2. 中国农业大学动物科技学院, 农业农村部饲料工业中心, 北京 100193
2. Ministry of Agriculture Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
早期隔离断奶是猪生产过程的重要环节之一,这一技术涉及到饲料、管理和环境多个因素的改变[1]。一般认为,仔猪在出生后21~28 d断奶能够有效缩短繁殖的世代间隔,并降低疾病的母子垂直传播[2]。然而在这一阶段,仔猪极易发生断奶应激综合征,具体表现为食欲减退、生长迟缓、饲料转化效率降低,严重情况下发生腹泻甚至死亡[3]。尽管抗生素在畜牧生产中具有显著的促进作用,但其造成细菌耐药性增加的问题日益引起人们的关注[4]。多重耐药病原菌的发生与传播日益成为全球性的挑战,很大程度上归因于抗生素在动物生产和人类活动中的广泛使用[5]。为缓解使用抗生素引发的一系列风险,探寻适宜抗生素替代物的研究成为当前的热点[6]。
酵母为单细胞生物体的一种微生物真菌,直径为5~10 μm,是兼性厌氧菌,属无性繁殖[7]。研究发现,活性酵母是一种益生菌,在动物消化道中具有很强的抗失活能力,某些酵母能在人消化道定植以平衡胃肠道微生态[8],因此,活性酵母能在包括仔猪在内的动物体内产生多种有益的生理反应[9]。除了酵母活菌本身,酵母细胞内容物包括富含多种氨基酸、多肽、肌醇以及核苷酸等物质,具有营养和功能性双重作用[10];而酵母细胞壁含有甘露聚糖等抗原活性成分,能抑制病原菌对肠道细胞的黏附能力,依据上述特性开发的酵母水解物和酵母提取物等产品,具有提高机体免疫力、调节肠道菌群等功能[11]。不仅如此,酵母菌在生长繁殖过程中,还会产生多种营养性代谢物,包括多肽、有机酸、寡糖、酶类及其他“未知营养因子”,这些成分有平衡肠道微生物菌群、促进肠道有益菌生长、促进肠道微生物发酵的作用,进而改善动物的健康和提高生长性能[12]。
Meta分析是通过定量的方法对多个同类研究结果进行合并汇总,最大程度利用前人发表的研究成果,通过适当的数学模型从统计学层面综合地解决争议和模糊性的结果,该分析可以实现增加样本含量、提高检验效能的目的,使结果更具可信度[13-14]。本研究检索并汇总了目前已发表文献资料中关于不同酵母类产品的研究报道,探究多种形式的酵母类产品对断奶仔猪生长性能的影响,以期为实验室酵母类产品的开发与优化提供参照、优化发酵工艺、最大限度开发酵母菌的应用价值。
1 材料与方法 1.1 文献检索本研究检索的数据库包括PubMed、Google Scholar、Web of Science、中国知网、万方数据库和维普数据库等,中文检索关键词包括:“活性干酵母”、“酵母培养物”、“酵母水解物”、“酵母蛋白”、“酵母抽提物”、“断奶仔猪”和“生长性能”等,英文检索关键词包括:“live yeast”、“yeast culture”、“yeast hydrolysate”、“yeast protein”、“yeast extract”、“weaned piglets”和“growth performance”。
1.2 纳入标准1) 纳入的研究为完全随机对照试验,且每个组设有2个或2个以上重复;2)研究对象为断奶仔猪;3)生长性能指标包括平均日采食量、平均日增重和料重比;4)研究中给出指标的数值或平均值(mean),标准差(SD)或标准误(SE),且包含每个试验组和对照组的样本量。
1.3 排除标准1) 排除母猪、公猪和生长育肥猪等,排除发酵副产物;2)排除试验方法不明确、缺少对照组、指标不全面以及与同类文章差异过大的文章;3)排除综述文献、摘要文献,无对照组文献和重复报道的文献;4)排除数据不全或者无法利用的文献;5)排除酵母产品与其他产品复合使用或复合酵母产品的研究。
1.4 数据资料提取和预处理每个研究提取的数据资料包括该研究的第一作者、研究发表年份、试验动物数量、动物品种、试验天数、酵母类产品的添加量、酵母类产品的添加途径、试验组和对照组的初重和末重,提取的结局指标包括每个研究的平均日采食量、平均日增重、料重比的均值和标准差。首先,在同一篇文章中,将对照组和酵母类产品处理的结局指标进行预处理,若酵母类产品试验组含有多个添加梯度,则进行合并处理:设梯度1的样本量为N1,均数为M1,标准差为SD1;梯度2的样本量为N2,均数为M2,标准差为SD2,则合并处理后的样本量N=N1+N2,均数M=(N1M1+N2M2)/(N1+N2),标准差
纳入Meta分析的研究结局指标预处理结束后,将酵母类产品按加工工艺分为活性干酵母、酵母培养物、酵母抽提物和酵母水解物4个亚组。
1.5 统计分析运用Review Manager 5.3进行统计分析并回执相关图表。用χ2检验,I2检验评价各研究之间的异质性,如果各个研究的效应指标是同质性的(P>0.05,I2 < 50%),则选用固定模型的统计方法,反之选用随机模型分析。计数资料计算合并的效应指标值(MD)及其95%置信区间(95%CI),并对纳入的研究结果进行敏感性分析。
2 结果与分析 2.1 纳入文献特征数据库里共搜索到1 425篇文章,根据文献筛选标准进行筛选,通过去除重复文章、按照纳入排除方法筛选标题、摘要和全文逐步筛除,最后有20篇研究纳入本次Meta分析中(图 1)。分析所有纳入文献的试验设计,选择文献中具体的研究组别,建立总数据库(表 1)。最终筛出的文献质量较好,包含66条断奶仔猪的生长性能数据。
![]() |
