动物营养学报    2022, Vol. 34 Issue (5): 2831-2838    PDF    
动物肠道菌群的早期定植及其对机体健康的影响
刘壮1,2 , 胡艳1 , 潘士锋2 , 施寿荣1     
1. 中国农业科学院家禽研究所, 扬州 225125;
2. 扬州大学兽医学院, 扬州 225009
摘要: 动物肠道菌群的结构和功能已逐渐成为研究热点。动物肠道菌群的定植发生在动物出生过程和出生后早期, 日龄、出生方式、益生菌和抗生素的使用、饮食等因素都会对肠道菌群的早期定植产生一定影响。此外, 动物肠道菌群的早期定植可能影响机体健康与疾病的发生和发展, 甚至影响到成年后的健康状况。本文综述了影响动物肠道菌群早期定植的因素、肠道菌群对机体健康的影响, 为了解动物肠道菌群的定植过程、菌群与宿主的相互作用以及这一过程的长期影响提供参考。
关键词: 肠道菌群    早期定植    疾病与健康    
Early Colonization of Animal Intestinal Flora and Its Impact on Health
LIU Zhuang1,2 , HU Yan1 , PAN Shifeng2 , SHI Shourong1     
1. Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China;
2. College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
Abstract: The structure and function of animal intestinal flora has gradually become a research hotspot. The colonization of animal intestinal flora occurs during the birth process and early postnatal period of animals, and some factors such as day of age, birth method, use of probiotics and antibiotics and diet will all have a certain impact on the early colonization of intestinal flora. In addition, the early colonization of animal intestinal flora may affect the health of animals and the occurrence and development of diseases, and even affect their health in adulthood. Therefore, This article reviews the factors of early colonization of animal intestinal flora and the effects of intestinal flora on health, and to provide references for understand the process of colonization of animal intestinal flora, the interaction between the flora and the host, and the long-term effects of this process.
Key words: intestinal flora    early colonization    disease and health    

动物肠道菌群的早期定植到稳态形成是一个动态的过程,从出生开始,一直持续到出生后几周或2~3年。除了宿主遗传背景的固有影响,这个过程还受到环境因素影响。在出生过程中,哺乳动物肠道菌群所受到的影响因素包括出生前的宫内暴露、母体体重等[1],卵生动物肠道菌群则会受到蛋内沉积的营养物质[2]、垂直传播病原微生物和孵化环境(如温度、湿度、光照、粉尘)等因素的影响;当动物出生后,喂养方式以及抗生素、益生菌和益生元的使用等也是动物肠道菌群重要的影响因素[3-4]。正是因为这些因素的影响,导致动物早期肠道菌群存在广泛的个体差异性,而随着时间的推移,在相同环境下动物的肠道菌群会逐渐趋于相似[5]。通过对无菌小鼠研究的结果显示,肠道菌群和宿主并不是简单的共生,而是以一种互惠互利的状态存在。在出生后早期,肠道菌群和宿主之间的相互作用对宿主的胃肠道、免疫、代谢和神经系统的发育发挥着重要作用;并且,该阶段肠道菌群多样性减少和功能失调可能对儿童或幼龄动物的消化道和全身性疾病产生一定的影响,包括炎症性肠病(inflammatory bowel disease,IBD)、肠易激综合征(irritable bowel syndrome,IBS)、代谢异常以及应激反应等,而且这种影响可能一直持续到晚年[3, 6]。本文将总结影响动物肠道菌群早期定植的因素,并强调肠道菌群对宿主健康与疾病发展的影响。

1 影响动物肠道菌群定植的因素

动物肠道菌群的定植是一个循序渐进的复杂过程。初生动物肠道中初始菌群的多样性较低,主要是兼性厌氧菌,其中包括变形杆菌门(Proteobacteria)和放线菌门(Actinobacteria),随后变得更加多样化,厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)开始占主导地位[7-8]。婴儿出生的第1年内肠道菌群的组成具有较低的多样性、高度的不稳定性和高度的个体间差异性等特点[9],2~3岁时,肠道菌群变得稳定且多样化,并逐渐形成一个成熟的细菌群体[10]。禽类生命周期较短,肠道菌群定植更加快速。例如,肉鸡在孵化出壳后以垂直传播的链球菌属(Streptococcus)和埃希氏菌属(Escherichia)为主,10日龄前肠道菌群的丰富度和多样性快速增长,到14日龄趋于稳定[11]

