动物营养学报    2022, Vol. 34 Issue (5): 2907-2917    PDF    
饲粮中添加槲皮素对产蛋中后期蛋鸡蛋品质和脂代谢的影响
魏翊1 , 刘永发1 , 巩璐1 , 扶佳欢1 , 班志彬1,2 , 呙于明1 , 张炳坤1     
1. 中国农业大学动物科学技术学院, 动物营养学国家重点实验室, 北京 100193;
2. 吉林省农业科学院, 长春 130000
摘要: 本试验旨在探讨饲粮中槲皮素对产蛋中后期蛋鸡蛋品质和脂代谢的影响。试验选用体重和产蛋率相近的320只46周龄健康的海兰褐蛋鸡, 随机分为4组, 每组8个重复, 每个重复10只鸡。对照组饲喂玉米-豆粕型基础饲粮, 试验组分别饲喂在基础饲粮中添加100、300和600 mg/kg槲皮素的试验饲粮。预试期1周, 正试期10周。结果显示: 1)与对照组相比, 饲粮中添加100、300、600 mg/kg槲皮素均极显著提高了蛋壳厚度、蛋壳强度和蛋白高度(P < 0.01), 且蛋白高度和哈氏单位随槲皮素添加水平的提高呈先升高后下降的二次变化(P=0.004、P=0.034)。2)随槲皮素添加水平的提高, 蛋鸡腹脂率呈先降低后升高的二次变化(P=0.012), 而肝脏指数则呈线性降低趋势(P=0.095)。3)随槲皮素添加水平的提高, 蛋鸡血小板数量有线性升高的趋势(P=0.075), 而大型血小板比率则呈二次变化(P=0.028)。4)与对照组相比, 饲粮中添加100、300和600 mg/kg槲皮素均显著降低了血清低密度脂蛋白胆固醇(LDL-C)、甘油三酯(TG)和游离脂肪酸(NEFA)含量(P < 0.05), 且添加300 mg/kg槲皮素还极显著降低了血清总胆固醇(TC)和葡萄糖(GLU)含量(P < 0.01);此外, 饲粮中添加100、300、600 mg/kg槲皮素均极显著降低了肝脏甘油三酯含量(P < 0.01)。5)与对照组相比, 饲粮中添加100、300、600 mg/kg槲皮素均极显著提高血清脂联素和瘦素含量(P < 0.01)。上述结果表明, 在本试验条件下, 饲粮中添加槲皮素可以调节机体脂代谢, 降低产蛋中后期蛋鸡肝脏和腹部脂肪沉积, 改善蛋品质, 且以添加水平为300 mg/kg时效果最佳。
关键词: 产蛋中后期    槲皮素    海兰褐蛋鸡    蛋品质    脂代谢    
Effects of Dietary Quercetin on Egg Quality and Lipid Metabolism of Laying Hens during Middle-Late Laying Period
WEI Yi1 , LIU Yongfa1 , GONG Lu1 , FU Jiahuan1 , BAN Zhibin1,2 , GUO Yuming1 , ZHANG Bingkun1     
1. State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
2. Jilin Academy of Agricultural Sciences, Changchun 130000, China
Abstract: The purpose of this study was to investigate the effects of dietary quercetin on egg quality and lipid metabolism of laying hens during middle-late laying period. Three hundred and twenty 46-week-old healthy Hy-line brown laying hens with similar body weight and laying rate were randomly divided into 4 groups with 8 replicates per group and 10 hens per replicate. The hens in control group were fed a basal diet, and those in experimental groups were fed the basal diet supplemented with 100, 300 and 600 mg/kg quercetin, respectively. The pre-feeding period lasted for 1 week, and the experimental period lasted for 10 weeks. The results showed as follows: 1) compared with the control group, dietary supplemented with 100, 300 and 600 mg/kg quercetin significantly increased the eggshell thickness, eggshell strength and albumen height (P < 0.01), and the albumen height and Haugh unit had a quadratic change with quercetin supplemental level increasing (P < 0.05), it was first increased and then decreased. 2) With the quercetin supplemental level increasing, the abdominal fat rate showed a quadratic change which was first decreased and then increased (P < 0.05), while the liver index showed a linear decreasing trend (P=0.095). 3) With the quercetin supplemental level increasing, the platelet count showed a linear increasing trend (P=0.075), and the platelet-larger cell ratio had a quadratic change (P=0.028). Compared with the control group, dietary supplemented with 100, 300 and 600 mg/kg quercetin significantly decreased the serum low-density lipoprotein cholesterol, triglyceride and non-esterified fatty acid contents (P < 0.01), and dietary supplemented with 300 mg/kg quercetin significantly decreased the serum total cholesterol and glucose contents (P < 0.01). 4) With the quercetin supplemental level increasing, the serum total cholesterol and glucose were reduced significantly (P < 0.01), and the serum low-density lipoprotein cholesterol, triglyceride and free fatty acid contents showed a linear-quadratic change (P < 0.05). In addition, dietary supplemented with 100, 300 and 600 mg/kg quercetin significantly decreased the hepatic triglyceride content (P < 0.01). 5) Dietary 100 to 600 mg/kg quercetin significantly increased the contents of adiponectin and leptin in serum (P < 0.01). These results indicate that under the conditions of this experiment, dietary supplemented with quercetin can improve body lipid metabolism, reduce fat deposition in liver and abdomen, and improve egg quality of laying hens during the middle-late laying period, and 300 mg/kg quercetin supplemental level has the best effect.
Key words: middle-late laying period    quercetin    Hy-line brown laying hens    egg quality    lipid metabolism    