图 1 Meta分析文献检索和筛选流程图 Fig. 1 Publications searching and selecting process of Meta analysis |
![]() |
表 1 数据库中分析用到的变量和数据表 Table 1 Variables and data table in the database used in this analysis |
不同酵母类产品对断奶仔猪平均日采食量的影响Meta分析森林图见图 2。图中X轴表示MD值,水平线的长度代表每个研究的95%置信区间,中间方形面积大小代表该研究在所有研究中所占比重,具体数值列于左侧。由图 2可以看出,不同酵母类产品对断奶仔猪平均日采食量的影响(P < 0.05,I2>50%),表明纳入不同亚组研究有异质性,经过敏感性分析逐一剔除文献后,发现其异质性没有得到明显改善,故采用随机效应模型进行分析。汇总结果显示,试验组与对照组相比,95%置信区间落在无效线的右侧,表明试验组的效应量大于对照组,即饲粮中添加酵母类产品显著提高了断奶仔猪平均日采食量[MD=30.95, 95%置信区间(8.22, 53.68), P=0.008]。结局指标亚组分析结果显示,饲粮中添加活性干酵母对断奶仔猪平均日采食量无显著影响[MD=36.91, 95%置信区间(-32.99, 106.81), P=0.300];饲粮中添加酵母培养物有提高断奶仔猪平均日采食量的趋势[MD=31.86, 95%置信区间(-3.35, 67.06), P=0.080];饲粮中添加酵母抽提物显著提高了断奶仔猪平均日采食量[MD=27.41, 95%置信区间(16.27, 38.55), P < 0.001];饲粮中添加酵母水解物对断奶仔猪平均日采食量无显著影响[MD=24.56, 95%置信区间(-39.03, 88.15), P=0.450]。
![]() |
MD:均数差mean difference;CI:置信区间confidence interval。下同图the same as below。 图 2 酵母类产品对断奶仔猪平均日采食量影响的Meta分析森林图 Fig. 2 Meta-analysis of forest maps of effects of yeast products on average daily feed intake of weaned piglets |
不同类别的酵母产品对断奶仔猪平均日增重的影响Meta分析森林图见图 3。由图 3可以看出,不同酵母类产品对断奶仔猪平均日采食量的影响(P < 0.05,I2>50%),表明纳入不同亚组研究有异质性,经过敏感性分析逐一剔除文献后,发现其异质性没有得到明显改善,故采用随机效应模型进行分析。汇总结果显示,试验组与对照组相比,95%置信区间落在无效线的右侧,表明试验组的效应量大于对照组,即添加酵母类产品显著提高了断奶仔猪平均日增重[MD=32.32, 95%置信区间(18.59, 46.05), P < 0.001]。结局指标亚组分析结果显示,饲粮中添加活性干酵母有促进断奶仔猪平均日增重的趋势[MD=33.65, 95%置信区间(-0.90, 68.20), P=0.060];饲粮中添加酵母培养物显著提高了断奶仔猪平均日增重[MD=33.97, 95%置信区间(20.36, 47.59), P < 0.001];饲粮中添加酵母抽提物显著提高了断奶仔猪平均日增重[MD=24.35, 95%置信区间(15.22, 33.49), P < 0.001];饲粮中添加酵母水解物对断奶仔猪平均日增重无显著影响[MD=35.32, 95%置信区间(-10.58, 81.22), P=0.130]。
![]() |
图 3 酵母类产品对断奶仔猪平均日增重影响的Meta分析森林图 Fig. 3 Meta-analysis of forest maps of effects of yeast products on average daily gain of weaned piglets |
不同酵母类产品对断奶仔猪料重比的影响Meta分析森林图见图 4。由图 4可以看出,不同酵母类产品对断奶仔猪料重比的影响(P < 0.05,I2>50%),表明纳入不同亚组研究有异质性,经过敏感性分析逐一剔除文献后,发现其异质性没有得到明显改善,故采用随机效应模型进行分析。汇总结果显示,试验组与对照组相比,95%置信区间落在无效线的左侧,表明试验组的效应量小于对照组,即饲粮中添加酵母类产品显著降低了断奶仔猪料重比[MD=-0.06, 95%置信区间(-0.08, -0.04), P < 0.001]。结局指标亚组分析结果显示,饲粮中添加活性干酵母对断奶仔猪料重比无显著影响[MD=-0.08, 95%置信区间(-0.26, 0.11), P=0.420];饲粮中添加酵母培养物显著降低了断奶仔猪料重比[MD=-0.04, 95%置信区间(-0.06, -0.02), P < 0.001];饲粮中添加酵母抽提物对断奶仔猪料重比无显著影响[MD=-0.02, 95%置信区间(-0.07, 0.02), P=0.290];饲粮中添加酵母水解物显著降低了断奶仔猪料重比[MD=-0.08, 95%置信区间(-0.11, -0.04), P < 0.001]。
![]() |
