动物营养学报    2022, Vol. 34 Issue (2): 908-923    PDF    
加工工艺和湿态发酵豆粕添加水平对肉鸡颗粒饲料质量、生长性能和抗氧化能力的影响
鲁春灵1 , 秦玉昌2 , 李俊1 , 谷旭1 , 张羽3 , 董颖超1 , 牛力斌1 , 商方方1 , 杨洁1 , 李军国1     
1. 中国农业科学院饲料研究所, 北京 100081;
2. 中国农业科学院北京畜牧兽医研究所, 北京 100193;
3. 中国农业科学技术出版社, 北京 100081
摘要: 本试验旨在研究加工工艺和湿态发酵豆粕添加水平及其交互作用对肉鸡颗粒饲料质量、生长性能、抗氧化能力以及肠道组织形态的影响。采用2×3双因素试验设计,加工工艺为普通调质制粒(NCP)工艺和高温调质低温制粒(HCLP)工艺;湿态发酵豆粕的添加水平为0、5%和10%。试验选取1日龄爱拔益加(AA)肉仔鸡480只,按照体重相近原则随机分为6个组,每组8个重复,每个重复10只鸡(公母各占1/2)。试验期42 d,分为前期(1~21日龄)和后期(22~42日龄)2个阶段。结果表明:1)与NCP工艺相比,HCLP工艺显著提高肉鸡前期料和后期料的淀粉糊化度、颗粒耐久性(PDI)和颗粒硬度(P < 0.05);随着饲粮湿态发酵豆粕添加水平的提高,肉鸡后期料PDI显著提高(P < 0.05);加工工艺和湿态发酵豆粕添加水平对肉鸡前期料颗粒硬度以及后期料淀粉糊化度和PDI有显著交互作用(P < 0.05)。2)与NCP工艺相比,HCLP工艺显著提高肉鸡1~21日龄平均日增重(P < 0.05);肉鸡1~21日龄、22~42日龄和1~42日龄料重比随着饲粮湿态发酵豆粕添加水平的提高而显著降低(P < 0.05);加工工艺和湿态发酵豆粕添加水平对肉鸡1~21日龄平均日采食量有显著交互作用(P < 0.05)。3)与NCP工艺相比,HCLP工艺显著降低肉鸡胸肌红度值(P < 0.05);加工工艺和湿态发酵豆粕添加水平对腿肌亮度值有显著交互作用(P < 0.05)。4)随着饲粮湿态发酵豆粕添加水平的提高,肉鸡血清超氧化物歧化酶、谷胱甘肽过氧化物酶和过氧化氢酶活性显著提高(P < 0.05),而血清丙二醛含量显著降低(P < 0.05),表明湿态发酵豆粕能提高肉鸡抗氧化能力,且加工工艺和湿态发酵豆粕添加水平对肉鸡抗氧化能力有显著交互作用(P < 0.05)。5)与NCP工艺相比,HCLP工艺显著提高肉鸡空肠和回肠绒毛高度和绒毛高度/隐窝深度(V/C)值(P < 0.05),显著降低十二指肠隐窝深度(P < 0.05),显著提高十二指肠V/C值(P < 0.05)。随着饲粮湿态发酵豆粕添加水平的提高,肉鸡十二指肠、空肠和回肠绒毛高度和V/C值显著提高(P < 0.05),隐窝深度显著降低(P < 0.05)。加工工艺和湿态发酵豆粕添加水平对十二指肠和空肠隐窝深度和V/C值以及空肠和回肠绒毛高度有显著交互作用(P < 0.05)。综上所述,在HCLP工艺下,饲粮添加5%~10%的湿态发酵豆粕可以提高肉鸡颗粒质量、生长性能和抗氧化能力,改善肠道组织形态。
关键词: 加工工艺    饲料颗粒质量    湿态发酵豆粕    肉鸡    生长性能    抗氧化能力    
Effects of Processing Technology and Wet Fermented Soybean Meal Supplemental Levels on Pellet Feed Quality, Growth Performance and Antioxidant Capability of Broilers
LU Chunling1 , QIN Yuchang2 , LI Jun1 , GU Xu1 , ZHANG Yu3 , DONG Yingchao1 , NIU Libin1 , SHANG Fangfang1 , YANG Jie1 , LI Junguo1     
1. Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
2. Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
3. China Agricultural Science and Technology Press, Beijing 100081, China
Abstract: This experiment was conducted to study the effects of processing technology and wet fermented soybean meal supplemental levels, and their interaction on pellet feed quality, growth performance, antioxidant capacity and intestinal morphology of broilers. A 2×3 two-factor experimental design was adopted. Two processing technology methods were normal conditioning and pelleting (NCP) and high-temperature conditioning and low-temperature pelleting (HCLP). The supplemental levels of wet fermented soybean meal were 0, 5% and 10%. A total of 480 Arbor Acres (AA) broilers of one-day-old were randomly divided into 6 groups with 8 replicates per group and 10 broilers per replicate (half male and half female) according to the principle of similar body weight. The experiment lasted for 42 days and was divided into two stages as early stage (1 to 21 days of age) and late stage (22 to 42 days of age). The results showed as follows: 1) compared with NCP technology, HCLP technology significantly increased the starch gelatinization degree, pellet durability index (PDI) and pellet hardness of the early and late feed for broilers (P < 0.05). The PDI of the late feed for broilers was significantly increased with the increase of wet fermented soybean meal supplemental level (P < 0.05). The interaction between processing technology and wet fermented soybean meal supplemental level had a significant effect on the pellet hardness of the early feed and starch gelatinization degree and PDI of the late feed for broilers (P < 0.05). 2) Compared with NCP technology, HCLP technology significantly increased the average daily gain of broilers from 1 to 21 days of age (P < 0.05). The feed to gain ratio (F/G) of broilers from 1 to 21, 22 to 42 and 1 to 42 days of age was significantly decreased with the increase of wet fermented soybean meal supplemental level (P < 0.05). The interaction between processing technology and wet fermented soybean meal supplemental level had a significant effect on the average daily feed gain of broilers from 1 to 21 days of age (P < 0.05). 3) Compared with NCP technology, HCLP technology significantly reduced the redness in breast muscle of broilers (P < 0.05). The interaction between processing technology and wet fermented soybean meal supplemental level had a significant effect on the lightness in leg muscle of broilers (P < 0.05). 4) The serum activities of superoxide dismutase, glutathione peroxidase and catalase of broilers were significantly increased (P < 0.05), while the serum malondialdehyde content was significantly decreased with the increase of wet fermented soybean meal level (P < 0.05), which indicated that wet fermented soybean meal could improve the antioxidant capability of broilers. The interaction between processing technology and wet fermented soybean meal supplemental level had a significant effect on the antioxidant capability of broilers (P < 0.05). 5) Compared with NCP technology, HCLP technology significantly increased the villus height and the ratio of villus height to crypt depth (V/C) in jejunum and ileum of broilers (P < 0.05), and significantly decreased the crypt depth and increased the V/C in duodenum (P < 0.05). The villus height and V/C in duodenum, jejunum and ileum of broilers were significantly increased (P < 0.05), while the crypt depth was significantly decreased with the increase of wet fermented soybean meal level (P < 0.05). The crypt depth and V/C in duodenum and jejunum, as well as the villus height in jejunum and ileum, were significantly influenced by the interaction between processing technology and wet fermented soybean meal supplemental level (P < 0.05). In conclusion, dietary 5% to 10% wet fermented soybean meal with HCLP technology can improve the pellet feed quality, growth performance, antioxidant capacity and intestinal morphology of broilers.
Key words: processing technology    pellet feed quality    wet fermented soybean meal    broilers    growth performance    antioxidant capability    

