2. 西北农林科技大学动物科技学院, 杨陵 712100
2. College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China
近年来,随着生活水平的提高,人们对健康绿色有机食品的需求量不断增加。据报道,全球家禽消费量以每年超过3.6%的速度增长[1]。长期以来,抗生素的使用在促进畜禽生产方面发挥了重要作用,然而,使用饲料抗生素生长促进剂会导致抗生素耐药病原体和在家禽产品中的药物残留[2],抗生素耐药性和食源性病原体也会对公共健康造成威胁,在“替抗”的大背景下,益生菌作为抗生素的替代品日益受到关注[3]。益生菌可以提高机体免疫力,改善动物生产性能和抗氧化能力[4],益生菌的应用正成为全身性炎症的一种有效的治疗和预防策略。乳酸菌是肠道中重要的生理菌属,在维持宿主健康方面发挥着重要作用。此外,由于其对肠道屏障功能、免疫和抑制细胞凋亡的有益影响,乳酸菌已被证明是最有前途的饲料益生菌之一[5-7]。研究指出,植物乳杆菌可以提高肉鸡生长性能和改善肠道菌群[8-9],增强肠道屏障和免疫功能[9],抑制细胞凋亡[7],降低氨气排放量[10]。饲粮添加屎肠球菌可提高肉鸡平均日增重(ADG)[11],改善磷的吸收和骨矿化以及改善肠道菌群[12],增强机体免疫力和抗氧化功能[4-5]。不过,益生菌的有益作用很大程度上取决于它们的生存能力,而这取决于其对饲料加工、储存和饲粮在胃肠道消化过程中不利环境的耐受性[13]。微囊化包被可以通过形成微囊覆盖活的益生菌,进而提高益生菌对存活不利的胃和胆汁丰富的小肠环境的抵御能力[4],提高益生菌的存活率;而保护剂包被则可以将保护剂捕获在载体材料中,并通过促进控释和优化作用部位的传递,增强益生菌的功效[14]。基于前人的研究成果,为进一步验证包被益生菌的应用效果,本试验旨在研究双层包被植物乳杆菌和屎肠球菌对肉鸡生长性能、免疫和抗氧化功能、臭味物质排放以及肠道菌群的影响,为植物乳杆菌和屎肠球菌在肉鸡养殖过程中的应用提供科学依据。
1 材料与方法 1.1 试验材料试验所用植物乳杆菌菌株LP15-1和屎肠球菌菌株RS047均为本课题组保藏菌种。包被植物乳杆菌和包被屎肠球菌采用国家粮食和物资储备局科学研究院专利技术(ZL 201310218187.8)生产(包括微囊化包被和保护剂包被),活菌数为1.0×1010 CFU/g。
1.2 试验设计和饲粮本试验选取1日龄爱拔益加(AA)肉仔鸡公鸡144只,随机分为4个组,每组6个重复,每个重复6只鸡。各组肉仔鸡初始体重之间无显著差异(P < 0.05)。对照组饲喂基础饲粮,试验组分别饲喂在基础饲粮基础上添加1 g/kg包被植物乳杆菌(ELP组)、1 g/kg包被屎肠球菌(EEF组)和1 g/kg包被植物乳杆菌+1 g/kg包被屎肠球菌(ELE组)的饲粮。基础饲粮参照我国《鸡饲养标准》(NY/T 33—2004)配制,为玉米-豆粕型饲粮,其组成及营养水平见表 1。试验期42 d,分为1~21日龄和22~42日龄2个阶段。
![]() |
表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of basal diets (air-dry basis) |
本试验采用4层笼养,鸡舍环境温度第1周保持在32~35 ℃,随后逐渐降低到25 ℃,23 h光照,按正常免疫程序进行免疫接种,自由采食和饮水。每天07:00、13:00和17:00各投料1次,监测鸡群健康状况并记录死淘鸡数。分别于试验第21和42天,每重复随机取1只鸡,翅静脉采血于促凝管中,2 000×g、4 ℃离心15 min,制备血清,存于-20 ℃备测。鸡只采血后,二氧化碳窒息后颈静脉放血致死,取肝脏于-20 ℃保存。试验第42天,鸡只采血后取盲肠食糜,以重复为单位收集粪便并取样于离心管中,-80 ℃保存待测。
1.4 检测指标及方法 1.4.1 生长性能分别于试验第21和42天,禁食12 h后,每只鸡逐只称重,以重复为单位统计采食量,分别计算1~21日龄、22~42日龄和1~42日龄的ADG、平均日采食量(ADFI)和料重比(F/G)。
1.4.2 免疫和抗氧化功能按照试剂盒(南京建成生物工程研究所)说明书,分别采用黄嘌呤氧化酶法、硫代巴比妥法和比色法测定血清和肝脏中超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)活性、丙二醛(MDA)含量以及总抗氧化能力(T-AOC)。采用鸡特异性酶联免疫吸附测定(ELISA)试剂盒(北京华英生物技术有限公司)检测血清中免疫球蛋白A(IgA)、免疫球蛋白M(IgM)、免疫球蛋白G(IgG)、肿瘤坏死因子-α(TNF-α)、白细胞介素-2(IL-2)、白细胞介素-6(IL-6)和白细胞介素-10(IL-10)含量。
1.4.3 臭味物质排放根据Knarreborg等[15]的方法,采用高效液相色谱法测定粪便中吲哚和粪臭素(3-甲基吲哚)含量。
1.4.4 肠道菌群采用北京诺禾致源科技股份有限公司的高通量测序技术对盲肠食糜微生物区系进行分析,主要包括DNA提取、16S rRNA PCR扩增、扩增子测序和序列数据处理[16]。采用Shannon指数、Simpson指数、Chao1指数和ACE指数分析肠道菌群物种的alpha多样性,并在门和属水平上比较优势细菌的相对丰度。