图 4 酵母类产品对断奶仔猪料重比影响的Meta分析森林图 Fig. 4 Meta-analysis of forest maps of effects of yeast products on feed to gain ratio of weaned piglets |
本研究中,结局指标平均日采食量(图 5-A)、平均日增重(图 5-B)、料重比(图 5-C)所纳入的文献大部分落在漏斗图内部,有小部分文献落在漏斗图外部,对称性略有不足,说明有一定的发表偏倚,但偏倚程度不大。其中结局指标料重比所纳入文献分布对称性相对较好,说明其发表偏倚程度较小。
![]() |
A:平均日采食量average daily feed intake;B:平均日增重average daily gain;C:料重比feed to gain ratio。 图 5 酵母类产品试验组与对照组结局指标比较的漏斗图 Fig. 5 Funned plot for comparison of outcome indicator of yeast products in test group and control group |
Meta分析结果表明,平均日采食量、平均日增重和料重比均具有高异质性,这可能是由于不同试验研究中猪的品种、试验环境、操作人员、猪场设施和动物福利等状况有差异,且无法通过进行亚组分析降低异质性[13]。此外,由于本次纳入的研究在Meta分析中的权重相近,由此也不适合通过剪补法去掉某一研究或几个研究来降低异质性。在某种程度上,高异质性是畜禽动物试验无法避免的特点,但这并不会过多影响合并结果的可信度。本研究只选择近10年内的研究,亦是为避免因逐年品种选育造成猪的生长性能表现过大差异,从而提高了文章的指导价值。
尽管酵母培养物与活性干酵母这2种产品的作用方式不同,并且对动物都有益处,但本研究Meta分析结果显示酵母培养物在应用效果方面要更有利用价值[35]。这主要依赖于酵母培养物的核心成分——经过充分发酵产生的一定浓度的代谢产物。酵母培养物所含的代谢产物,不依赖于酵母细胞存活状态和数量多寡,其代谢产物也相对稳定,因此可以长期保存,加工处理后其作用效果也不受影响[36]。而对于活性干酵母产品,目前仍无法对进入动物消化道内酵母细胞的存活状况以及它们的代谢活动做出准确的评估。同时活性酵母产品稳定性相对较差,需要特别的加工工艺以及保存条件,否则其产品功效将会大打折扣[37]。由此可见,酵母培养物和活性干酵母是2类完全不同的产品,它们之间的差异不仅体现在内容物或成分方面,也体现在对动物的作用方式上。
酵母抽提物是指利用酵母自身酶系或外源水解酶将细胞内蛋白质降解成氨基酸或多肽,核酸降解成核苷酸并把它们和其他有效成分,如B族维生素、矿物质、微量元素等一起抽提出来制得的浓缩物[38]。酵母抽提物采取适于酵母原料形态的制造工艺,包括自溶法、酶分解法和酸分解法等3种。自溶法是通过酵母体内复杂的酶系包括葡萄糖酶类、蛋白酶类和核苷酸酶类系将酵母体内大分子降解为还原糖、氨基酸和核苷酸等小分子物质。而酶分解法所用的原料为不具有酶活性的酵母,需要很多外源酶类共同作用将酵母“消化”。同样,酵母水解物指以酿酒酵母为菌种,经液体发酵得到大量菌泥,其中的菌体经内源酶和外源酶的共同催化水解作用后,采用浓缩或干燥制得的产品,因此可以认为酵母水解物是酵母抽提物的一种形式。蔡大亮等[39]指出,不同酶解工艺将导致酵母水解物中酸溶蛋白、小肽及游离氨基酸等关键指标的差异。同样的,菌种来源也会影响产品优劣,相比啤酒酵母泥,纯培养酵母菌体自溶酶系完善,配合外源酶能将酵母细胞充分酶解,获得更多的小肽类物质。这些可能是导致酵母抽提物与酵母水解物Meta分析结果有差异的原因,提示我们应该重视对加工工艺参数的优化和质控。
4 结论本研究结果显示,饲粮中添加酵母类产品提高断奶仔猪平均日采食量37.80 g/d,提高平均日增重37.64 g/d,降低料重比0.06;相比活性干酵母和酵母水解物,酵母培养物和酵母抽提物在改善断奶仔猪生长性能方面更具有优势。该Meta分析对国内外2010—2020年相关文章的结果进行合并,从统计层面为后期酵母产品的研发与改进给予一定的数据参考。
[1] |
GIANG H H, VIET T Q, OGLE B, et al. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with potentially probiotic complexes of lactic acid bacteria[J]. Livestock Science, 2010, 129(1/2/3): 95-103. |
[2] |
YIN J, WU M M, XIAO H, et al. Development of an antioxidant system after early weaning in piglets[J]. Journal of Animal Science, 2014, 92(2): 612-619. DOI:10.2527/jas.2013-6986 |
[3] |
RHOUMA M, FAIRBROTHER J M, BEAUDRY F, et al. Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies[J]. Acta Veterinaria Scandinavica, 2017, 59(1): 31. DOI:10.1186/s13028-017-0299-7 |
[4] |