1.1 出生前 1.1.1 产前暴露

长期以来,一直认为哺乳动物宫内环境是无菌的,新生个体在接触到母体粪便和阴道细菌后初步形成其肠道菌群[12],早期的动物试验也证明了这一观点[13]。但是,越来越多的证据表明,在分娩前发育中的胎儿肠道可能存在细菌定植。已有研究证实,即使在未发生胎膜破裂和剖腹产的情况下,也能从羊水[14]、胎膜[15]、脐带[13]和胎盘[16]中检测到细菌。Jiménez等[17]给怀孕的小鼠口服带有基因标记的粪肠球菌(Enterococcus faecium)菌株,对怀孕母鼠实施无菌剖腹产手术后,发现在羊水和幼鼠胎粪中存在这种细菌,然而在未接种菌株的对照组幼鼠中未检测到这种细菌[12]。以上试验结果表明,母体肠道的某些细菌可能会通过阴道上行或突破胎盘屏障从母体传染给胎儿。对于禽类而言,存在于蛋清和蛋白中通过母体垂直传播的病原体,如沙门氏菌(Salmonella)[18]、大肠杆菌(Escherichia coli)和弯曲杆菌(Campylobacter)[19]等,可能在胚胎吸收营养物质的过程中造成继发感染。而且在出雏前后,雏鸡肠道内存在的细菌主要来源于壳膜以及蛋壳外的黏附菌。

1.1.2 母体体重与应激反应

母体体重过高与怀孕期间受到应激反应同样会导致子代出生后肠道菌群结构紊乱。Collado等[1]研究表明,幼龄动物肠道菌群组成与母体在怀孕期、妊娠期的体重和体重增加有关;母体的体重和孕期体重指数较高与高丰度的拟杆菌(Bacteroides)、梭菌(Clostridium)和葡萄球菌(Staphylococcus)以及低丰度的双歧杆菌(Bifidobacterium)相关;并且在出生后6个月内,超重母体的婴儿粪便中拟杆菌和葡萄球菌的丰度也较高。此外,通过高脂饮食诱导雌性小鼠体重增加,改变了后代肠道菌群的组成,提高了雄性后代对高脂饮食的敏感性,而且这个研究还观察到后代体重增加与毛螺菌科(Lachnospiraceae)和梭菌科(Clostridiaceae)的丰度显著相关[20]。另一项在人的研究显示,母体在妊娠期间受到应激或体内皮质醇含量较高时,出生后婴儿的肠道菌群中病原菌的丰度较高,而乳杆菌(Lactobacillus)和双歧杆菌的丰度较低[4],有增加肠黏膜炎症反应的潜在风险。然而在禽类以及其他哺乳动物上,类似的对比研究尚未见报道。

1.1.3 产前母体抗生素和益生菌的使用

统计表明,20%~25%的妇女在怀孕期间会接受抗生素治疗,且抗生素在孕期所有处方药中约占80%[21],产出婴儿的肠道内放线菌门和拟杆菌门的丰度较低,而变形菌门和厚壁菌门的丰度较高[22]。Aloisio等[23]也发现母体接受氨苄青霉素(ampicillin)治疗的婴儿肠道中双歧杆菌的丰度显著降低。另一项报道表明,青霉素(penicillin)引起的肠道菌群紊乱是可逆的,但是围产期接触青霉素在小鼠体内可以产生长期的影响,显著加快雄性小鼠的生长速度,增加体脂百分比并诱导异位脂肪沉积[24]。在家养动物上,种用动物使用抗生素是否会对后代产生类似降低肠道有益菌的对比研究尚未见报道。