随着减抗、无抗时代的来临,更多的抗生素替代品被大量应用在动物饲粮中。豆粕是动物饲粮中主要的植物蛋白质来源,但因其含有大量的胰蛋白酶、植酸和寡糖等抗营养因子会降低大豆蛋白的消化率和利用率。此外,大豆中最主要的2种抗原——大豆球蛋白和β-伴大豆球蛋白,还会诱导动物的过敏性免疫反应。研究表明,发酵可以降解豆粕中的各种抗营养因子,提高小肽数量和氨基酸的含量,进而提高豆粕营养价值[1]。在饲粮中添加益生菌可以改善肉鸡的生长性能和预防疾病发生[2]。目前,饲粮采用普通畜禽饲料加工工艺加工时,由于抗生素替代品的热敏特性导致其损失率较高,因此,传统的普通调质制粒(normal conditioning and pelleting,NCP)工艺无法解决畜禽饲料糊化度与热敏性饲料原料保留率这一矛盾。在这样的背景下,高温调质低温制粒(high-temperature conditioning and low-temperature pelleting,HCLP)畜禽饲料加工工艺被提出。HCLP工艺首先将大料混合料制成熟化粉状饲料,以提高淀粉糊化度,然后再进行低温制粒,从而降低热敏性饲料原料损失。目前,HCLP类工艺研究主要集中于大宗原料的熟化工艺调节方面,较少考虑到低温制粒环节对饲料加工质量的影响[3]。同时,发酵饲料对肉鸡生长性能的研究已经有诸多报道,然而,同时研究加工工艺和湿态发酵豆粕对肉鸡生长性能等影响尚未有报道。鉴于此,本文通过研究加工工艺和湿态发酵豆粕添加水平对肉鸡颗粒饲料质量和生长性能等指标的影响,旨在为饲料生产企业和肉鸡养殖企业提供参考。

1 材料与方法 1.1 试验设计

试验采用2×3双因素试验设计,加工工艺为NCP和HCLP,湿态发酵豆粕添加水平为0、5%和10%。肉鸡基础饲粮(不添加湿态发酵豆粕)参照NRC(1994)[4]配制;试验饲粮为在基础饲粮中分别添加5%和10%湿态发酵豆粕(由某公司提供,活菌数4.18×106 CFU/g)的饲粮,其中湿态发酵豆粕和玉米粉按3 ∶ 7预混合粉碎,再与其他原料混合后调质制粒。饲粮组成及营养水平见表 1