蛋鸡产蛋高峰后期,生产性能和蛋品质都会随着日龄的增加而下降[1],且产蛋中后期蛋鸡腹部沉积大量脂肪,卵巢和输卵管被大量脂肪包裹,尤其是分泌蛋壳的子宫部周围脂肪沉积增加,这会影响蛋壳形成,降低蛋壳质量[2-4]。因此,降低产蛋中后期蛋鸡的腹脂沉积,改善输卵管健康,是提高产蛋中后期蛋鸡蛋品质量的有效手段。研究表明,添加黄酮类化合物可以提高蛋鸡的生产性能,改善脂代谢和蛋品质[5]。槲皮素作为一种多酚类黄酮,主要以糖苷形式存在于各种食物中,包括浆果、洋葱和青葱、苹果、茶和巧克力[6],其具有多种生物活性,包括改善肠道环境、抗氧化和抗凋亡特性[7-9],其能通过改善异常脂代谢缓解机体脂肪沉积,提高产蛋性能和蛋品质[10-11]。但是目前槲皮素对蛋鸡影响作用的研究大多集中在产蛋前期或高峰期[12-15],对产蛋中后期的研究较少,尤其是腹脂沉积和脂代谢等方面,目前尚无深入研究。因此,本试验以产蛋中后期的海兰褐蛋鸡为试验对象,研究槲皮素对产蛋中后期蛋鸡蛋品质、腹脂率和血清脂代谢等指标的影响,为改善产蛋中后期蛋鸡蛋品质和腹脂沉积提供科学依据。

1 材料与方法 1.1 试验动物与试验饲粮

试验选用健康且体重[(2 110.8±105.5) g]相近的46周龄海兰褐蛋鸡320只,随机分为4组,每组8个重复,每个重复10只鸡,密闭鸡舍阶梯式笼养。试验分为预试期1周和正试期10周,预试期饲喂玉米-豆粕型基础饲粮,期间对蛋鸡进行替换,保证各组间蛋鸡初始体重和产蛋率相近;正试期对照组饲喂基础饲粮,试验组分别饲喂在基础饲粮中添加100、300和600 mg/kg槲皮素(购自陕西某生物科技有限责任公司,纯度为98%)的试验饲粮。基础饲粮参照NRC(1994)和《海兰褐蛋鸡管理手册(2008)》配制。基础饲粮组成及营养水平见表 1