JOHNSON T A, LOOFT T, SEVERIN A J, et al. The in-feed antibiotic carbadox induces phage gene transcription in the swine gut microbiome[J]. mBio, 2017, 8(4): e00709-17. DOI:10.1128/mBio.00709-17 |
[5] |
ZHAO Y, SU J Q, AN X L, et al. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut[J]. Science of the Total Environment, 2018, 621: 1224-1232. DOI:10.1016/j.scitotenv.2017.10.106 |
[6] |
SURESH G, DAS R K, KAUR BRAR S, et al. Alternatives to antibiotics in poultry feed: molecular perspectives[J]. Critical Reviews in Microbiology, 2018, 44(3): 318-335. DOI:10.1080/1040841X.2017.1373062 |
[7] |
王庆国, 刘天明. 酵母菌分类学方法研究进展[J]. 微生物学杂志, 2007, 27(3): 96-101. WANG Q G, LIU T M. Advanced in yeast taxonomical methods[J]. Journal of Microbiology, 2007, 27(3): 96-101 (in Chinese). DOI:10.3969/j.issn.1005-7021.2007.03.023 |
[8] |
BLEICHNER G, BLÉHAUT H, MENTEC H, et al. Saccharomyces boulardii prevents diarrhea in critically ill tube-fed patients.A multicenter, randomized, double-blind placebo-controlled trial[J]. Intensive Care Medicine, 1997, 23(5): 517-523. DOI:10.1007/s001340050367 |
[9] |
VAN HEUGTEN E, FUNDERBURKE D W, DORTON K L. Growth performance, nutrient digestibility, and fecal microflora in weanling pigs fed live yeast[J]. Journal of Animal Science, 2003, 81(4): 1004-1012. DOI:10.2527/2003.8141004x |
[10] |
吴迪, 陈训银, 董爱华, 等. 酵母提取物替代血浆蛋白粉在断奶仔猪上的生产应用[J]. 饲料与畜牧·新饲料, 2012(1): 49-51. WU D, CHEN X Y, DONG A H, et al. Application of yeast extract instead of pray-dried plasma protein in weaning piglets[J]. Feed and Husbandry: New Feed, 2012(1): 49-51 (in Chinese). |
[11] |
TREVISI E, AMADORI M, COGROSSI S, et al. Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows[J]. Research in Veterinary Science, 2012, 93(2): 695-704. DOI:10.1016/j.rvsc.2011.11.008 |
[12] |
田文生. 酵母培养物对夏季生长育肥猪生产性能、抗氧化及内分泌相关指标和胴体品质的影响[D]. 硕士学位论文. 南京: 南京农业大学, 2011. TIAN W S. Effects of yeast culture supplementation on growth performance, anti-oxidant status, endocrine and carcass quality of growing-finishing pigs in summer[D]. Master's Thesis. Nanjing: Nanjing Agricultural University, 2011. (in Chinese) |
[13] |
徐博成, 路则庆, 邓近平, 等. 发酵饲料对断奶仔猪和生长育肥猪生长性能影响的Meta分析[J]. 饲料工业, 2018, 39(24): 40-48. XU B C, LU Z Q, DENG J P, et al. Effects of fermented feed on the growth performance of weaned and growing-fishing pigs: a Meta-analysis[J]. Feed Industry, 2018, 39(24): 40-48 (in Chinese). |
