI)和料重比(F/G)。每天早、晚观察试验鸡的健康状况,一旦发现死亡,记录并计算死鸡耗料。

1.4.2 血清二胺氧化酶(DAO)活性和脂多糖(LPS)含量

分别于28、35日龄时,每重复随机抽取1只肉鸡,体重接近该重复的平均体重,静脉采血后分离血清,将血清置于-80 ℃冰箱内冷冻保存。采用试剂盒检测血清LPS含量和DAO活性,试剂盒购自江苏酶标生物科技有限公司。

1.4.3 肠道形态

取空肠、回肠各1.5 cm,漂洗干净后固定于4%多聚甲醛中24 h,按照常规的方法制备成石蜡块后,切4 μm薄片后苏木精-伊红(HE)染色,光学显微镜下观察肠道绒毛高度(VH)和隐窝深度(CD),并计算绒毛高度/隐窝深度(V/C)。

1.4.4 肠道炎症因子mRNA相对表达量

测定空肠组织中炎症因子肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)、白细胞介素-12(IL-12)、干扰素-γ(IFN-γ)、核转录因子-κB(NF-κB)的mRNA相对表达量。按照Steady Pure通用型RNA提取试剂盒(购自湖南艾科瑞生物工程有限公司)说明书操作进行空肠组织RNA提取。得到RNA后,按照Evo M-MLV反转录试剂盒(购自湖南艾科瑞生物工程有限公司)说明书操作进行,反转录得到cDNA,采用SYBR Green(购自湖南艾科瑞生物工程有限公司)嵌合荧光法进行实时荧光定量PCR(RT-qPCR)检测。RT-qPCR引物序列见表 3,内参基因为β-肌动蛋白(β-actin),采用2-ΔΔCt法对定量结果进行计算分析。

表 3 RT-qPCR引物序列 Table 3 RT-qPCR primer sequences
1.5 数据统计分析

试验数据用Excel 2016软件进行初步处理后,采用SPSS 26.0统计软件中的一般线性模型(GLM)进行双因素方差分析(two-factor ANOVA),对差异显著者进行Turkey多重比较,以P < 0.05为差异显著判断标准,主效应包括攻毒和饲粮以及二者之间的交互作用。试验数据用平均值和均值标准误(SEM)表示。

2 结果 2.1 枯草芽孢杆菌对球虫和产气荚膜梭菌混合攻毒肉鸡生长性能的影响

表 4所示,1~21日龄时,与基础饲粮相比,添加300 mg/kg枯草芽孢杆菌显著提高了肉鸡的ADG、FBW(P < 0.05);与添加500 mg/kg枯草芽孢杆菌相比,添加300 mg/kg枯草芽孢杆菌显著提高了肉鸡的ADG、FBW(P < 0.05)。22~42日龄时,攻毒显著提高了肉鸡的F/G(P < 0.05);与基础饲粮和添加500 mg/kg枯草芽孢杆菌相比,添加300 mg/kg枯草芽孢杆菌显著提高了肉鸡的ADG、FBW(P < 0.05),显著降低了F/G(P < 0.05)。攻毒与饲粮对肉鸡22~42日龄F/G的影响存在交互效应(P < 0.05)。

表 4 枯草芽孢杆菌对球虫和产气荚膜梭菌混合攻毒肉鸡生长性能的影响 Table 4 Effects of Bacillus subtilis on growth performance of broilers attacked by coccidia and Clostridium perfringens
2.2 枯草芽孢杆菌对球虫和产气荚膜梭菌混合攻毒肉鸡血清DAO活性和LPS含量的影响

表 5所示,28日龄时,攻毒显著提高了肉鸡的血清DAO活性(P < 0.05);与基础饲粮相比,添加500 mg/kg枯草芽孢杆菌显著降低了肉鸡的血清LPS含量(P < 0.05)。35日龄时,攻毒显著提高了肉鸡35日龄的血清DAO活性和LPS含量(P < 0.05)。攻毒与饲粮对肉鸡28、35日龄血清LPS含量和DAO活性的影响不存在交互效应(P>0.05)。

表 5 枯草芽孢杆菌对球虫和产气荚膜梭菌混合攻毒肉鸡血清DAO活性和LPS含量的影响 Table 5 Effects of Bacillus subtilis on serum DAO activity and LPS content of broilers attacked by coccidia and Clostridium perfringens  
表 6 枯草芽孢杆菌对球虫和产气荚膜梭菌混合攻毒肉鸡28日龄肠道形态的影响 Table 6 Effects of Bacillus subtilis on intestinal morphology at 28 days of age of broilers attacked by coccidia and Clostridium perfringens
2.3 枯草芽孢杆菌对球虫和产气荚膜梭菌混合攻毒肉鸡肠道形态的影响