表 1 饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of diets (air-dry basis)  

试验选取1日龄爱拔益加(AA)肉仔鸡480只,按照体重相近原则随机分为6个组,每组8个重复,每个重复10只鸡(公母各占1/2)。试验期42 d,分为前期育雏期(1~21日龄)和后期育肥期(22~42日龄)2个阶段。前期饲喂破碎料,后期饲喂颗粒料。试验期间,肉鸡自由采食,充足饮水,按正常免疫程序进行免疫接种。

1.2 饲料加工

前期料粉碎筛片孔径为2.0 mm,后期料粉碎筛片孔径为2.5 mm,制粒机环模模孔直径为3 mm、长径比10 ∶ 1。NCP工艺为将所有原料混合后调质制粒,调质温度为80 ℃;HCLP工艺为将不包含预混料、抗生素和湿态发酵豆粕的大料混合,先经温度为85 ℃以上的高温调质熟化处理,冷却后与预混料、抗生素和湿态发酵豆粕等配料混合,再低温制粒成型,低温制粒调质温度为60 ℃。

1.3 指标检测 1.3.1 颗粒饲料质量

淀粉糊化度测定参考熊易强[5]的方法。将500 g已过筛除去细粉的样品放进颗粒粉化率测定仪(ST-136)中翻转10 min,取出样品,过筛,称量筛上颗粒饲料重量,按下列公式计算颗粒耐久性(PDI):

饲料颗粒硬度采用质构分析仪(TA.XT2,Surrey,UK)测定,试验数据为随机采集20个样品的平均值。

1.3.2 生长性能

分别在21和42日龄,每个重复随机选取1只鸡进行个体空腹称重,统计试验期内的采食量,计算各组前期(1~21日龄)、后期(22~42日龄)和全期(1~42日龄)的平均日增重(ADG)、平均日采食量(ADFI)、平均体重(ABW)和料重比(F/G)。

1.3.3 屠宰性能

42日龄时,每重复随机挑选1只肉鸡,颈静脉放血处死,测定屠宰率、全净膛率、腿肌率和胸肌率。计算公式为:

1.3.4 免疫器官指数

42日龄时,每个重复随机选取1只肉鸡,颈静脉放血处死,分离脾脏和法氏囊并称重,计算免疫器官指数。

1.3.5 肉色

42日龄时,每个重复随机选取1只肉鸡,屠宰解剖后,统一取左侧整块胸肌和腿肌,取样现场立即测定肉色。采用CR-10全自动色差计测定胸肌和腿肌新鲜切面的亮度(L*)值、红度(a*)值和黄度(b*)值。

1.3.6 血清生化指标

42日龄时,每个重复随机选取1只肉鸡,颈静脉放血处死,取血,4 000 r/min离心5 min分离血清,-20 ℃保存待测。采用全自动生化分析仪(科华ZY KHB-1280)测定血清总蛋白(TP)、白蛋白(ALB)、球蛋白(GLB)、免疫球蛋白G(IgG)、免疫球蛋白A(IgA)、免疫球蛋白M(IgM)、尿素氮(UN)和丙二醛(MDA)含量以及谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性。

1.3.7 肠道组织形态

42日龄时,每个重复随机选取1只肉鸡,剪取空肠、回肠和十二指肠各中段约1 cm长组织,用生理盐水洗净内容物后,置于4%多聚甲醛中固定。组织经脱水、包埋后,制作厚度为4 μm组织切片,并进行苏木精-伊红(HE)染色。每例样本选取3个完整的典型绒毛和隐窝,使用医学图像分析软件ImagePro-Plus 7.0测量绒毛高度和隐窝深度,并计算绒毛高度/隐窝深度(V/C)值。

1.4 数据统计分析

试验数据采用SPSS 20.0统计软件进行双因素方差分析(two-way ANOVA),采用Duncan氏法进行多重比较,检验差异的显著性,显著性水平为P < 0.05,结果用“平均值±标准差”表示。

2 结果与分析 2.1 加工工艺和湿态发酵豆粕添加水平对肉鸡颗粒饲料质量的影响

表 2可知,与NCP工艺相比,HCLP工艺显著提高肉鸡前期料和后期料的淀粉糊化度、PDI和颗粒硬度(P < 0.05);饲粮添加湿态发酵豆粕对前期料和后期料淀粉糊化度和颗粒硬度无显著影响(P > 0.05),但显著提高后期料的PDI(P < 0.05)。加工工艺和湿态发酵豆粕添加水平的交互作用显著影响前期料颗粒硬度和后期料淀粉糊化度和PDI(P < 0.05),而对前期料淀粉糊化度、PDI和后期料颗粒硬度无显著影响(P > 0.05)。