[14] |
赵江涛, 艾琴, 左建军, 等. 基于Meta分析的生产性能指标评定木聚糖酶添加效果的研究[J]. 饲料工业, 2017, 38(12): 43-49. ZHAO J T, AI Q, ZUO J J, et al. Meta-analysis of xylanase supplementation on production performance index[J]. Feed Industry, 2017, 38(12): 43-49 (in Chinese). |
[15] |
CHE L Q, XU Q, WU C, et al. Effects of dietary live yeast supplementation on growth performance, diarrhoea severity, intestinal permeability and immunological parameters of weaned piglets challenged with enterotoxigenic Escherichia coli K88[J]. The British Journal of Nutrition, 2017, 118(11): 949-958. DOI:10.1017/S0007114517003051 |
[16] |
JIANG Z Y, WEI S Y, WANG Z L, et al. Effects of different forms of yeast Saccharomyces cerevisiae on growth performance, intestinal development, and systemic immunity in early-weaned piglets[J]. Journal of Animal Science and Biotechnology, 2015, 6: 47. DOI:10.1186/s40104-015-0046-8 |
[17] |
LU H, WILCOCK P, ADEOLA O, et al. Effect of live yeast supplementation to gestating sows and nursery piglets on postweaning growth performance and nutrient digestibility[J]. Journal of Animal Science, 2019, 97(6): 2534-2540. DOI:10.1093/jas/skz150 |
[18] |
UPADRASTA A, O'SULLIVAN L, O'SULLIVAN O, et al. The effect of dietary supplementation with spent cider yeast on the swine distal gut microbiome[J]. PLoS One, 2013, 8(10): e75714. DOI:10.1371/journal.pone.0075714 |
[19] |
LI Y J, LI T S, KIM I. Effect of the Yea-Sacc yeast culture on growth performance, nutrient digestibility and fecal score in weanling pigs[J]. Korean Journal of Agricultural Science, 2019, 46(2): 229-237. |
[20] |
LIU X, LI T S, KIM I H. Effects of yeast culture (Saccharomyces cerevisiae) supplementation on growth performance, fecal score, and nutrient digestibility of weaning pigs[J]. Korean Journal of Agricultural Science, 2018, 45(4): 677-685. |
[21] |
PRICE K L, TOTTY H R, LEE H B, et al. Use of Saccharomyces cerevisiae fermentation product on growth performance and microbiota of weaned pigs during salmonella infection[J]. Journal of Animal Science, 2010, 88(12): 3896-3908. DOI:10.2527/jas.2009-2728 |
[22] |
PAN L, TIAN Q Y, WU Y, et al. Yeast extract could be used as a partial substitute for spray-dried porcine plasma in diets for weaned pigs[J]. Livestock Science, 2019, 224: 20-25. |