1.2 出生后 1.2.1 喂养方式

喂养方式是决定早期菌群定植的另一个主要因素,它可以影响肠道菌群的组成和胃肠功能。哺乳动物出生后,肠道菌群最先由来自母体和环境中的细菌定植,随后母乳通过营养物质、免疫球蛋白和抗菌化合物塑造肠道菌群的结构。最后,断奶和摄入固体食物诱导肠道菌群结构进一步成熟。通过比较哺乳期仔猪和断奶仔猪粪便菌群发现,哺乳期仔猪的粪便菌群多样性显著低于断奶仔猪,而且两者菌群结构也明显不同;哺乳期仔猪粪便中乳杆菌科(Lactobacillaceae)、梭菌科以及肠杆菌科(Enterobacteriaceae)的丰度较高,而断奶仔猪粪便中瘤胃球菌科(Ruminococcaceae)、颤螺菌科(Oscillospiraceae)以及普雷沃氏菌科(Prevotellaceae)的丰度较高[25]。雏鸡出壳后肠道菌群以垂直传播的细菌为主,随后被快速生长的毛螺菌科和瘤胃球菌科的菌群取代,14日龄时雏鸡肠道菌群结构就已经趋于稳定[11]。与哺乳动物不同,禽类孵化出壳后就开始饮水和摄入固体食物,这也可能导致禽类早期肠道菌群的定植速率更快。

1.2.2 抗生素的使用

在生命早期使用抗生素对肠道菌群的发育有着深远的影响。肉鸡前期饲粮中添加维吉尼亚霉素(virginiamycin)不仅会增加早期体重和采食量,导致肠道菌群整体多样性降低,显著增加前期肠道变形杆菌门的丰度并降低厚壁菌门的丰度[26],还可能导致耐药菌株产生;在婴儿出生早期使用庆大霉素(gentamicin)和氨苄青霉素也会改变肠道菌群的组成,如变形杆菌门的丰度增加和放线菌门的丰度降低[27],并产生具有抗药性的菌群[28]。Lynn等[29]使用小鼠模型研究表明,断奶期补充氨苄青霉素可以驱动21日龄小鼠肠道菌群失调,导致小鼠对疫苗的抗体反应显著受损。Fouhy等[27]研究显示,出生48 h内接受氨苄青霉素和庆大霉素治疗的婴儿在停止使用抗生素4周后,与未接受抗生素的婴儿相比,肠道变形杆菌(Proteus)的丰度较高,放线杆菌(Actinobacillus)和乳酸菌(lactic acid bacteria,LAB)的丰度较低;到了第8周,接受抗生素治疗的婴儿肠道放线杆菌和乳酸菌的丰度逐渐恢复到与对照组相近,然而变形杆菌的丰度仍然显著高于对照组。这也进一步说明早期使用抗生素对肠道菌群的影响很大程度上是暂时的,但是部分菌群可能几个月都无法恢复。

1.2.3 益生菌和益生元的使用

母乳中含有大量的乳寡糖和各种各样的细菌,包括双歧杆菌和乳杆菌,因为母乳喂养的婴儿很容易获得益生菌,而且益生元也已经被添加到婴儿配方奶中以达到乳寡糖的一些益生特性。Panigrahi等[30]研究了植物乳杆菌和低聚果糖对新生儿的治疗作用,结果发现二者联合治疗可以使婴儿肠道细菌迅速定植。其他动物试验结果也表明,益生菌可以有效增加肠道细菌的多样性和丰富度。如Zhang等[31]通过饲粮添加枯草芽孢杆菌调控肉鸡的生长性能,结果发现饲粮添加枯草芽孢杆菌可以显著增加肉鸡体重和欧洲效益指数,增加肠道布劳特氏菌(Blautia)、长栖粪杆菌(Faecalibacterium)等菌群的丰度并降低内脏臭气杆菌(Odoribacter)的丰度。然而,益生菌的肠道定植也只是短暂的,并且定植水平较低。补充聚葡萄糖和低聚半乳糖都会增加双歧杆菌在肠道的定植水平[32],并且益生元刺激双歧杆菌代谢活性的作用可能与母乳的代谢活性相似[33]。益生菌和益生元的种类及使用剂量、给药时间、动物群体的不同可能会导致不同的结果,因此益生菌和益生元的作用机制及其在生产实践中的应用仍需进一步的发掘。