表 7所示,28日龄时,攻毒显著降低了肉鸡的空肠和回肠VH、V/C(P < 0.05),显著提高了肉鸡的空肠和回肠CD(P < 0.05);与基础饲粮相比,添加300 mg/kg枯草芽孢杆菌显著提高了肉鸡的回肠VH(P < 0.05)。攻毒与饲粮对肉鸡28日龄肠道形态的影响不存在交互效应(P>0.05)。

表 7 枯草芽孢杆菌对球虫和产气荚膜梭菌混合攻毒肉鸡35日龄肠道形态的影响 Table 7 Effects of Bacillus subtilis on intestinal morphology at 35 days of age of broilers attacked by coccidia and Clostridium perfringens

表 7所示,35日龄时,攻毒显著降低了肉鸡的空肠和回肠VH、V/C(P < 0.05),显著提高了肉鸡的空肠和回肠CD(P < 0.05);与基础饲粮相比,添加300 mg/kg枯草芽孢杆菌显著提高了肉鸡的回肠VH(P < 0.05)。攻毒与饲粮对35日龄肉鸡肠道形态(除空肠CD)的影响存在交互效应(P < 0.05)。

2.4 芽孢杆菌对球虫和产气荚膜梭菌混合攻毒肉鸡肠道炎症因子mRNA相对表达量的影响

表 8所示,28日龄时,攻毒显著提高了肉鸡的空肠TNF-αIFN-γNF-κBIL-6和IL-12 mRNA相对表达量(P < 0.05);与基础饲粮相比,添加500 mg/kg枯草芽孢杆菌显著降低了肉鸡的空肠NF-κB mRNA相对表达量(P < 0.05)。攻毒与饲粮对肉鸡28日龄空肠NF-κBIL-6 mRNA相对表达量的影响存在交互效应(P < 0.05)。35日龄时,攻毒显著提高了肉鸡的空肠TNF-αIFN-γNF-κBIL-6 mRNA相对表达量(P < 0.05);与基础饲粮相比,添加12 mg/kg恩拉霉素、300 mg/kg枯草芽孢杆菌显著降低了肉鸡的空肠TNF-αNF-κBIL-6 mRNA相对表达量(P < 0.05)。攻毒与饲粮对肉鸡35日龄空肠TNF-αNF-κBIL-6 mRNA相对表达量的影响存在交互效应(P < 0.05)。

表 8 芽孢杆菌对球虫和产气荚膜梭菌混合攻毒肉鸡肠道炎症因子mRNA相对表达量的影响 Table 8 Effects of Bacillus subtilis on intestinal inflammatory factors mRNA relative expression levels of broilers attacked by coccidia and Clostridium perfringens
3 讨论

在实际生产中,本试验所用AA肉鸡一般于42日龄时出栏;球虫攻毒时间常选择14日龄,在球虫攻毒后第3~5天进行产气荚膜梭菌攻毒。研究表明,产气荚膜梭菌攻毒后第5~9天肠道病变程度逐渐加剧,并在第9天时达到巅峰时,攻毒后第11~14天较第9天有所恢复,在第21天基本恢复完成[9]。因此,本试验选择于1、21、42日龄检测生长性能,于21、35日龄(产气荚膜梭菌攻毒后第7、14天)检测肠道相关指标。