[23] |
PEREIRA C M C, DONZELE J L, DE OLIVEIRA SILVA F C, et al. Yeast extract with blood plasma in diets for piglets from 21 to 35 days of age[J]. Revista Brasileira de Zootecnia, 2012, 41(7): 1676-1682. |
[24] |
SHI H, KIM I H. Dietary yeast extract complex supplementation increases growth performance and nutrient digestibility of weaning pigs[J]. Livestock Science, 2019, 230: 103850. |
[25] |
HU J, PARK J W, KIM I H. Effect of dietary supplementation with brewer's yeast hydrolysate on growth performance, faecal microbial counts, diarrhoea score, blood profile, rectal temperature in weanling pigs challenged with lipopolysaccharide[J]. Journal of Animal Physiology and Animal Nutrition, 2020, 104(2): 629-636. |
[26] |
MARTINEZ PADILLA G E. The role of yeast hydrolysate in increasing growth performance and promoting intestinal health of weanling pigs[D]. Master's Thesis. Raleigh: North Carolina State University. 2018.
|
[27] |
罗世乾. 活性干酵母无抗生素饲粮对断奶仔猪生产性能/营养成分消化率/血清理化参数的影响[D]. 硕士学位论文. 南宁: 广西大学, 2015. LUO S Q. The effect of activity dry yeast diet without antibiotics on production performance, digestibility of nutrients and serum physicochemical parameters of weaned piglets[D]. Master's Thesis. Nanning: Guangxi University, 2015. (in Chinese) |
[28] |
吴徐俊. 酵母培养物对断奶仔猪生长性能、抗氧化和粪中重要微生物数量的影响[D]. 硕士学位论文. 广州: 华南农业大学, 2016. WU X J. The effects of yeast culture on the growth performance and several important microorganisms in feces of weaned pigs[D]. Master's Thesis. Guangzhou: South China Agricultural University, 2016. (in Chinese) |
[29] |
孙展英, 陈宝江, 胡祥均, 等. 酵母培养物对断奶仔猪生长性能及健康状况的影响[J]. 饲料与畜牧·规模养猪, 2013(4): 43-45. SUN Z Y, CHEN B J, HU X J, et al. Effects of yeast culture on growth performance and health status of weaned piglets[J]. Feed and Husbandry: Intensive Pig Industry, 2013(4): 43-45 (in Chinese). |
[30] |
张丽. 新型酵母培养物的制备及其对断奶仔猪生长性能、表观消化率和粪便微生物的影响[D]. 硕士学位论文. 北京: 中国农业科学院, 2016. ZHANG L. The preparation of a novel yeast culture and its effect on growth performance, apparent nutrient digestibility and fecal microbiota of weaned piglets[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese) |
[31] |