2 肠道菌群对机体健康的影响

维持肠道健康是预防肠道以及其他系统疾病的重中之重,肠道菌群组成的改变决定了肠道疾病的发生,其多样性减少和生物失调也与机体的健康和疾病密切相关。

2.1 IBD

IBD是一种慢性胃肠道疾病,其特征是对肠道菌群的过度免疫反应,影响动物的生长发育,增加患结直肠癌的风险,严重时可危及生命[34]。IBD受遗传、肠道黏膜免疫系统、环境因素(如压力、抗生素使用、产前暴露感染和饮食)以及生物失调等多因素的影响[35]。例如, 摄入膳食单糖可以通过改变小鼠肠道菌群结构,增加患IBD的几率[36]。同时IBD也可以引起宿主和肠道菌群的氧化应激,导致肠道菌群失调,主要表现为兼性厌氧肠杆菌和黏附性侵袭性大肠杆菌的丰度增加和增殖能力下降[37]。IBD有2种常见的形式,分别是溃疡性结肠炎(UC)和克罗恩病(CD)。研究显示2种IBD具有不同的菌群特征,UC的肠道菌群特征是艰难梭菌(Clostridium difficile)的丰度升高,而CD的菌群特征则表现为脆弱拟杆菌(Bacterooides fragilis)、分枝杆菌(Mycobacterium)和柱状芽孢杆菌(Bacillus columnar)的丰度升高,普雷沃氏菌(Prevotella)的丰度降低[38]。此外,许多研究检测了UC和CD中炎症和非炎症部位的肠道菌群,与健康对照组相比,患病个体肠道菌群多样性显著降低且更不稳定[39]

2.2 IBS

IBS是一种常见的慢性功能性胃肠道疾病,以腹痛和排便习惯改变为特征,包括腹泻(IBS-D)、便秘(IBS-C)以及腹泻和便秘之间转变(IBS-M)[40]。艰难梭菌、空肠弯曲菌(Campylobacter jejuni)、沙门氏菌、大肠杆菌和志贺氏菌(Shigella)都可以引起IBS[41]。将IBS-D小鼠的粪便菌群接种到无菌小鼠体内,其肠道转运加快,肠道屏障功能障碍并出现焦虑样行为[42]。此外,将IBS患者与健康对照组相比较,研究发现IBS患者与健康对照组相比菌群的多样性或丰度降低[43]。Ng等[44]研究表明,与对照组相比,IBS患者肠道菌群中厚壁菌门与拟杆菌门的比率增加,主要是由于拟杆菌门的丰度降低,益生菌的治疗可以使拟杆菌门的丰度恢复到与对照组相似的水平。总之,IBS以肠道菌群失调为特征,需要更多关于IBS的研究以描述这一疾病的发病机制,并寻找抗生素以外的治疗方案。

2.3 免疫缺陷

肠道菌群失衡会导致机体新陈代谢紊乱,使机体免疫能力降低,容易患上过敏性疾病,并增加感染的可能性[45]。根据“卫生假说”,与年长的兄弟姐妹一起生活的儿童相对于没有这种生活经历的儿童,过敏性疾病的发病率较低,这是因为他们很早就接触了健康者的微生物[46]。近年来,肠道菌群与食物过敏的关系备受关注。肠道菌群失调可能先于食物过敏的发展[47],并且多种细菌与食物过敏有关,包括梭菌、乳杆菌以及拟杆菌[48]。Noval等[49]使用食物过敏易感小鼠(Il4raF709小鼠)模型研究其肠道菌群特征,结果显示,食物过敏小鼠肠道菌群丰度发生变化,而且将其粪便菌群移植到无菌小鼠(GF小鼠)体内可导致小鼠容易感染食物过敏。类似的结果也出现在赵新凤[50]的研究中。食物过敏是一种复杂的异质性疾病,各项研究结果并不一致,动物品种、致敏物质不同对食物过敏动物的肠道菌群都有影响,也在一定程度上说明肠道菌群具有对机体免疫能力的调节作用。

2.4 代谢异常

现在,越来越多的研究表明,肠道菌群的扰动会引起宿主新陈代谢和体重变化。10日龄前饲粮中添加大豆浓缩蛋白可以显著提高肉鸡早期和全期的生长性能,增加肉鸡肠道有益菌群的数量以及丁酸的含量,并且饲粮添加12%的大豆浓缩蛋白作为早期的开食料来调控肉鸡的早期生长性能综合效果更好[51]。Bäckhed等[52]研究结果显示,尽管GF小鼠每天多摄入29%的食物,但是它们体内脂肪总量较肠道菌群正常的小鼠还少42%;然而,在盲肠菌群定植之后,这些GF小鼠体内脂肪总量增加了57%,体重减少了7%,每天的食物摄入量减少了27%。Stappenbeck等[53]研究指出,定植后的小鼠远端小肠绒毛的毛细血管密度增加了25%,这可能与代谢速度加快但是效率较低以及脂肪组织增加相关,以相同的方式处理雌性小鼠有相同的结果。肠道菌群的丰富度和多样性与机体代谢密切相关,更多关于两者之间的关联和因果关系的前瞻性研究势在必行,可能有助于代谢疾病的预防、诊断和治疗。