1.5 数据统计分析采用SPSS 20.0软件对试验数据进行单因素方差分析(one-way ANOVA),并用Duncan氏法进行多重比较检验,试验结果用平均值和均值标准误(SEM)表示,P < 0.05为差异显著。
2 结果与分析 2.1 包被植物乳杆菌和屎肠球菌对肉鸡生长性能的影响由表 2可知,1~21日龄,与对照组相比,ELP组、EEF组和ELE组肉鸡末重和ADG显著提高(P < 0.05),其中ELP组末重和ADG比对照组分别提高了12.77%和13.86%;22~42日龄和1~42日龄,与对照组相比,ELP组、EEF组和ELE组肉鸡末重、ADG、ADFI和F/G均无显著差异(P > 0.05)。
![]() |
表 2 包被植物乳杆菌和屎肠球菌对肉鸡生长性能的影响 Table 2 Effects of embedded Lactobacillus plantarum and Enterococcus faecium on growth performance of broilers |
由表 3可知,21日龄,与对照组相比,ELE组肉鸡血清IgG和IgA含量显著提高(P < 0.05),EEF组血清IgA和IgM含量显著提高(P < 0.05);42日龄,各组肉鸡血清IgG、IgA和IgM含量无显著差异(P > 0.05)。21和42日龄,与对照组相比,ELP组、EEF组和ELE组肉鸡血清TNF-α、IL-2和IL-6含量显著降低(P < 0.05),血清IL-10含量显著提高(P < 0.05);其中,ELE组血清IL-10含量最高,血清TNF-α、IL-6和IL-2含量最低。
![]() |
表 3 包被植物乳杆菌和屎肠球菌对肉鸡免疫功能的影响 Table 3 Effects of embedded Lactobacillus plantarum and Enterococcus faecium on immune function of broilers |
由表 4可知,21日龄,与对照组相比,ELP组、EEF组和ELE组肉鸡血清GSH-Px、SOD活性和T-AOC显著提高(P < 0.05),血清MDA含量无显著差异(P > 0.05);其中,ELE组血清GSH-Px、SOD活性和T-AOC最高。42日龄,ELP组、EEF组和ELE组肉鸡血清GSH-Px和SOD活性显著提高(P < 0.05),EEF组和ELE组血清MDA含量显著降低(P < 0.05);其中ELE组血清GSH-Px和SOD活性最高,血清MDA含量最低。21和42日龄,与对照组相比,ELP组、EEF组和ELE组肉鸡肝脏GSH-Px、SOD活性和T-AOC显著提高(P < 0.05),肝脏MDA含量显著降低(P < 0.05);其中,ELE组肝脏GSH-Px、SOD活性和T-AOC最高,肝脏MDA含量最低。
![]() |
表 4 包被植物乳杆菌和屎肠球菌对肉鸡抗氧化功能的影响 Table 4 Effects of embedded Lactobacillus plantarum and Enterococcus faecium on antioxidant function of broilers |
由表 5可知,与对照组相比,ELP组肉鸡粪便中粪臭素含量显著降低(P < 0.05),粪便中吲哚含量有降低趋势(P > 0.05);EEF组和ELE组粪便中吲哚和粪臭素含量无显著差异(P > 0.05)。
![]() |
表 5 包被植物乳杆菌和屎肠球菌对肉鸡粪便臭味物质排放的影响 Table 5 Effects of embedded Lactobacillus plantarum and Enterococcus faecium on odorous substance emission in feces of broilers |
由表 6可知,与对照组相比,ELP组肉鸡盲肠菌群Chao1指数和ACE指数显著提高(P < 0.05),表明饲粮添加包被植物乳杆菌显著提高肉鸡盲肠菌群的物种丰富度;EEF组和ELE组盲肠菌群α多样性相关指数无显著差异(P > 0.05)。
![]() |
表 6 包被植物乳杆菌和屎肠球菌对肉鸡盲肠菌群alpha多样性的影响 Table 6 Effects of embedded Lactobacillus plantarum and Enterococcus faecium on alpha diversity of cecal microflora of broilers |
由表 7可知,在门水平,与对照组相比,ELP组、EEF组和ELE组肉鸡盲肠菌群相对丰度无显著差异(P > 0.05),各组优势菌群都为厚壁菌门(Firmicutes),其次是拟杆菌门(Bacteroidetes)。在属水平,与对照组相比,ELP组、EEF组和ELE组盲肠菌群中未鉴别毛螺菌科(unidentified Lachnospiraceae)相对丰度显著降低(P < 0.05),ELP组和EEF组梭菌目(Clostridiales)相对丰度显著提高(P < 0.05),ELP组粪杆菌属(Faecalibacterium)相对丰度显著降低(P < 0.05)、f_瘤胃球菌科(f_Ruminococcaceae)相对丰度显著提高(P < 0.05)。与对照组相比,ELP组、EEF组和ELE组肉鸡盲肠乳杆菌属(Lactobacillus)相对丰度分别提高了20.11倍、8.61倍和16.22倍(P > 0.05)。