表 2 加工工艺和湿态发酵豆粕添加水平对肉鸡颗粒饲料质量的影响 Table 2 Effects of processing technology and wet fermented soybean meal supplemental levels on pellet feed quality of broilers
2.2 加工工艺和湿态发酵豆粕添加水平对肉鸡生长性能的影响

表 3可知,与NCP工艺相比,HCLP工艺显著提高肉鸡1~21日龄ADG(P < 0.05);加工工艺对肉鸡1~21日龄ADFI、F/G和ABW无显著影响(P > 0.05),对肉鸡22~42日龄和1~42日龄ADG、ADFI、F/G以及ABW均无显著影响(P > 0.05)。饲粮添加湿态发酵豆粕对肉鸡1~21日龄、22~42日龄和1~42日龄ADG、ADFI和ABW无显著影响(P > 0.05);随着湿态发酵豆粕添加水平的提高,肉鸡1~21日龄、22~42日龄和1~42日龄F/G显著降低(P < 0.05)。加工工艺和湿态发酵豆粕添加水平的交互作用显著影响肉鸡1~21日龄ADFI(P < 0.05),对1~21日龄ADG、F/G和ABW以及22~42日龄和1~42日龄ADG、ADFI、F/G和ABW均无显著影响(P > 0.05)。

表 3 加工工艺和湿态发酵豆粕添加水平对肉鸡生长性能的影响 Table 3 Effects of processing technology and wet fermented soybean meal supplemental levels on growth performance of broilers
2.3 加工工艺和湿态发酵豆粕添加水平对肉鸡屠宰性能的影响

表 4可知,加工工艺和湿态发酵豆粕添加水平以及两者间的交互作用对肉鸡屠宰率、全净膛率、胸肌率和腿肌率均无显著影响(P > 0.05)。

表 4 加工工艺和湿态发酵豆粕添加水平对肉鸡屠宰性能的影响 Table 4 Effects of processing technology and wet fermented soybean meal supplemental levels on slaughter performance of broilers  
2.4 加工工艺和湿态发酵豆粕添加水平对肉鸡肉色的影响

表 5可知,加工工艺和湿态发酵豆粕添加水平对肉鸡胸肌L*和b*值以及腿肌L*、a*和b*值均无显著影响(P > 0.05);加工工艺和湿态发酵豆粕添加水平的交互作用显著影响腿肌L*值(P > 0.05),而对胸肌L*、a*和b*值以及腿肌a*和b*值无显著影响(P > 0.05)。与NCP工艺相比,HCLP工艺显著降低胸肌a*值(P < 0.05);饲粮添加湿态发酵豆粕对胸肌a*值无显著影响(P > 0.05)。

表 5 加工工艺和湿态发酵豆粕添加水平对肉鸡肉色的影响 Table 5 Effects of processing technology and wet fermented soybean meal supplemental levels on meat color of broilers
2.5 加工工艺和湿态发酵豆粕添加水平对肉鸡免疫功能的影响

表 6可知,加工工艺和湿态发酵豆粕添加水平及两者间交互作用对肉鸡脾脏和法氏囊指数以及血清免疫指标——血清TP、ALB、GLB、UN、IgM、IgG和IgA含量等均无显著影响(P > 0.05)。

表 6 加工工艺和湿态发酵豆粕添加水平对肉鸡免疫功能的影响 Table 6 Effects of processing technology and wet fermented soybean meal supplemental levels on immune function of broilers
2.6 加工工艺和湿态发酵豆粕添加水平对血清抗氧化指标的影响

表 7可知,加工工艺对肉鸡血清SOD、GSH-Px和CAT活性以及MDA含量无显著影响(P > 0.05);随着饲粮湿态发酵豆粕添加水平的提高,肉鸡血清SOD、GSH-Px和CAT活性显著提高(P < 0.05),而血清MDA含量显著降低(P < 0.05)。加工工艺和湿态发酵豆粕添加水平的交互作用显著影响血清SOD、GSH-Px和CAT活性和MDA含量(P < 0.05)。

表 7 加工工艺和湿态发酵豆粕添加水平对血清抗氧化指标的影响 Table 7 Effects of processing technology and wet fermented soybean meal supplemental levels on serum antioxidant indices of broilers
2.7 加工工艺和湿态发酵豆粕添加水平对肉鸡肠道组织形态的影响

加工工艺和湿态发酵豆粕添加水平对肉鸡十二指肠、空肠和回肠组织形态的影响见图 1表 8。与NCP工艺相比,HCLP工艺显著降低肉鸡十二指肠隐窝深度(P < 0.05),显著提高V/C值(P < 0.05),而对绒毛高度无显著影响(P > 0.05);随着饲粮湿态发酵豆粕添加水平的提高,十二指肠绒毛高度和V/C值显著提高(P < 0.05),而隐窝深度却显著降低(P < 0.05);加工工艺和湿态发酵豆粕添加水平的交互作用显著影响十二指肠隐窝深度和V/C值(P < 0.05),而对绒毛高度无显著影响(P > 0.05)。