2.5 应激反应

肠道菌群能够通过肠道-菌群-脑轴来塑造大脑的生理和行为,而且表明肠道菌群是应激反应发生的关键因素[54]。对21日龄的小鼠使用复合抗生素可以减少小鼠的焦虑和认知障碍[55]。此外,通过粪菌移植可以转移小鼠的焦虑样行为,将易受应激的BALB/c无特定病原体(SPF)小鼠粪便菌群接种到NIH瑞士Webster GF小鼠体内,小鼠焦虑样行为显著增加;而将抗应激的NIH瑞士Webster SPF小鼠的微生物接种到BALB/c GF小鼠体内,小鼠焦虑样行为显著减少[56]。尽管这些研究没有包括应激对神经内分泌反应的检测,但都表明肠道菌群的组成对神经系统有影响,需要更深入的研究来阐明其中可能的机制。对于家禽而言,各种环境以及人为因素均可以导致家禽应激反应,如冷、热应激[57]和人为抓捕[58]等。热应激条件下,蛋鸡粪便菌群结构变化显著。此外,蛋鸡的粪便微生物群落以厚壁菌门、拟杆菌门和变形杆菌门为主,热应激条件下粪便微生物群中厚壁菌门的丰度明显降低,拟杆菌门的丰度明显增加[59]。而饲粮添加绿原酸可以通过改善肠道菌群组成、抑制炎症、提高抗氧化能力,缓解急性热应激产生的损伤[60]。总之,肠道菌群参与调节机体应激反应的发展,不同动物、不同应激源所涉及的机制可能不同,需要对其展开进一步的研究。

3 小结与展望

总的来说,生命早期是一个非常重要的发育窗口,有可能决定人和动物的健康和疾病轨迹。近年来,由于基因组技术的快速发展带来了肠道菌群研究的增加,已经证实,肠道中存在的细菌群体之间的平衡及其与宿主的相互作用对健康至关重要。出生后早期肠道菌群发育模式的改变可能对免疫、代谢和神经系统产生各种各样的负面影响,而且这种影响甚至可以持续很长一段时间。影响生命早期肠道菌群改变的因素众多,主要包括产前的母体微生物、体重和抗生素的使用以及出生后早期的喂养方式以及抗生素、益生菌和益生元的使用等。为了减轻这些因素的影响,有必要结合多组学技术进一步了解它们影响肠道菌群平衡的机制以及肠道菌群调节宿主健康的机理,并针对这些因素探究相关疾病的预防和治疗方法,这也是未来一段时间需要攻克的主要问题。