![]() |
表 7 包被植物乳杆菌和屎肠球菌对肉鸡盲肠菌群相对丰度的影响 Table 7 Effects of embedded Lactobacillus plantarum and Enterococcus faecium on relative abundance in cecal microflora of broilers |
已有大量研究指出,饲粮添加植物乳杆菌和屎肠球菌能够提高肉鸡生长性能[17-19]。Wang等[12]在饲粮中添加屎肠球菌未改善肉鸡生长性能,但能改善磷的吸收和骨矿化。Ding等[9]在饲粮中添加植物乳杆菌未改善肉鸡生长性能,但降低了死亡率。饲粮添加植物乳杆菌和屎肠球菌对生长性能的影响不同的原因可能是因为菌株的类别和活性、肉鸡品种、饲喂方式和环境的不同[20]。本试验结果表明,饲粮添加包被植物乳杆菌和包被屎肠球菌及其组合显著提高肉鸡1~21日龄末重和ADG,其中ELP组的末重和ADG比对照组分别提高了12.77%和13.86%。饲粮添加植物乳杆菌和/或屎肠球菌可能因为增加了肠道中益生菌的丰度,从而能够调节肠道菌群的平衡,以此来增强肠道的消化、吸收和代谢功能,进而提高肉鸡生长性能[18]。
3.2 包被植物乳杆菌和屎肠球菌对肉鸡免疫功能的影响免疫球蛋白在免疫调节和黏膜防御中发挥着重要作用[21],其中IgG、IgA和IgM分别通过清除病原微生物、黏膜上抗原和溶解细菌以及中和病毒发挥作用[22]。细胞因子的产生是炎症反应的重要机制,过度产生或不适当地产生促炎细胞因子会加剧炎症和组织破坏[23]。细胞因子主要由Th1细胞和Th2细胞分泌,Th1细胞在病毒或细胞内细菌感染后产生促炎细胞因子IL-2和TNF-α,Th2细胞在感染后分泌白细胞介素-4(IL-4)、IL-6、IL-10和白细胞介素-13(IL-13)[24]。Mollazadeh等[25]研究指出,IL-10是氧化应激和促炎细胞因子[即TNF-α、白细胞介素-1β(IL-1β)和干扰素-γ(INF-γ)]的抑制剂。因此,免疫球蛋白和细胞因子分别通过体液免疫和细胞免疫反映机体免疫功能。Dong等[4]和Ding等[9]研究表明,饲粮添加微囊化屎肠球菌显著提高了肉鸡血清IgA含量,添加植物乳杆菌15-1提高了21日龄肉鸡血清IgA和IgG含量;饲粮添加屎肠球菌抑制了肉鸡脾脏IL-1β、IL-6和TNF-α基因的表达,促进了IL-10基因的表达[5];饲粮添加植物乳杆菌提高了肉鸡回肠黏膜IL-10基因的表达[7],降低了回肠IL-2、IL-4、INF-γ和TNF-α含量[8];饲粮添加嗜酸乳杆菌、植物乳杆菌和屎肠球菌的混合物降低了肉兔血清TNF-α、IL-1β和INF-γ含量,提高了血清IgA和IgG含量[26]。本研究与前人研究结果一致,饲粮添加包被植物乳杆菌和包被屎肠球菌及其组合显著提高了肉鸡血清IL-10含量,降低了血清TNF-α、IL-6和IL-2含量,其中二者联合使用改善细胞因子效果最强,且能显著提高21日龄血清IgG和IgA含量。植物乳杆菌和屎肠球菌通过调节肉鸡的细胞免疫和体液免疫能力,对鸡的免疫系统产生明显的免疫调节作用,增强机体的免疫能力可能是通过平衡促炎和抗炎反应来激活免疫反应,以保护机体免受病原体入侵,并维持肠道内环境的稳定[7]。
3.3 包被植物乳杆菌和屎肠球菌对肉鸡抗氧化功能的影响GSH-Px、SOD和T-AOC等重要抗氧化酶是抗氧化损伤的第一道防线[27],MDA是脂质发生过氧化反应的终产物,它们可以共同反映机体抗氧化的潜在能力。研究表明,饲粮添加屎肠球菌和植物乳杆菌显著降低肉鸡血清MDA含量,提高血清SOD活性[4, 23],表明屎肠球菌和植物乳杆菌可以通过抑制脂质过氧化来缓解氧化应激。本试验结果表明,饲粮添加包被植物乳杆菌和包被屎肠球菌及其组合提高了肉鸡血清和肝脏GSH-Px、SOD活性和T-AOC,并降低了血清和肝脏MDA含量,其中ELE组抗氧化效果最好。植物乳杆菌和屎肠球菌提高机体抗氧化能力可能是通过激活和转移核因子来诱导抗氧化防御系统各种酶的表达,从而促进清除活性氧,抑制脂质过氧化,并促进抗氧化功能的提升[28]。
3.4 包被植物乳杆菌和屎肠球菌对肉鸡臭味物质排放和肠道菌群的影响氨、硫化物、挥发性脂肪酸、粪臭素和吲哚是动物粪便中最常见的臭味物质,也是导致肉鸡养殖场气味的主要因子。已有研究指出,饲粮添加益生菌可以减少氨气的排放[10],但未有研究报道益生菌是否影响家禽粪臭素和吲哚的排放。本研究结果表明,饲粮添加包被植物乳杆菌降低了肉鸡粪便中吲哚和粪臭素含量,其可能是因为植物乳杆菌增加了肠道内有益菌数量,使得消耗的氨基酸含量增加,从而抑制了色氨酸转化为粪臭素;同时,饲粮添加植物乳杆菌能够提高营养物质的利用率[18],进而降低了臭味物质的排放。