A、B和C表示普通调质制粒工艺,且分别表示0、5%和10%湿态发酵豆粕添加水平;D、E和F表示高温调质低温制粒工艺,且分别表示0、5%和10%湿态发酵豆粕添加水平。 A, B and C represented the NCP technology, and were the supplemental levels of 0, 5% and 10% wet fermented soybean meal, respectively. D, E and F represented the HCLP technology, and were the supplemental levels of 0, 5% and 10% wet fermented soybean meal, respectively. 图 1 肉鸡十二指肠、空肠和回肠的组织切片 Fig. 1 Tissue sections of duodenum, jejunum, and ileum of broilers (40×)
表 8 加工工艺和湿态发酵豆粕添加水平对肉鸡肠道组织形态的影响 Table 8 Effects of processing technology and wet fermented soybean meal supplemental levels on intestinal morphology of broilers

与NCP工艺相比,HCLP工艺显著提高肉鸡空肠绒毛高度和V/C值(P < 0.05),而对隐窝深度无显著影响(P > 0.05);随着饲粮湿态发酵豆粕添加水平的提高,空肠绒毛高度和V/C值显著提高(P < 0.05),而隐窝深度显著降低(P < 0.05);加工工艺和湿态发酵豆粕添加水平的交互作用显著影响空肠绒毛高度、隐窝深度和V/C值(P < 0.05)。

与NCP工艺相比,HCLP工艺显著提高肉鸡回肠绒毛高度和V/C值(P < 0.05),而对隐窝深度无显著影响(P > 0.05);随着饲粮湿态发酵豆粕添加水平的提高,回肠绒毛高度和V/C值显著提高(P < 0.05),隐窝深度显著降低(P < 0.05)。加工工艺和湿态发酵豆粕添加水平的交互作用显著影响回肠绒毛高度(P < 0.05),而对隐窝深度和V/C值无显著影响(P > 0.05)。

3 讨论 3.1 加工工艺和湿态发酵豆粕添加水平对肉鸡颗粒饲料质量的影响

淀粉糊化度、PDI、颗粒硬度和成型率是衡量颗粒饲料质量几个重要的指标。淀粉糊化时淀粉颗粒分子被破坏,包括不可逆吸水膨胀、双折射消失及结晶区消失[3],实质上是淀粉颗粒结构由有序状态转变为无序状态的熵增过程[3, 6]。高温是营养素适当凝聚所必需的,也是获得高颗粒质量的必要条件,调质温度升高(60 ℃→75 ℃→90 ℃),调质器中的蒸汽也会随之增加,而蒸汽在制粒过程中起到润滑剂的作用,以减少摩擦,进而提高PDI并降低制粒机的能量消耗[7]。冯幼等[6]研究表明,高温有利于淀粉糊化整个过程的转化,提高颗粒硬度和PDI进而改善颗粒品质。

调质主要是增加饲料的黏结度,有利于饲料成形和软化饲料,减少摩擦生热和对模辊的磨损,提高制粒机的生产效率,降低成品的粉化率,提高产品质量。因此,本试验中,与NCP工艺相比,采用HCLP工艺显著提高了肉鸡前期料和后期料的淀粉糊化度、PDI和颗粒硬度。张现玲等[8]研究表明,调质后淀粉糊化度、PDI和颗粒硬度都随着调质温度的升高(65~90 ℃)而升高。颗粒饲料的硬度和PDI的提高是因为调质温度可以提高颗粒饲料的淀粉糊化度,促使饲料中蛋白质变性,淀粉糊化后黏性增强,从而提高颗粒饲料结构的紧密性[9]。本试验中,饲粮添加湿态发酵豆粕显著提高了肉鸡颗粒饲料的PDI。Muramatsu[10]研究表明,水分对颗粒质量影响占影响因素的16%,增加水分含量能提高PDI。湿态发酵豆粕中水分含量在44.01%,添加到肉鸡配合饲料中可以显著提高配合饲料的水分含量,进而在制粒过程中提高肉鸡饲料PDI。加工工艺和湿态发酵豆粕添加水平的交互作用显著影响肉鸡料前期料颗粒硬度和后期料淀粉糊化度和PDI,这可能是因为2因素交互作用在肉鸡前期料加工过程中,加工工艺占主导作用,而后期料加工过程中湿态发酵豆粕在交互作用中的影响效果开始慢慢显现出来,从而显著提高肉鸡后期料淀粉糊化度和PDI。