参考文献
[1]
COLLADO M C, ISOLAURI E, LAITINEN K, et al. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy[J]. The American Journal of Clinical Nutrition, 2010, 92(5): 1023-1030. DOI:10.3945/ajcn.2010.29877
[2]
TAKO E, GLAHN R P, KNEZ M, et al. The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickens[J]. Nutrition Journal, 2014, 13: 58. DOI:10.1186/1475-2891-13-58
[3]
ADKINS P R F, ERICSSON A C, MIDDLETON J R, et al. The effect of intramammary pirlimycin hydrochloride on the fecal microbiome of early-lactation heifers[J]. Journal of Dairy Science, 2020, 103(4): 3459-3469. DOI:10.3168/jds.2019-17554
[4]
SHIN D, CHANG S Y, BOGERE P, et al. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs[J]. PloS One, 2019, 14(8): e0220843. DOI:10.1371/journal.pone.0220843
[5]
BÄCKHED F. Programming of host metabolism by the gut microbiota[J]. Annals of Nutrition and Metabolism, 2011, 58(Suppl.2): 44-52.
[6]
KANG D W, PARK J G, ILHAN Z E, et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children[J]. PloS One, 2013, 8(7): e68322. DOI:10.1371/journal.pone.0068322
[7]
QIN J J, LI R Q, RAES J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65. DOI:10.1038/nature08821
[8]
TURNBAUGH P J, HAMADY M, YATSUNENKO T, et al. A core gut microbiome in obese and lean twins[J]. Nature, 2009, 457(7228): 480-484. DOI:10.1038/nature07540
[9]
KOENIG J E, SPOR A, SCALFONE N, et al. Succession of microbial consortia in the developing infant gut microbiome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl.1): 4578-4585.
[10]
PALMER C, BIK E M, DIGIULIO D B, et al. Development of the human infant intestinal microbiota[J]. PloS Biology, 2007, 5(7): e177. DOI:10.1371/journal.pbio.0050177
[11]
JURBURG S D, BROUWER M S M, CECCARELLI D, et al. Patterns of community assembly in the developing chicken microbiome reveal rapid primary succession[J]. MicrobiologyOpen, 2019, 8(9): e00821.
[12]
JIMÉNEZ E, FERNÁNDEZ L, MARÍN M L, et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section[J]. Current Microbiology, 2005, 51(4): 270-274. DOI:10.1007/s00284-005-0020-3
[13]
GUO C Y, JI S K, YAN H, et al. Dynamic change of the gastrointestinal bacterial ecology in cows from birth to adulthood[J]. MicrobiologyOpen, 2020, 9(11): e1119.
[14]
DIGIULIO D B, ROMERO R, KUSANOVIC J P, et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes[J]. American Journal of Reproductive Immunology, 2010, 64(1): 38-57.
[15]
DONG Y, ST CLAIR P J, RAMZY I, et al. A microbiologic and clinical study of placental inflammation at term[J]. Obstetrics and Gynecology, 1987, 70(2): 175-182.
[16]
AAGAARD K, MA J, ANTONY K M, et al. The placenta harbors a unique microbiome[J]. Science Translational Medicine, 2014, 6(237): 237ra65.
[17]
JIMÉNEZ E, MARÍN M L, MARTÍN R, et al. Is meconium from healthy newborns actually sterile?[J]. Research in Microbiology, 2008, 159(3): 187-193. DOI:10.1016/j.resmic.2007.12.007
[18]
郭昱含. 家禽沙门氏菌传播途径及防控措施[J]. 国外畜牧学(猪与禽), 2019, 39(8): 95-98.
GUO Y H. Poultry Salmonella transmission route and prevention and control measures[J]. Animal Science Abroad (Pigs and Poultry), 2019, 39(8): 95-98 (in Chinese). DOI:10.3969/j.issn.1001-0769.2019.08.035
[19]
AWAD W A, HESS C, HESS M. Re-thinking the chicken-Campylobacter jejuni interaction: a review[J]. Avian Pathology, 2018, 47(4): 352-363. DOI:10.1080/03079457.2018.1475724
[20]
WANKHADE U D, ZHONG Y, KANG P, et al. Maternal high-fat diet programs offspring liver steatosis in a sexually dimorphic manner in association with changes in gut microbial ecology in mice[J]. Scientific Reports, 2018, 8(1): 16502. DOI:10.1038/s41598-018-34453-0
[21]
DE JONGE L, BOS H J, VAN LANGEN I M, et al. Antibiotics prescribed before, during and after pregnancy in the Netherlands: a drug utilization study[J]. Pharmacoepidemiology and Drug Safety, 2014, 23(1): 60-68. DOI:10.1002/pds.3492
[22]
NOGACKA A, SALAZAR N, SUÁREZ M, et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates[J]. Microbiome, 2017, 5(1): 93. DOI:10.1186/s40168-017-0313-3
[23]