表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the base diet (air-dry basis) 
1.2 饲养管理

试验开始前鸡舍清扫消毒,根据试验设计进行笼位编号。每天光照16 h,光照强度为20 lx左右。鸡舍温度控制在20~22 ℃,相对湿度50%~80%,舍内负压式通风。试验期间自由采食和饮水,每天清粪、喂料和捡蛋。人工喂料(每日2次,07:30、14:00)、捡蛋(每日1次,15:00)。每周消毒1次,常规免疫。

1.3 样品采集

蛋鸡饲养到56周龄的最后1 d晚上进行断料,12 h后称重,并记录蛋鸡重。称重后再饲喂各组对应饲粮,从每个重复中随机挑选1只体重相近的蛋鸡,按照指标测定要求采血后解剖,将肝脏、脾脏和腹脂分离后,置于-20 ℃保存,直至进一步检测。

1.4 指标测定与方法 1.4.1 蛋品质

在试验期第10周的最后1 d收集试验蛋鸡当天所产的所有鸡蛋,用蛋品仪(NABEL,日本)测定蛋重、蛋壳强度、蛋白高度、哈氏单位、蛋黄重量。使用电子数显卡尺测定鸡蛋大头端、中部和小头端的蛋壳厚度和鸡蛋的长径、短径,并计算蛋壳厚度均值和蛋形指数(长径/短径)。

1.4.2 器官指数和腹脂率

试验结束时,每个重复选择1只鸡,采血处理后剖开称取肝脏、脾脏和腹脂。按照下述公式计算肝脏指数、脾脏指数和腹脂率:

1.4.3 血常规指标

试验结束后(第56周龄),蛋鸡饥饿8 h后从每个重复中随机挑选1只称重,翅静脉采血于含有肝素钠抗凝管中,采用血常规生化仪(Sysmex K4500,日本)测定白细胞计数(WBC)、红细胞计数(RBC)、血红蛋白含量(HGB)、大型血小板比率(P-LCR)等血液常规指标。

1.4.4 肝脏甘油三酯(TG)含量

常温解冻-80 ℃冷冻的肝脏样品,称取10 g左右并记录肝脏鲜重,冷冻干燥机(FD-1A-50,北京博医康实验仪器有限公司)冻干并称重。按照GB/T 6433—2006的方法,称取1.0 g左右肝脏冻干样品装入滤纸包内,记录滤纸包、样品重和二者的总重。在索氏提取器内倒入石油醚(沸点30~60 ℃),放入装有样品的滤纸包,抽提4~6 h;取出已抽提完毕的滤纸包,放入通风橱中,使残留的石油醚挥发完毕,再放入烘箱烘干后,称取烘干后的含有样品的滤纸包重量,计算肝脏甘油三酯含量。

1.4.5 血清脂代谢指标

试验结束后,每个重复随机选取1只蛋鸡,饥饿8 h后翅静脉采血5 mL左右于惰性带分离胶离心管中,4 ℃下3 000 r/min离心15 min,分离血清将其分装,保存在-80 ℃冰箱中。采用全自动生化分析仪(深圳市库贝尔生物科技有限公司,iChem-340)测定血清中总胆固醇(TC)(CHOD-PAP法)、高密度脂蛋白胆固醇(HDL-C)(直接法-选择抑制法)、低密度脂蛋白胆固醇(LDL-C)(直接法-表面活性剂清除法)、TG(GPO-PAP法)和游离脂肪酸(NEFA)(ACS-ACOD法)含量,先将血清样本用MX-S涡旋仪[大龙兴创实验仪器(北京)有限公司]涡旋15 s后上机检测,读取原始数据后,进行数据转换,离群值重新上机检测。