3.2 加工工艺和湿态发酵豆粕添加水平对肉鸡生长性能的影响

肉鸡颗粒饲料的调质温度一般在70~85 ℃,颗粒质量的微小改善,可以显著提高肉鸡的生长性能。Cutlip等[7]研究发现,随着饲粮湿态发酵豆粕添加水平的提高,肉鸡饲料PDI提高4.0%,F/G降低20%,而ADG无显著差异。在本试验中也得到类似的结果,随着饲粮湿态发酵豆粕添加水平的提高,肉鸡饲料PDI显著升高,而F/G显著降低。这可能是因为饲料PDI的提高,肉鸡在采食饲料过程中浪费减少,且便于肉鸡采食。本研究还表明,与NCP工艺相比,HCLP工艺显著提高了肉鸡1~21日龄的ADG,这可能是因为调质温度升高,可以提高淀粉糊化度,降解热敏性抗营养因子,提高营养物质的消化率,进而提高肉鸡饲粮营养价值,从而有利于动物生长[11]。研究表明,与60 ℃相比,调质温度升高到90 ℃,导致颗粒硬度和PDI升高,进而提高肉鸡体重和ADFI[12-13]。淀粉是家禽饲粮的主要能量来源,研究表明,饲料淀粉糊化度在19%~51%提高会改善肉鸡1~21日龄ADFI[14-15]。Chachaj等[16]研究发现,肉鸡饲粮中添加6%的发酵豆粕显著提高了肉鸡生长性能。Li等[17]研究发现,用发酵豆粕替代25%的豆粕可以提高肉鸡的生长性能和血清免疫力。本研究中,加工工艺和湿态发酵豆粕添加水平的交互作用显著影响肉鸡1~21日龄ADFI,添加10%湿态发酵豆粕优于添加5%。这一方面归因于高温调质改善了肉鸡颗粒饲料质量;另一方面是因为湿态发酵豆粕发酵过程中颗粒饲料中的非淀粉多糖得以降解,使得营养物质更容易吸收和被利用,且其中矿物质和维生素的含量提高,从而改善鸡肉健康并确保更好的生长性能[18]

3.3 加工工艺和湿态发酵豆粕添加水平对肉鸡抗氧化能力的影响

氧化应激可导致生物损伤、引发多种生理疾病,从而降低肉鸡生长性能[19]。SOD、GSH-Px和CAT作为抗氧化系统的关键酶,在清除自由基、减少氧化损伤和维持细胞结构方面起着至关重要的作用;MDA是脂质过氧化物降解的主要产物,它反映了脂质过氧化物产生的速率和强度以及脂质过氧化物的程度[20-21]

Guo等[22]研究发现,发酵豆粕可以提高肉鸡的抗氧化能力。发酵豆粕通过增强抗氧化能力和抑制炎症反应改善豆粕的抗营养因子引起的负面作用[23]。在饲粮中加入7%的发酵豆粕可以提高火鸡的抗氧化能力[24]。Wu等[25]研究发现,饲粮中添加发酵豆粕对提高肉鸡胸腺和法氏囊相对重量,降低血清谷氨酸-草酰乙酸转氨酶(GOT)活性有积极影响。本研究中,加工工艺对肉鸡血清抗氧化指标无显著影响,但随着饲粮湿态发酵豆粕添加水平的提高,血清SOD、GSH-Px和CAT活性显著提高,血清MDA含量显著降低。这可能是因为湿态发酵豆粕的添加有助于提高总抗氧化电位和血浆总谷胱甘肽含量[26],同时通过降低异嗜性淋巴细胞与淋巴细胞比率,减轻氧化应激,提高肉鸡抗氧化能力[16]

3.4 加工工艺和湿态发酵豆粕添加水平对肉鸡肠道组织形态的影响

小肠绒毛是动物消化吸收的主要场所。因此,保持小肠健康对营养、免疫系统和肠道微生物群的功能至关重要。肠绒毛萎缩意味着绒毛吸收细胞减少,分泌细胞增加,导致吸收能力下降[27-29]。Saleh等[30]研究发现,饲喂发酵湿饲料的肉鸡十二指肠和回肠绒毛高度升高,而隐窝深度没有改变。Feng等[31]研究表明,发酵豆粕饲粮提高了肉鸡小肠绒毛高度和V/C值。Chiang等[32]研究发现,饲粮添加10%发酵菜籽粕显著改善了肉鸡回肠和空肠绒毛高度和V/C值。本研究中,在HCLP工艺下,饲粮添加湿态发酵豆粕改善了肉鸡小肠肠道组织形态,可能因为低温制粒很好地保存了湿态发酵豆粕中的有益肠道微生物,进而提高了肠道中的短链不饱和脂肪酸的含量,从而影响肠道上皮细胞增殖,并提高绒毛高度和促进黏蛋白的产生,改善肠道发育[33];此外,HCLP工艺同时还提高了颗粒饲料质量,使肉鸡对颗粒料消化利用率提高,促使小肠绒毛高度和V/C值提高。