ALOISIO I, MAZZOLA G, CORVAGLIA L T, et al. Influence of intrapartum antibiotic prophylaxis against group B Streptococcus on the early newborn gut composition and evaluation of the anti-Streptococcus activity of Bifidobacterium strains[J]. Applied Microbiology and Biotechnology, 2014, 98(13): 6051-6060.
[24]
COX L M, YAMANISHI S, SOHN J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences[J]. Cell, 2014, 158(4): 705-721. DOI:10.1016/j.cell.2014.05.052
[25]
BEAUMONT M, CAUQUIL L, BERTIDE A, et al. Gut microbiota-derived metabolite signature in suckling and weaned piglets[J]. Journal of Proteome Research, 2021, 20(1): 982-994. DOI:10.1021/acs.jproteome.0c00745
[26]
HU Y, WANG L D, SHAO D, et al. Selectived and reshaped early dominant microbial community in the cecum with similar proportions and better homogenization and species diversity due to organic acids as AGP alternatives mediate their effects on broilers growth[J]. Frontiers in Microbiology, 2019, 10: 2948.
[27]
FOUHY F, GUINANE C M, HUSSEY S, et al. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin[J]. Antimicrobial Agents and Chemotherapy, 2012, 56(11): 5811-5820. DOI:10.1128/AAC.00789-12
[28]
MOORE A M, AHMADI S, PATEL S, et al. Gut resistome development in healthy twin pairs in the first year of life[J]. Microbiome, 2015, 3: 27. DOI:10.1186/s40168-015-0090-9
[29]
LYNN M A, TUMES D J, CHOO J M, et al. Early-life antibiotic-driven dysbiosis leads to dysregulated vaccine immune responses in mice[J]. Cell Host & Microbe, 2018, 23(5): 653-660.e5.
[30]
PANIGRAHI P, PARIDA S, PRADHAN L, et al. Long-term colonization of a Lactobacillus plantarum synbiotic preparation in the neonatal gut[J]. Journal of Pediatric Gastroenterology and Nutrition, 2008, 47(1): 45-53. DOI:10.1097/MPG.0b013e31815a5f2c
[31]
ZHANG S, ZHONG G, SHAO D, et al. Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community[J]. Poultry Science, 2021, 100(3): 100935. DOI:10.1016/j.psj.2020.12.032
[32]
SCALABRIN D M F, MITMESSER S H, WELLING G W, et al. New prebiotic blend of polydextrose and galacto-oligosaccharides has a bifidogenic effect in young infants[J]. Journal of Pediatric Gastroenterology and Nutrition, 2012, 54(3): 343-352. DOI:10.1097/MPG.0b013e318237ed95
[33]
GONZÁLEZ R, KLAASSENS E S, MALINEN E, et al. Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide[J]. Applied and Environmental Microbiology, 2008, 74(15): 4686-4694. DOI:10.1128/AEM.00122-08
[34]
KIM E R, CHANG D K. Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis[J]. World Journal of Gastroenterology, 2014, 20(29): 9872-9881. DOI:10.3748/wjg.v20.i29.9872
[35]
ARRIETA M C, STIEMSMA L T, AMENYOGBE N, et al. The intestinal microbiome in early life: health and disease[J]. Frontiers in Immunology, 2014, 5: 427.
[36]
KHAN S, WALIULLAH S, GODFREY V, et al. Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice[J]. Science Translational Medicine, 2020, 12(567): eaay6218. DOI:10.1126/scitranslmed.aay6218
[37]
HALL A B, YASSOUR M, SAUK J, et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients[J]. Genome Medicine, 2017, 9(1): 103. DOI:10.1186/s13073-017-0490-5
[38]
KOLHO K L, KORPELA K, JAAKKOLA T, et al. Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation[J]. The American Journal of Gastroenterology, 2015, 110(6): 921-930. DOI:10.1038/ajg.2015.149
[39]
ANDOH A, IMAEDA H, AOMATSU T, et al. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn's disease using terminal restriction fragment length polymorphism analysis[J]. Journal of Gastroenterology, 2011, 46(4): 479-486. DOI:10.1007/s00535-010-0368-4
[40]
PIMENTEL M, LEMBO A. Microbiome and its role in irritable bowel syndrome[J]. Digestive Diseases and Sciences, 2020, 65(3): 829-839. DOI:10.1007/s10620-020-06109-5
[41]
KLEM F, WADHWA A, PROKOP L J, et al. Prevalence, risk factors, and outcomes of irritable bowel syndrome after infectious enteritis: a systematic review and meta-analysis[J]. Gastroenterology, 2017, 152(5): 1042-1054.e1. DOI:10.1053/j.gastro.2016.12.039
[42]
DE PALMA G, LYNCH M D J, LU J, et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice[J]. Science Translational Medicine, 2017, 9(379): eaaf6397. DOI:10.1126/scitranslmed.aaf6397