枯草芽孢杆菌作为非致病性益生菌,具有安全性高、适应性强、分泌能力强、易于培养等特点,被广泛运用于工业、医学、农业等领域[10-12]。研究表明,枯草芽孢杆菌的孢子具有强大的抗逆性和较高的稳定性,进入动物胃肠道后被激活而发挥作用[13],可以促进动物生长和预防疾病[14]。本试验中,与基础饲粮相比,添加300 mg/kg枯草芽孢杆菌显著提高了肉鸡22~42日龄的ADG、FBW,同时显著降低了F/G,这与齐博等[15]、张晓慧[16]的报道一致。与基础饲粮相比,添加枯草芽孢杆菌对肉鸡1~21日龄的ADFI有显著影响,对22~42日龄的ADFI无显著影响,这与Hadieva等[17]的结果不一致,可能与鸡的品种、枯草芽孢杆菌制剂状况、饲养条件等有关。本试验中,添加300 mg/kg枯草芽孢杆菌对肉鸡生长性能的效果与添加12 mg/kg恩拉霉素差异不明显,但优于添加500 mg/kg枯草芽孢杆菌:与添加500 mg/kg枯草芽孢杆菌相比,添加300 mg/kg枯草芽孢杆菌后肉鸡具有更高的ADG和FBW,且22~42日龄时具有更低的F/G,具体机制有待进一步研究。前人研究表明,坏死性肠炎降低肉鸡生长性能[18]。本试验中,攻毒提高了肉鸡的F/G,对肉鸡的FBW、ADFI无显著影响,与夏亿等[19]的报道有所不同,这或许与坏死性肠炎的严重程度、鸡只品种、饲养条件等有关。鸡坏死性肠炎分为临床(急性)和亚临床(亚急性)形式,其中亚临床型鸡坏死性肠炎在实际生产更为常见,主要表现为生长速率和饲料转化率的降低[20]。此外,3~4周龄后,肉鸡肌肉开始快速生长,肉鸡为了满足体重的快速增长和巨大的营养需求而提高采食量,这可能掩盖了攻毒对肉鸡采食量及增重的影响。枯草芽孢杆菌可通过分泌多种细菌素和抗菌肽[21-22]、营养竞争等方式抑制有害菌的繁殖,从而缓解产气荚膜梭菌等有害菌对生产性能的降低[23]。本研究中,饲粮中添加枯草芽孢杆菌缓解了球虫和产气荚膜梭菌混合攻毒对肉鸡F/G的影响,与前人研究结果一致。

DAO是在动物中广泛存在的一种细胞内酶,主要分布于肠道黏膜细胞中,在血液中含量很少。当肠黏膜受损时,DAO从细胞中释放处出来,进入血液中,所以血清DAO活性的测定是反映肠道屏障完整性和受损程度的重要指标[24]。LPS是革兰氏阴性菌的一种结构成分,虽然产气荚膜梭菌是革兰氏阳性菌,但产气荚膜梭菌感染会破坏肠道屏障完整性,引起大肠杆菌、沙门氏菌等革兰氏阴性菌的过度增殖,细菌通过受损的肠黏膜进入血液中,引起血清LPS含量的提升[25-26]。所以血清LPS含量可以一定程度上反映细菌感染和肠黏膜损伤情况。本试验中,攻毒组肉鸡血清DAO活性上升,LPS含量提高,说明产气荚膜梭菌感染,肠黏膜受损,肠道屏障的完整性被破坏,细菌及细菌成分进入了血液中。

营养物质吸收的主要场所是小肠, 小肠肠道形态直接影响家禽对营养物质的消化吸收。肠道形态通常用VH、CD及V/C来衡量。VH越高,吸收面积越大,营养物质吸收效率越高,而CD代表肠道细胞的成熟率,CD越浅代表细胞成熟率越高,分泌能力越强。V/C整体衡量肠道的消化吸收能力,V/C越高,消化吸收能力越强。袁文菊等[27]在饲粮中添加枯草芽孢杆菌,显著提高了肉鸡空肠的VH和V/C,降低了CD。本试验中,与基础饲粮相比,添加枯草芽孢杆菌提高了回肠的VH,也有降低回肠CD和提高V/C的趋势,说明枯草芽孢杆菌可以改善肠道形态,增强肉鸡的营养吸收功能。孟禹璇等[28]研究发现,产气荚膜梭菌感染显著降低肉鸡23日龄肉鸡十二指肠的V/C和30日龄肉鸡回肠VH。刘阳等[29]用产气荚膜梭菌感染肉鸡,提高了23日龄肉鸡十二指肠CD,并降低了肉鸡十二指肠和回肠VH、十二指肠的V/C。本试验中,球虫和产气荚膜梭菌混合攻毒降低了空肠和回肠的VH、V/C,提高了CD,说明攻毒会降低肉鸡的营养吸收功能,这前人的研究结论不完全一致,可能是菌株种类、攻毒方式、采样时间及部位等有关。添加枯草芽孢杆菌后,攻毒肉鸡35日龄的回肠的CD显著降低,28、35日龄的空肠、回肠的VH、V/C显著提高,与对照组相比无显著差异,说明饲粮中添加枯草芽孢杆菌可以缓解球虫和产气荚膜梭菌混合攻毒对肉鸡肠道形态的不利影响。