肠道菌群是肠道生态的重要组成部分,肠道微生物及其代谢产物能够改善家禽营养物质的消化、吸收、代谢以及整体健康和生长性能[29]。菌群多样性直接影响菌群稳定性和抵抗致病菌的能力[30],Chao1指数和ACE指数反映菌群丰富度,其值越大,表明菌群丰富度和多样性越大。本研究结果表明,饲粮添加包被植物乳杆菌显著提高肉鸡盲肠菌群Chao1指数和ACE指数,表明植物乳杆菌显著提高了菌群丰富度,而菌群多样性增加可以降低粪臭素的排放[31],这进一步验证了本试验的结果。此外,饲粮植物乳杆菌能够增加肉鸡肠道菌群的丰度,可能通过改善营养物质的消化吸收,进而增强肠道消化、吸收和代谢功能[18],最终提高肉鸡生长性能。
本研究结果表明,饲粮添加包被植物乳杆菌和包被屎肠球菌及其组合未显著影响肉鸡盲肠菌群门水平上的微生物组成,其优势菌群均为厚壁菌门,其次是拟杆菌门。厚壁菌门内的细菌参与各种营养物质的消化和改善宿主的健康[30]。饲粮添加微囊化屎肠球菌和植物乳杆菌B1均能减少肉鸡盲肠大肠杆菌的数量,增加盲肠乳酸菌的数量[4, 8]。Wang等[12]研究指出,饲粮添加屎肠球菌抑制了潜在致病菌粪杆菌属的增殖,上调了瘤胃球菌科的相对丰度。瘤胃球菌科能够增加丁酸盐产量,而丁酸是肠上皮细胞重要的能量底物[32]。乳杆菌属通过降低pH或改变受体来产生多种短链脂肪酸和细菌素发挥抑菌或杀菌作用[33]。本研究结果表明,在属水平,与对照组相比,ELP组肉鸡盲肠粪杆菌属相对丰度显著降低,f_瘤胃球菌科相对丰度显著提高,乳酸菌属相对丰度无显著差异,但提高了20.11倍。结果提示,饲粮添加包被植物乳杆菌降低了肉鸡盲肠有害菌丰度,提高了有益菌丰度,而病原菌的减少可能有助于维持肠道的正常功能,进而提高生长性能[30]。
4 结论① 饲粮添加包被植物乳杆菌能够显著提高肉鸡21日龄末重、1~21日龄ADG和42日龄肠道菌群丰富度,降低盲肠粪杆菌属相对丰度以及粪便中粪臭素和吲哚含量。
② 饲粮添加包被植物乳杆菌和包被屎肠球菌及其组合均能显著提高肉鸡免疫和抗氧化功能,且联合添加效果更佳。
[1] |
REVELL B J. One man's meat…2050?Ruminations on future meat demand in the context of global warming[J]. Journal of Agricultural Economics, 2015, 66(3): 573-614. DOI:10.1111/1477-9552.12121 |
[2] |
WANG Y W, DONG Z L, SONG D, et al. Effects of microencapsulated probiotics and prebiotics on growth performance, antioxidative abilities, immune functions, and caecal microflora in broiler chickens[J]. Food and Agricultural Immunology, 2018, 29(1): 859-869. DOI:10.1080/09540105.2018.1463972 |
[3] |
AYALA D I, COOK P W, FRANCO J G, et al. A systematic approach to identify and characterize the effectiveness and safety of novel probiotic strains to control foodborne pathogens[J]. Frontiers in Microbiology, 2019, 10: 1108. DOI:10.3389/fmicb.2019.01108 |
[4] |
DONG Z L, WANG Y W, SONG D, et al. Effects of microencapsulated probiotics and plant extract on antioxidant ability, immune status and caecal microflora in Escherichia coli K88-challenged broiler chickens[J]. Food and Agricultural Immunology, 2019, 30(1): 1123-1134. DOI:10.1080/09540105.2019.1664419 |
[5] |
HUANG L Q, LUO L P, ZHANG Y R, et al. Effects of the dietary probiotic, Enterococcus faecium NCIMB11181, on the intestinal barrier and system immune status in Escherichia coli O78-challenged broiler chickens[J]. Probiotics and Antimicrobial Proteins, 2019, 11(3): 946-956. DOI:10.1007/s12602-018-9434-7 |
[6] |