4 结论

① 与NCP工艺相比,HCLP工艺可以显著提高肉鸡前期料和后期料的淀粉糊化度、PDI和颗粒硬度。

② HCLP和饲粮添加湿态发酵豆粕可以显著提高肉鸡生长性能,湿态发酵豆粕还可以提高肉鸡抗氧化能力。

③ HCLP和饲粮添加湿态发酵豆粕均可以显著提高肉鸡十二指肠V/C值以及空肠和回肠绒毛高度和V/C值,显著降低十二指肠隐窝深度。

④ 综上所述,在HCLP工艺下,饲粮添加5%~10%的湿态发酵豆粕可以提高肉鸡颗粒质量、生长性能和抗氧化能力,改善肠道组织形态。

参考文献
[1]
SOOMRO R N, YAO J H, GOLA M A, et al. Beneficial aspects of feeding soybean meal (SBM) fermented with fungal and bacterial actions in broiler chickens[J]. American Journal of Biology and Life Sciences, 2017, 5(4): 21-29.
[2]
CHENG Y H, HSIAO F S H, WEN C M, et al. Mixed fermentation of soybean meal by protease and probiotics and its effects on the growth performance and immune response in broilers[J]. Journal of Applied Animal Research, 2019, 47(1): 339-348. DOI:10.1080/09712119.2019.1637344
[3]
段海涛. 高效调质低温制粒畜禽饲料加工工艺及其对生长育肥猪生长性能的影响研究[D]. 博士学位论文. 北京: 中国农业科学院, 2018.
DUAN H T. Study on the high-efficiency condition and low-temperature pelleted processing technology and effects on growth performance of growing and fattening pigs[D]. Ph. D. Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[4]
National Research Council. Nutrient requirements of poultry[M]. 9th ed. Washington, D.C. : The National Academies Press, 1994.
[5]
熊易强. 饲料淀粉糊化度(熟化度) 的测定[J]. 饲料工业, 2000, 21(3): 30-31.
XIONG Y Q. Determination of starch gelatinization (cooking degree) in feed[J]. Feed Industry, 2000, 21(3): 30-31 (in Chinese).
[6]
冯幼, 许合金, 刘定, 等. 不同因素对水产饲料淀粉糊化度的影响[J]. 饲料博览, 2014(10): 51-54.
FENG Y, XU H J, LIU D, et al. Effect of different factors on the starch gelatinization degree of aquatic feeds[J]. Feed Review, 2014(10): 51-54 (in Chinese). DOI:10.3969/j.issn.1001-0084.2014.10.014
[7]
CUTLIP S E, HOTT J M, BUCHANAN N P, et al. The effect of steam-conditioning practices on pellet quality and growing broiler nutritional value[J]. Journal of Applied Poultry Research, 2008, 17(2): 249-261. DOI:10.3382/japr.2007-00081
[8]
张现玲, 秦玉昌, 李俊, 等. 调质温度对肉鸡颗粒饲料质量影响的实验研究[J]. 饲料工业, 2013, 34(21): 24-28.
ZHANG X L, QIN Y C, LI J, et al. Experiment research on the effect of conditioning temperature on broiler pellet feed quality[J]. Feed Industry, 2013, 34(21): 24-28 (in Chinese).
[9]
胡凯飞, 王金荣, 于翠平, 等. 饲料的粗脂肪水平和调质温度对颗粒饲料硬度的影响[J]. 中国畜牧杂志, 2018, 54(5): 108-112.
HU K F, WANG J R, YU C P, et al. Effect of ether extract and conditioning temperature on the hardness of pellet feed[J]. Chinese Journal of Animal Science, 2018, 54(5): 108-112 (in Chinese).
[10]
MURAMATSU K. Predictive modeling application in pelleting process of the feed for broilers[D]. Ph. D. Thesis. Curitiba: Universidade Federal do Paraná, 2013.
[11]
张现玲. 调质温度、粉碎粒度对肉鸡颗粒饲料质量及利用率的影响研究[D]. 硕士学位论文. 北京: 中国农业科学院, 2013.
ZHANG X L. Effect of conditioning temperatures and particle sizes on quality and utilization rate of broiler pellet feed[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[12]
ABDOLLAHI M R, RAVINDRAN V, WESTER T J, et al. Influence of conditioning temperature on performance, apparent metabolisable energy, ileal digestibility of starch and nitrogen and the quality of pellets, in broiler starters fed maize- and sorghum-based diets[J]. Animal Feed Science and Technology, 2010, 162(3/4): 106-115.
[13]
ABDOLLAHI M R, RAVINDRAN V, WESTER T J, et al. Influence of feed form and conditioning temperature on performance, apparent metabolisable energy and ileal digestibility of starch and nitrogen in broiler starters fed wheat-based diet[J]. Animal Feed Science and Technology, 2011, 168(1/2): 88-99.
[14]
ZAEFARIAN F, ABDOLLAHI M R, RAVINDRAN V. Starch digestion in broiler chickens fed cereal diets[J]. Animal Feed Science and Technology, 2015, 209: 16-29. DOI:10.1016/j.anifeedsci.2015.07.020
[15]
王昊, 于纪宾, 于治芹, 等. 饲料淀粉糊化度对肉鸡生长性能及蛋白质体外消化率的影响[J]. 饲料工业, 2017, 38(6): 35-40.
WANG H, YU J B, YU Z Q, et al. Effect of feed starch gelatinization on growth performance and in-vitro protein digestibility of broilers[J]. Feed Industry, 2017, 38(6): 35-40 (in Chinese).
[16]
CHACHAJ R, SEMBRATOWICZ I, KRAUZE M, et al. The effect of partial replacement of soybean meal with fermented soybean meal on chicken performance and immune status[J]. Journal of Animal and Feed Sciences, 2019, 28(3): 263-271.
[17]