炎症因子即参与炎症反应的各种细胞因子。空肠是鸡坏死性肠炎主要病变部位之一,空肠炎症因子的表达可以一定程度上反映鸡坏死性肠炎的情况。TNF-α、IL-6、IL-12是巨噬细胞分泌的炎症因子。IFN-γ由巨噬细胞或自然杀伤(NK)细胞产生,常见于病毒、细菌感染,与炎性疾病严重程度相关。NF-κB是重要转录因子,NF-κB信号通路可以调节炎症因子的表达[30]。倪学勤等[31]研究表明,产气荚膜梭菌攻毒提高了肉鸡回肠IL-6、IFN-γ mRNA相对表达量。也有研究表明,产气荚膜梭菌与球虫混合感染提高了回肠IFN-γ mRNA相对表达量[32]。本试验中,产气荚膜梭菌与球虫混合攻毒提高了空肠TNF-αIFN-γNF-κBIL-6 mRNA相对表达量。有研究表明,LPS通过激活NF-κB信号通路诱导炎症因子TNF-αIL-6等的表达[33]。本试验中,攻毒引起血清LPS含量的提升,与攻毒引起TNF-αNF-κBIL-6 mRNA相对表达量提高相互印证。饲粮中添加枯草芽孢杆菌,攻毒肉鸡TNF-αIFN-γIL-6 mRNA相对表达量显著降低,与对照组无显著差异,说明添加枯草芽孢杆菌缓解了攻毒对肉鸡炎症因子表达量的影响。这可能是枯草芽孢杆菌抑制了产气荚膜梭菌的增殖,缓解了肠黏膜损伤,加速损伤的修复。