1.4.6 血清脂联素和瘦素含量

试验结束后,每个重复选取1只鸡,饥饿8 h后翅静脉采血5 mL左右于促凝管中,4 ℃下3 000 r/min离心15 min,分离血清将其分装,保存在-80 ℃冰箱中。按照脂联素和瘦素试剂盒(购于上海酶联生物科技有限公司)说明书进行检测,在多功能酶标仪(Molecular Devices,SpectraMax i3x,美国)于450 nm处读取数据,计算血清脂联素和瘦素含量。

1.5 统计分析

试验数据先经过Excel 2010处理后,再采用SPSS 26.0的one-way ANOVA程序进行分析,F检验先确定组间方差齐性,ANOVA进行方差分析,Duncan氏法进行多重比较。Contrast命令独立于多重比较用以检验线性和二次关系。Graph pad prism 9进行绘图分析,P < 0.01判定为差异极显著,P < 0.05判定为差异显著,而0.05≤P < 0.10判定为差异具有显著趋势。

2 结果与分析 2.1 槲皮素对产蛋中后期蛋鸡蛋品质的影响

表 2可知,与对照组相比,饲粮中添加100、300和600 mg/kg槲皮素均极显著提高了蛋壳厚度和蛋壳强度(P < 0.01),其中槲皮素添加水平为300 mg/kg时效果最好;饲粮中添加300 mg/kg槲皮素显著提高了蛋壳重(P < 0.05),极显著提高了蛋白高度P < 0.01),且对蛋重和哈氏单位有提高趋势(P=0.079和P=0.059)。随槲皮素添加水平的提高,蛋重、蛋壳厚度、蛋壳强度呈线性和二次变化(P < 0.05),蛋白高度和哈氏单位呈现二次变化(P < 0.05)。

表 2 槲皮素对产蛋中后期蛋鸡蛋品质的影响 Table 2 Effects of quercetin on egg quality of laying hens during middle-late laying period
2.2 槲皮素对蛋鸡产蛋中后期器官指数和腹脂率的影响

表 3可知,与对照组相比,饲粮中添加100、300和600 mg/kg槲皮素均显著降低了蛋鸡的腹脂率(P < 0.05),对肝脏指数和脾脏指数均无显著影响(P > 0.05)。随槲皮素添加水平的提高,肝脏指数和腹脂率有线性降低的趋势(P=0.095和P=0.082),腹脂率则呈现二次变化(P=0.012)。

表 3 槲皮素对蛋鸡产蛋中后期器官指数的影响 Table 3 Effects of quercetin on organ indexes and abdominal fat rate of laying hens during middle-late laying period  
2.3 槲皮素对蛋鸡产蛋中后期血常规指标的影响

表 4可知,与对照组相比,饲粮中添加300 mg/kg槲皮素极显著提高了血小板数量(P < 0.01),大型血小板比例有增加趋势(P=0.062),而添加100 mg/kg槲皮素则显著降低了血小板数量(P < 0.05)。血小板数量随槲皮素添加水平的提高有线性升高的趋势(P=0.075),而大型血小板比率则随槲皮素添加水平的提高呈二次变化(P=0.028)。

表 4 槲皮素对蛋鸡产蛋中后期血常规指标的影响 Table 4 Effects of quercetin on blood routine indexes of laying hens during middle-late laying period
2.4 槲皮素对蛋鸡产蛋中后期肝脏甘油三酯含量的影响

图 1所示,与对照组相比,饲粮中添加100、300和600 mg/kg槲皮素均极显著降低了肝脏甘油三酯含量(P < 0.01),其中以槲皮素添加水平为300 mg/kg时效果最好,且肝脏甘油三酯含量随槲皮素添加水平的提高呈线性和二次变化(P < 0.01)。