YANG X, LIANG S S, GUO F S, et al. Gut microbiota mediates the protective role of Lactobacillus plantarum in ameliorating deoxynivalenol-induced apoptosis and intestinal inflammation of broiler chickens[J]. Poultry Science, 2020, 99(5): 2395-2406. DOI:10.1016/j.psj.2019.10.034 |
[7] |
WU Y P, WANG B K, ZENG Z H, et al. Effects of probiotics Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers[J]. Poultry Science, 2019, 98(10): 5028-5039. DOI:10.3382/ps/pez226 |
[8] |
WANG S, PENG Q, JIA H M, et al. Prevention of Escherichia coli infection in broiler chickens with Lactobacillus plantarum B1[J]. Poultry Science, 2017, 96(8): 2576-2586. DOI:10.3382/ps/pex061 |
[9] |
DING S J, WANG Y W, YAN W X, et al. Effects of Lactobacillus plantarum 15-1 and fructooligosaccharides on the response of broilers to pathogenic Escherichia coli O78 challenge[J]. PLoS One, 2019, 14(6): e0212079. DOI:10.1371/journal.pone.0212079 |
[10] |
MI J D, CHEN X, LIAO X D. Screening of single or combined administration of 9 probiotics to reduce ammonia emissions from laying hens[J]. Poultry Science, 2019, 98(9): 3977-3988. DOI:10.3382/ps/pez138 |
[11] |
WU Y Y, ZHEN W R, GENG Y Q, et al. Effects of dietary Enterococcus faecium NCIMB 11181 supplementation on growth performance and cellular and humoral immune responses in broiler chickens[J]. Poultry Science, 2019, 98(1): 150-163. DOI:10.3382/ps/pey368 |
[12] |
WANG W W, CAI H Y, ZHANG A R, et al. Enterococcus faecium modulates the gut microbiota of broilers and enhances phosphorus absorption and utilization[J]. Animals, 2020, 10(7): 1232. DOI:10.3390/ani10071232 |
[13] |
ROSS R P, DESMOND C, FITZGERALD G F, et al. Overcoming the technological hurdles in the development of probiotic foods[J]. Journal of Applied Microbiology, 2005, 98(6): 1410-1417. DOI:10.1111/j.1365-2672.2005.02654.x |
[14] |
CHÁVARRI M, MARAÑÓN I, VILLARÁN M C. Encapsulation technology to protect probiotic bacteria[M]//RIGOBELO E. Probiotics. London: IntechOpen, 2012.
|
[15] |
KNARREBORG A, BECK J, JENSEN M T, et al. Effect of non-starch polysaccharides on production and absorption of indolic compounds in entire male pigs[J]. Animal Science, 2002, 74(3): 445-453. DOI:10.1017/S1357729800052590 |
[16] |