4 结论

① 饲粮中添加枯草芽孢杆菌提高了肉鸡生产性能,改善了肠道健康,缓解了球虫和产气荚膜梭菌混合攻毒对肉鸡生长性能、肠道健康的不良影响。

② 饲粮中添加300 mg/kg的枯草芽孢杆菌对肉鸡生长性能的效果优于添加500 mg/kg枯草芽孢杆,与添加12 mg/kg恩拉霉素效果相近。

参考文献
[1]
ENGSTRÖM B E, FERMÉR C, LINDBERG A, et al. Molecular typing of isolates of Clostridium perfringens from healthy and diseased poultry[J]. Veterinary Microbiology, 2003, 94(3): 225-235. DOI:10.1016/S0378-1135(03)00106-8
[2]
SLUIS W V D. Clostridial enteritis is an often underestimated problem[J]. World Poultry, 2000, 16(7): 42-43.
[3]
WADE B, KEYBURN A L. The true cost of necrotic enteritis[J]. World Poultry, 2015(31): 7-16.
[4]
黄玉岚, 霍小东, 姚宏明, 等. 枯草芽孢杆菌WEI-62体外益生评价及其对仔猪生长性能、肠道形态和肠道菌群的影响[J]. 中国畜牧杂志, 2020, 56(11): 140-145.
HUANG Y L, HUO X D, YAO H M, et al. In vitro probiotic evaluation of Bacillus subtilis WEI-62 and its effects on growth performance, intestinal morphology and intestinal flora of piglets[J]. Chinese Journal of Animal Science, 2020, 56(11): 140-145 (in Chinese). DOI:10.19556/j.0258-7033.20191216-04
[5]
ABDELQADER A, IRSHAID R, AL-FATAFTAH A R. Effects of dietary probiotic inclusion on performance, eggshell quality, cecal microflora composition, and tibia traits of laying hens in the late phase of production[J]. Tropical Animal Health and Production, 2013, 45(4): 1017-1024. DOI:10.1007/s11250-012-0326-7
[6]
班博, 戴维, 张海涛, 等. 枯草芽孢杆菌对断奶竹鼠生长性能、血清生化指标和器官发育的影响[J]. 动物营养学报, 2021, 33(12): 7192-7200.
BAN B, DAI W, ZHANG H T, et al. Effects of Bacillus subtilis on growth performance, serum biochemical parameters and organ development of weaned bamboo rats[J]. Chinese Journal of Animal Nutrition, 2021, 33(12): 7192-7200 (in Chinese).
[7]
罗涛, 祁姣姣, 彭玉莉, 等. 对产气荚膜梭菌具有抑菌作用的益生菌的筛选及其抑菌性能探究[J]. 饲料研究, 2021, 44(8): 83-87.
LUO T, QI J J, PENG Y L, et al. Screening of probiotics with bacteriostatic effect on Clostridium perfringens and their bacteriostatic properties[J]. Feed Research, 2021, 44(8): 83-87 (in Chinese). DOI:10.13557/j.cnki.issn1002-2813.2021.08.019
[8]
陈锁. 枯草芽孢杆菌制剂对产气荚膜梭菌和球虫引起的肉鸡坏死性肠炎治疗效果研究[D]. 硕士学位论文. 泰安: 山东农业大学, 2021.
CHEN S. Effect of Bacillus subtilis preparation on broiler necrotizing enteritis caused by Clostridium perfringens and coccidia[D]. Master's Thesis. Tai'an: Shandong Agricultural University, 2021. (in Chinese)
[9]
乔艺然. A型产气荚膜梭菌感染雏鸡病理形态学研究[D]. 硕士学位论文. 哈尔滨: 东北农业大学, 2015.
QIAO Y R. Pathomorphological study of chickens infected with type A Clostridium perfringens[D]. Master's Thesis. Harbin: Northeast Agricultural University, 2015. (in Chinese)
[10]
SUN H C, LIN Z P, ZHAO L, et al. Bacillus subtilis spore with surface display of paramyosin from Clonorchis sinensis potentializes a promising oral vaccine candidate[J]. Parasites & Vectors, 2018, 11(1): 156.
[11]
POTOT S, SERRA C R, HENRIQUES A O, et al. Display of recombinant proteins on Bacillus subtilis spores, using a coat-associated enzyme as the carrier[J]. Applied and Environmental Microbiology, 2010, 76(17): 5926-5933. DOI:10.1128/AEM.01103-10
[12]
李荣. 枯草芽胞杆菌R31对香蕉枯萎病生防机制研究[D]. 硕士学位论文. 武汉: 华中农业大学, 2012.
LI R. Investigation on the biocontrol mechanism of Bacillus subtilis strain R31 against banana Fusarium wilt[D]. Master's Thesis. Wuhan: Huazhong Agricultural University, 2012. (in Chinese)
[13]
CASULA G, CUTTING S M. Bacillus probiotics: spore germination in the gastrointestinal tract[J]. Applied and Environmental Microbiology, 2002, 68(5): 2344-2352. DOI:10.1128/AEM.68.5.2344-2352.2002
[14]
LEE N K, KIM W S, PAIK H D. Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier[J]. Food Science and Biotechnology, 2019, 28(5): 1297-1305. DOI:10.1007/s10068-019-00691-9
[15]
齐博, 武书庚, 王晶, 等. 枯草芽孢杆菌对肉仔鸡生长性能、肠道形态和菌群数量的影响[J]. 动物营养学报, 2016, 28(6): 1748-1756.
QI B, WU S G, WANG J, et al. Effects of Bacillus subtilis on growth performance, intestinal morphology and bacterial enumeration of broilers[J]. Chinese Journal of Animal Nutrition, 2016, 28(6): 1748-1756 (in Chinese). DOI:10.3969/j.issn.1006-267x.2016.06.016
[16]
张晓慧. 枯草芽孢杆菌对AA鸡生长性能的影响及其机理研究[D]. 硕士学位论文. 湛江: 广东海洋大学, 2013.
ZHANG X H. Effects of Bacillus subtilis on growth performance in AA broilers and its mechanism[D]. Master's Thesis. Zhanjiang: Guangdong Ocean University, 2013. (in Chinese)
[17]