数据柱形标注无字母或相同字母表示差异不显著(P > 0.05),不同小写字母表示差异显著(P < 0.05),不同大写字母表示差异极显著(P < 0.01)。 Data columns with no letter or the same letters mean no significant difference (P > 0.05), while with different small letters mean no significant difference (P < 0.05), and with different capital letters mean significant difference (P < 0.01). The same as below. 图 1 槲皮素对蛋鸡产蛋中后期肝脏甘油三酯含量的影响 Fig. 1 Effects of quercetin on hepatic triglyceride content of laying hens during middle-late laying period
2.5 槲皮素对蛋鸡产蛋中后期血清脂代谢指标的影响

表 5可知,与对照组相比,饲粮中添加100、300和600 mg/kg槲皮素均显著降低了血清LDL-C、TG和NEFA含量(P < 0.05),且上述指标随槲皮素添加水平的提高呈线性和二次变化(P < 0.05)。此外,300 mg/kg槲皮素组血清TC和GLU含量极显著低于对照组(P < 0.01)。随槲皮素添加水平的提高,血清TC含量呈线性降低和二次变化(P=0.003、P=0.005),血清GLU含量呈二次变化(P=0.040)。

表 5 槲皮素对蛋鸡产蛋中后期血清脂代谢指标的影响 Table 5 Effects of quercetin on serum lipid metabolism indexes of laying hens during middle-late laying period  
2.6 槲皮素对蛋鸡产蛋中后期血清脂联素和瘦素含量的影响

表 6可知,与对照组相比,饲粮中添加100、300和600 mg/kg槲皮素均极显著提高了血清脂联素和瘦素含量(P < 0.01),其中血清脂联素含量分别提高了7.6%、8.9%和9.4%,血清瘦素含量分别提高了7.1%、6.7%和11.6%。随槲皮素添加水平的提高,血清脂联素和瘦素含量均呈线性(P=0.001、P < 0.001)和二次变化(P=0.001、P=0.001)。

表 6 槲皮素对蛋鸡产蛋中后期血清脂联素和瘦素含量的影响 Table 6 Effects of quercetin on serum adiponectin and leptin contents of laying hens during middle-late laying period  
3 讨论

近年来,一些研究证实,黄酮类化合物可以提高家禽的生产性能,改善脂代谢和蛋品质[5, 16-18]。槲皮素作为植物黄酮类物质的一种,也同样具有改善蛋鸡生产性能和蛋品质的功能[19, 14]。前人研究报道,饲粮中添加一定剂量的槲皮素能够改善蛋鸡脂代谢,增加蛋壳强度、蛋壳厚度和哈氏单位[10-11, 20]。本研究结果表明,蛋壳强度、蛋壳厚度和蛋白高度均随槲皮素添加水平的提高呈线性增加,分析原因可能与槲皮素发挥雌激素样作用,改善输卵管健康有关,这也与前人的研究结果[13]一致。类似的发现,如呼林林[14]对29周龄海赛蛋鸡进行了为期8周的试验,结果表明,槲皮素可以显著提高蛋鸡的蛋壳厚度和蛋壳强度。有报道指出,随着母鸡年龄的增长,因鸡体激素(甲状旁腺激素、降钙素、雌激素[21-22])水平和24-羟化酶活性降低等造成钙代谢紊乱[23],使得蛋壳质量下降。雌激素物质对肠道钙吸收的积极作用已在人类中得到证实[24]。有研究指出槲皮素具有雌激素样作用[25],可提高机体雌激素水平,增加产蛋后期蛋鸡的蛋壳厚度和蛋壳强度,从而提高蛋品质[13, 26],这可能也是本研究中蛋壳强度和蛋壳厚度提高的原因。此外,本研究结果表明,随槲皮素添加水平的提高,鸡蛋的哈氏单位呈二次变化,提示槲皮素能一定程度保持鸡蛋的新鲜度,延长鸡蛋的存储期。