[43]
MAHARSHAK N, RINGEL Y, KATIBIAN D, et al. Fecal and mucosa-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome[J]. Digestive Diseases and Sciences, 2018, 63(7): 1890-1899. DOI:10.1007/s10620-018-5086-4
[44]
NG S C, LAM E F C, LAM T T Y, et al. Effect of probiotic bacteria on the intestinal microbiota in irritable bowel syndrome[J]. Journal of Gastroenterology and Hepatology, 2013, 28(10): 1624-1631. DOI:10.1111/jgh.12306
[45]
LAFOREST-LAPOINTE I, ARRIETA M C. Patterns of early-life gut microbial colonization during human immune development: an ecological perspective[J]. Frontiers in Immunology, 2017, 8: 788. DOI:10.3389/fimmu.2017.00788
[46]
NANCE C L, DENISKIN R, DIAZ V C, et al. The role of the microbiome in food allergy: a review[J]. Children, 2020, 7(6): 50. DOI:10.3390/children7060050
[47]
ZHAO W, HO H E, BUNYAVANICH S. The gut microbiome in food allergy[J]. Annals of Allergy, Asthma & Immunology, 2019, 122(3): 276-282.
[48]
HUANG Y J, MARSLAND B J, BUNYAVANICH S, et al. The microbiome in allergic disease: current understanding and future opportunities-2017 PRACTALL document of the American academy of allergy, asthma & immunology and the European academy of allergy and clinical immunology[J]. The Journal of Allergy and Clinical Immunology, 2017, 139(4): 1099-1110. DOI:10.1016/j.jaci.2017.02.007
[49]
NOVAL R M, BURTON O T, WISE P, et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis[J]. The Journal of Allergy and Clinical Immunology, 2013, 131(1): 201-212. DOI:10.1016/j.jaci.2012.10.026
[50]
赵新凤. 肠道菌群在食物过敏发病机制中的作用研究[D]. 硕士学位论文. 重庆: 重庆医科大学, 2014.
ZHAO X F. Study on the effects of intestinal flora on the pathogenesis of food allergies[D]. Master's Thesis. Chongqing: Chongqing Medical University, 2014. (in Chinese)
[51]
张倩雲. 早期日粮添加大豆浓缩蛋白对肉鸡生产性能、氨基酸表观消化率、肠道发育和肠道微生物及其代谢产物的影响[D]. 硕士学位论文. 南宁: 广西大学, 2021.
ZHANG Q Y. Effects of soy protein concentrate in starter phase diet on growth performance, apparent digestibility of amino acids, intestinal development, intestinal microorganisms and metabolites of broilers[D]. Master's Thesis. Nanning: Guangxi University, 2021. (in Chinese)
[52]
BÄCKHED F, DING H, WANG T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15718-15723. DOI:10.1073/pnas.0407076101
[53]
STAPPENBECK T S, HOOPER L V, GORDON J I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(24): 15451-15455. DOI:10.1073/pnas.202604299
[54]
BORRE Y E, O'KEEFFE G W, CLARKE G, et al. Microbiota and neurodevelopmental windows: implications for brain disorders[J]. Trends in Molecular Medicine, 2014, 20(9): 509-518. DOI:10.1016/j.molmed.2014.05.002
[55]
DESBONNET L, CLARKE G, TRAPLIN A, et al. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour[J]. Brain, Behavior, and Immunity, 2015, 48: 165-173. DOI:10.1016/j.bbi.2015.04.004
[56]
BERCIK P, DENOU E, COLLINS J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice[J]. Gastroenterology, 2011, 141(2): 599-609.E3. DOI:10.1053/j.gastro.2011.04.052
[57]
杨智国. 热应激对鸡肠道微生物的影响及调控措施[J]. 山东畜牧兽医, 2019, 40(9): 61-65.
YANG Z G. The effect of heat stress on the intestinal microbes of chickens and the control measures[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2019, 40(9): 61-65 (in Chinese). DOI:10.3969/j.issn.1007-1733.2019.09.032
[58]
HU Y, CHEN W W, LIU H X, et al. Genetic differences in ChTLR15 gene polymorphism and expression involved in Salmonella enterica natural and artificial infection respectively, of Chinese native chicken breeds, with a focus on sexual dimorphism[J]. Avian Pathology, 2016, 45(1): 13-25. DOI:10.1080/03079457.2015.1110849
[59]
ZHU L H, LIAO R R, WU N, et al. Heat stress mediates changes in fecal microbiome and functional pathways of laying hens[J]. Applied Microbiology and Biotechnology, 2019, 103(1): 461-472. DOI:10.1007/s00253-018-9465-8
[60]
CHEN F, ZHANG H, ZHAO N, et al. Effect of chlorogenic acid on intestinal inflammation, antioxidant status, and microbial community of young hens challenged with acute heat stress[J]. Animal Science Journal, 2021, 92(1): e13619.