HADIEVA G, LUTFULLIN M, PUDOVA D, et al. Supplementation of Bacillus subtilis GM5 enhances broiler body weight gain and modulates cecal microbiota[J]. 3 Biotech, 2021, 11(3): 126. DOI:10.1007/s13205-020-02634-2
[18]
WANG H S, NI X Q, LIU L, et al. Controlling of growth performance, lipid deposits and fatty acid composition of chicken meat through a probiotic, Lactobacillus johnsonii during subclinical Clostridium perfringens infection[J]. Lipids in Health and Disease, 2017, 16(1): 38. DOI:10.1186/s12944-017-0408-7
[19]
夏亿, 孟禹璇, 丁斌鹰, 等. 益生菌对产气荚膜梭菌感染肉鸡免疫功能和肠道屏障基因表达的影响[J]. 中国畜牧杂志, 2022, 58(2): 182-189, 197.
XIA Y, MENG Y X, DING B Y, et al. Effects of probiotics on the immunity and intestinal barrier gene expression of broilers challenged by Clostridium perfringens[J]. Chinese Journal of Animal Science, 2022, 58(2): 182-189, 197 (in Chinese).
[20]
KALDHUSDAL M, HOFSHAGEN M. Barley inclusion and avoparcin supplementation in broiler diets.2.Clinical, pathological, and bacteriological findings in a mild form of necrotic enteritis[J]. Poultry Science, 1992, 71(7): 1145-1153. DOI:10.3382/ps.0711145
[21]
KIM P I, RYU J, KIM Y H, et al. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides[J]. Journal of Microbiology and Biotechnology, 2010, 20(1): 138-145. DOI:10.4014/jmb.0905.05007
[22]
CORVEY C, STEIN T, DVSTERHUS S, et al. Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr[J]. Biochemical and Biophysical Research Communications, 2003, 304(1): 48-54. DOI:10.1016/S0006-291X(03)00529-1
[23]
KEERQIN C, RHAYAT L, ZHANG Z H, et al. Probiotic Bacillus subtilis 29, 784 improved weight gain and enhanced gut health status of broilers under necrotic enteritis condition[J]. Poultry Science, 2021, 100(4): 100981. DOI:10.1016/j.psj.2021.01.004
[24]
LUK G D, BAYLESS T M, BAYLIN S B. Diamine oxidase (histaminase).A circulating marker for rat intestinal mucosal maturation and integrity[J]. The Journal of Clinical Investigation, 1980, 66(1): 66-70. DOI:10.1172/JCI109836
[25]
LIU D, GUO Y M, WANG Z, et al. Exogenous lysozyme influences Clostridium perfringens colonization and intestinal barrier function in broiler chickens[J]. Avian Pathology, 2010, 39(1): 17-24. DOI:10.1080/03079450903447404
[26]
MCREYNOLDS J L, BYRD J A, ANDERSON R C, et al. Evaluation of immunosuppressants and dietary mechanisms in an experimental disease model for necrotic enteritis[J]. Poultry Science, 2004, 83(12): 1948-1952.
[27]
袁文菊, 孙留霞, 赵庆枫, 等. 不同剂量枯草芽孢杆菌对肉鸡生长性能、肉品质和肠绒毛形态的影响[J]. 中国饲料, 2022(2): 42-45.
YUAN W J, SUN L X, ZHAO Q F, et al. Effects of different doses of Bacillus subtilis on growth performance, meat quality and intestinal villus morphology of broilers[J]. China Feed, 2022(2): 42-45 (in Chinese).
[28]
孟禹璇, 刘阳, 张钊, 等. 复合植物活性成分对产气荚膜梭菌感染肉鸡生长性能和肠道组织形态的影响[J]. 饲料工业, 2021, 42(20): 7-13.
MENG Y X, LIU Y, ZHANG Z, et al. Effects of compound plant bioactive ingredients blend on growth performance and intestinal morphology of broilers challenged with Clostridium perfringens[J]. Feed Industry, 2021, 42(20): 7-13 (in Chinese).
[29]
刘阳, 张钊, 郭双双, 等. 葛根提取物对产气荚膜梭菌感染肉鸡生长性能和肠道屏障功能的影响[J/OL]. 中国畜牧杂志: 1-16[2022-03-03]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZGXM20211215001&DbName=CAPJ2021. DOI: 10.19556/j.0258-7033.20210715-02.
LIU Y, ZHANG Z, GUO S S, et al. Effect of pueraria extract on growth performance and intestinal barrier function in broilers challenged with Clostridium perfringens[J/OL]. Chinese Journal of Animal Science: 1-16[2022-03-03]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZGXM20211215001&DbName=CAPJ2021. DOI: 10.19556/j.0258-7033.20210715-02.(inChinese)
[30]
KANDASAMY M. NF-κB signalling as a pharmacological target in COVID-19:potential roles for IKKβ inhibitors[J]. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394(3): 561-567.
[31]
倪学勤, 刘丽达, 曾东, 等. 地衣芽孢杆菌对坏死性肠炎雏鸡回肠组织及细胞因子的影响[J]. 中国兽医科学, 2013, 43(10): 1079-1084.
NI X Q, LIU L D, ZENG D, et al. Effect of Bacillus licheniformis on ileal tissue and cytokines in chicken with necrotic enteritis[J]. Chinese Veterinary Science, 2013, 43(10): 1079-1084 (in Chinese).
[32]
COLLIER C T, HOFACRE C L, PAYNE A M, et al. Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth[J]. Veterinary Immunology and Immunopathology, 2008, 122(1/2): 104-115.
[33]
TAKEUCHI O, AKIRA S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140(6): 805-820.