ZHANG G J, LI B, GUO F, et al. Taxonomic relatedness and environmental pressure synergistically drive the primary succession of biofilm microbial communities in reclaimed wastewater distribution systems[J]. Environment International, 2019, 124: 25-37. DOI:10.1016/j.envint.2018.12.040 |
[17] |
TRABELSI I, KTARI N, BEN SLIMA S, et al. Effects of supplementation with L. plantarum TN8 encapsulated in alginate-chitosan in broiler chickens[J]. International Journal of Biological Macromolecules, 2016, 89: 677-681. DOI:10.1016/j.ijbiomac.2016.05.044 |
[18] |
WU S R, LIU Y L, DUAN Y L, et al. Intestinal toxicity of deoxynivalenol is limited by supplementation with Lactobacillus plantarum JM113 and consequentially altered gut microbiota in broiler chickens[J]. Journal of Animal Science and Biotechnology, 2018, 9: 74. DOI:10.1186/s40104-018-0286-5 |
[19] |
PENG Q, ZENG X F, ZHU J L, et al. Effects of dietary Lactobacillus plantarum B1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens[J]. Poultry Science, 2016, 95(4): 893-900. DOI:10.3382/ps/pev435 |
[20] |
MOHAMMED A A, JIANG S, JACOBS J A, et al. Effect of a synbiotic supplement on cecal microbial ecology, antioxidant status, and immune response of broiler chickens reared under heat stress[J]. Poultry Science, 2019, 98(10): 4408-4415. DOI:10.3382/ps/pez246 |
[21] |
HUMAM A M, LOH T C, FOO H L, et al. Effects of feeding different postbiotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress[J]. Animals, 2019, 9(9): 644. DOI:10.3390/ani9090644 |
[22] |
马渭青, 王思博, 杨季, 等. 饲粮中添加超氧化物歧化酶模拟物对肉鸡生长性能、血清免疫指标及肠道抗氧化指标和消化酶活性的影响[J]. 动物营养学报, 2020, 32(1): 432-439. MA W Q, WANG S B, YANG J, et al. Effects of dietary superoxide dismutase mimics on growth performance, serum immune indexes and intestinal antioxidant indexes and digestive enzyme activities of broilers[J]. Chinese Journal of Animal Nutrition, 2020, 32(1): 432-439 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.01.050 |
[23] |
CAO L, WU X H, BAI Y L, et al. Anti-inflammatory and antioxidant activities of probiotic powder containing Lactobacillus plantarum 1.2567 in necrotic enteritis model of broiler chickens[J]. Livestock Science, 2019, 223: 157-163. DOI:10.1016/j.livsci.2019.03.009 |
[24] |