杨东吉, 张静静, 朱随亮, 等. 酿酒酵母培养物替代抗生素对断奶仔猪生长性能、养分消化率及盲肠微生物区系的影响[J]. 动物营养学报, 2020, 32(1): 138-147. YANG D J, ZHANG J J, ZHU S L, et al. Effects of Saccharomyces cerevisiae culture instead of antibiotics on growth performance, nutrient digestibility and cecal microflora of weaned piglets[J]. Chinese Journal of Animal Nutrition, 2020, 32(1): 138-147 (in Chinese). |
[32] |
郭小华, 刘明, 李文辉, 等. 酵母培养物对断奶仔猪生长性能、粪便菌群和血液指标的影响[J]. 中国畜牧杂志, 2017, 53(6): 106-111. GUO X H, LIU M, LI W H, et al. Effects of yeast culture on growth performance, fecal microbiota and blood profiles in weaned piglets[J]. Chinese Journal of Animal Science, 2017, 53(6): 106-111 (in Chinese). |
[33] |
伏润奇, 陈代文, 郑萍, 等. 酵母水解物对断奶仔猪生长性能、血清免疫和抗氧化能力及粪便菌群的影响[J]. 动物营养学报, 2019, 31(1): 351-359. FU R Q, CHEN D W, ZHENG P, et al. Effects of yeast hydrolyzate on growth performance, serum immunity and antioxidant capacity and fecal microflora of weaned piglets[J]. Chinese Journal of Animal Nutrition, 2019, 31(1): 351-359 (in Chinese). |
[34] |
陈中平, 李彪. 酵母水解物替代血浆蛋白粉对早期断奶仔猪生产性能的影响[J]. 国外畜牧学(猪与禽), 2014, 34(12): 77-78. CHEN Z P, LI B. Effects of yeast hydrolysate instead of pray-dried plasma protein on growth performance of weaning piglets[J]. Animal Science Abroad (Pigs and Poultry), 2014, 34(12): 77-78 (in Chinese). |
[35] |
田书会. 酵母培养物对夏季生长育肥猪肠道微生物发酵和区系及机体免疫功能的影响[D]. 硕士学位论文. 南京: 南京农业大学, 2011. TIAN S H. Effects of dietary yeast culture on intestinal microbial fermentation and microbiota and immune functions of growing-finishing pigs in summer[D]. Master's Thesis. Nanjing: Nanjing Agricultural University, 2011. (in Chinese) |
[36] |
彭一凡, 张丽荣. 活性干酵母产品与酵母培养物物的区别[J]. 饲料工业, 2008, 29(12): 32-35. PENG Y F, ZHANG L R, et al. The difference between active dry yeast production and yeast culture strain[J]. Feed Industry, 2008, 29(12): 32-35 (in Chinese). |
[37] |
KUNG L, Jr, KRECK E M, TUNG R S, et al. Effects of a live yeast culture and enzymes on in vitro ruminal fermentation and milk production of dairy cows[J]. Journal of Dairy Science, 1997, 80(9): 2045-2051. |
[38] |
晏志云. 酵母抽提物的研究[D]. 博士学位论文. 广州: 华南理工大学, 1999. YAN Z Y. Studies on yeast extract[D]. Ph. D. Thesis. Guangzhou: South China University of Technology, 1999. (in Chinese) |
[39] |
蔡大亮, 陈毛清, 曹诗国, 等. 不同酶解程度的酵母水解物对断奶仔猪诱食及生长性能的影响[J]. 中国饲料, 2019(17): 118-123. CAI D L, CHEN M Q, CAO S G, et al. Effects of yeast hydrolysates with different enzymatic hydrolysis levels on feeding and growth performance of weaned piglets[J]. China Feed, 2019(17): 118-123 (in Chinese). |