LI Y, GUO B Z, WU Z K, et al. Effects of fermented soybean meal supplementation on the growth performance and cecal microbiota community of broiler chickens[J]. Animals, 2020, 10(6): 1098. DOI:10.3390/ani10061098
[18]
SOUMEH E A, MOHEBODINI H, TOGHYANI M, et al. Synergistic effects of fermented soybean meal and mannan-oligosaccharide on growth performance, digestive functions, and hepatic gene expression in broiler chickens[J]. Poultry Science, 2019, 98(12): 6797-6807. DOI:10.3382/ps/pez409
[19]
FELLENBERG M A, SPEISKY H. Antioxidants: their effects on broiler oxidative stress and its meat oxidative stability[J]. World's Poultry Science Journal, 2006, 62(1): 53-70. DOI:10.1079/WPS200584
[20]
ALIAN H A, SAMY H M, IBRAHIM M T, et al. Nanoselenium effect on growth performance, carcass traits, antioxidant activity, and immune status of broilers[J]. Environmental Science and Pollution Research, 2020, 27(31): 38607-38616. DOI:10.1007/s11356-020-09952-1
[21]
DANESHYAR M. Effect of dietary turmeric on antioxidant properties of thigh meat in broiler chickens after slaughter[J]. Animal Science Journal, 2012, 83(8): 599-604. DOI:10.1111/j.1740-0929.2011.00997.x
[22]
GUO S S, ZHANG Y K, CHENG Q, et al. Partial substitution of fermented soybean meal for soybean meal influences the carcass traits and meat quality of broiler chickens[J]. Animals, 2020, 10(2): 225. DOI:10.3390/ani10020225
[23]
LI C Q, ZHANG B L, LIU C D, et al. Effects of dietary raw or Enterococcus faecium fermented soybean meal on growth, antioxidant status, intestinal microbiota, morphology, and inflammatory responses in turbot (Scophthalmus maximus L.)[J]. Fish & Shellfish Immunology, 2020, 100: 261-271.
[24]
CHACHAJ R, SEMBRATOWICZ I, KRAUZE M, et al. The effect of fermented soybean meal on performance, biochemical and immunological blood parameters in turkeys[J]. Annals of Animal Science, 2019, 19(4): 1035-1049. DOI:10.2478/aoas-2019-0040
[25]
WU P, GOLLY M K, GUO Y T, et al. Effect of partial replacement of soybean meal with high-temperature fermented soybean meal in antibiotic-growth-promoter-free diets on growth performance, organ weights, serum indexes, intestinal flora and histomorphology of broiler chickens[J]. Animal Feed Science and Technology, 2020, 269: 114616. DOI:10.1016/j.anifeedsci.2020.114616
[26]
SEMBRATOWICZ I, CHACHAJ R, KRAUZE M, et al. The effect of diet with fermented soybean meal on blood metabolites and redox status of chickens[J]. Annals of Animal Science, 2020, 20(2): 599-611. DOI:10.2478/aoas-2020-0009
[27]
LIU J B, YAN H L, ZHANG Y, et al. Effects of stale maize on growth performance, immunity, intestinal morphology and antioxidant capacity in broilers[J]. Asian-Australasian Journal of Animal Sciences, 2020, 33(4): 605-614. DOI:10.5713/ajas.19.0224
[28]
EKIM B, CALIK A, CEYLAN A, et al. Effects of Paenibacillus xylanexedens on growth performance, intestinal histomorphology, intestinal microflora, and immune response in broiler chickens challenged with Escherichia coli K88[J]. Poultry Science, 2020, 99(1): 214-223. DOI:10.3382/ps/pez460
[29]
ZHAO Y, ZENG D, WANG H S, et al. Dietary probiotic Bacillus licheniformis H2 enhanced growth performance, morphology of small intestine and liver, and antioxidant capacity of broiler chickens against Clostridium perfringens-induced subclinical necrotic enteritis[J]. Probiotics and Antimicrobial Proteins, 2020, 12(3): 883-895. DOI:10.1007/s12602-019-09597-8
[30]
SALEH A A, SHUKRY M, FARRAG F, et al. Effect of feeding wet feed or wet feed fermented by Bacillus licheniformis on growth performance, histopathology and growth and lipid metabolism marker genes in broiler chickens[J]. Animals, 2021, 11(1): 83. DOI:10.3390/ani11010083
[31]
FENG J, LIU X, XU Z R, et al. Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers[J]. Poultry Science, 2007, 86(6): 1149-1154. DOI:10.1093/ps/86.6.1149
[32]
CHIANG G, LU W Q, PIAO X S, et al. Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens[J]. Asian-Australasian Journal of Animal Sciences, 2010, 23(2): 263-271.
[33]
JAZI V, MOHEBODINI H, ASHAYERIZADEH A, et al. Fermented soybean meal ameliorates Salmonella typhimurium infection in young broiler chickens[J]. Poultry Science, 2019, 98(11): 5648-5660.