SCHEER S, RUNTING J, BRAMHALL M, et al. The methyltransferase DOT1L controls activation and lineage integrity in CD4+ T cells during infection and inflammation[J]. Cell Reports, 2020, 33(11): 108505. DOI:10.1016/j.celrep.2020.108505 |
[25] |
MOLLAZADEH H, CICERO A F G, BLESSO C N, et al. Immune modulation by curcumin: the role of interleukin-10[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(1): 89-101. DOI:10.1080/10408398.2017.1358139 |
[26] |
ZHAO H P, ZHANG F K, CHAI J, et al. Effect of lactic acid bacteria on Listeria monocytogenes infection and innate immunity in rabbits[J]. Czech Journal of Animal Science, 2020, 65(1): 23-30. DOI:10.17221/247/2019-CJAS |
[27] |
HU Y N, WANG Y W, LI A K, et al. Effects of fermented rapeseed meal on antioxidant functions, serum biochemical parameters and intestinal morphology in broilers[J]. Food and Agricultural Immunology, 2016, 27(2): 182-193. DOI:10.1080/09540105.2015.1079592 |
[28] |
CAPCAROVA M, WEISS J, HRNCAR C, et al. Effect of Lactobacillus fermentum and Enterococcus faecium strains on internal milieu, antioxidant status and body weight of broiler chickens[J]. Journal of Animal Physiology and Animal Nutrition, 2010, 94(5): e215-e224. DOI:10.1111/j.1439-0396.2010.01010.x |
[29] |
YADAV S, JHA R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry[J]. Journal of Animal Science and Biotechnology, 2019, 10(1): 2. DOI:10.1186/s40104-018-0310-9 |
[30] |
GUO J R, DONG X F, LIU S, et al. High-throughput sequencing reveals the effect of Bacillus subtilis CGMCC 1.921 on the cecal microbiota and gene expression in ileum mucosa of laying hens[J]. Poultry Science, 2018, 97(7): 2543-2556. DOI:10.3382/ps/pey112 |
[31] |
张沛. 肉仔鸡粪臭素产生的基本规律及与肠道微生物组成的变化关系研究[D]. 硕士学位论文. 沈阳: 沈阳农业大学, 2016. ZHANG P. Research on the basic laws of skatole production and its variation with intestinal microbial components in broilers[D]. Master's Thesis. Shenyang: Shenyang Agricultural University, 2016. (in Chinese) |
[32] |
CHEN D F, JIN D C, HUANG S M, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota[J]. Cancer Letters, 2020, 469: 456-467. DOI:10.1016/j.canlet.2019.11.019 |
[33] |
RINTTILÄ T, APAJALAHTI J. Intestinal microbiota and metabolites-implications for broiler chicken health and performance[J]. Journal of Applied Poultry Research, 2013, 22(3): 647-658. DOI:10.3382/japr.2013-00742 |