血小板是循环血液中最小的血细胞,具有多项生理活性。研究表明,机体由于免疫系统功能紊乱导致外周血循环中血小板数量减少[27],可引起皮肤、黏膜和内脏出血,严重危及生命。其中大型血小板是指骨髓新生的血小板,其聚集和黏附功能增强,是反映血小板活化的一个重要指标[28]。当人体代谢紊乱,血管内皮损伤时,血小板消耗增多,进而导致循环血液中大型血小板数量减少[28-29]。本试验结果表明,随槲皮素添加水平的提高,蛋鸡血小板数量有线性提高的趋势,提示槲皮素可能对缓解产蛋中后期蛋鸡炎症反应有一定作用。此外,在本试验中蛋鸡血浆中大型血小板比率随槲皮素添加水平的提高呈二次变化,这与之前的研究结果[30]存在不一致,这可能与试验动物和生理状态不同有关。因为家禽血常规指标的正常范围值尚不规范,因此具体机制有待进一步研究。

家禽体内的脂肪主要包括腹部脂肪、皮下脂肪和肌内脂肪,其中脂肪沉积主要出现在腹部和皮下[31]。前人研究报道,产蛋后期蛋鸡产蛋率与腹脂沉积存在一定的相关性,相关系数为-0.69~-0.83[32]。产蛋高峰后期,母鸡产蛋量逐渐下降,且对能量较为敏感,多余的能量一般以脂肪形式在体内沉积,其中以腹部脂肪沉积最多,然而沉积的腹脂又进一步影响蛋鸡的产蛋性能[33]。前人研究表明,黄酮类化合物具有调控脂代谢等多种内分泌调节功能[34-37]。研究发现,在饲粮中添加槲皮素后,蛋鸡腹脂沉积得到明显改善,蛋壳腺因受到腹脂的挤压减弱,从而维持其正常的分泌功能,进而显著改善蛋品质量。王密[38]通过在饲粮中添加0.06%槲皮素显著降低了肉鸡腹脂率,且指出槲皮素在肝脏通过肝激酶B1(LKB1)-腺苷酸活化蛋白激酶γ(AMPKγ)-过氧化物酶体增殖物激活受体α(PPARα)信号通路增加脂质氧化分解,加强脂质从肝脏中转出,减少脂肪沉积。本试验结果表明,随槲皮素添加水平的提高,蛋鸡腹脂率有线性降低的趋势,且呈二次变化,这进一步证实了槲皮素可降低产蛋中后期蛋鸡腹脂沉积。

为了进一步研究槲皮素对腹脂沉积的影响,本试验对蛋鸡血常规指标、血清脂代谢指标和肝脏TG含量进行了研究。多项研究表明,槲皮素可以显著降低肝脏中TG含量[35, 39, 40-42],且呈剂量依赖性。另外,在相关荟萃分析中,长期补充槲皮素与血清TG、TC和LDL-C含量的降低有关[43]。本研究结果显示,饲粮中添加槲皮素未改变蛋鸡血清HDL-C含量,但线性降低了血清LDL-C、TC、TG和NEFA含量,且血清GLU含量随槲皮素添加水平的提高呈二次降低的趋势。研究表明,槲皮素可以显著改善db/db小鼠的血脂异常和肝脏脂肪变性,降低肝脏中TG和胆固醇的沉积[44],这可能是因为槲皮素通过降低血清中合成胆固醇的3-羟基-3-甲基戊二酸单酰辅酶A还原酶的活性,使胆固醇合成受到抑制[45]。过氧化物酶体增殖物激活受体γ(PPARγ)通过调节脂肪合成和能量储存相关基因的表达,进而调节脂肪的合成、转运和储存等[38],槲皮素可通过抑制脂肪细胞中PPARγ的表达,调节脂肪的合成和胞内沉积[46]。血液中GLU的含量可反映机体内糖代谢的平衡状态。研究表明,饲粮中添加6 mg/kg大豆黄酮可使29周龄蛋鸡血清GLU含量降低81.05%[47],可能是因为黄酮类物质增强胰岛素敏感性和刺激β细胞分泌胰岛素来降低GLU含量[48-49]。本研究结果显示,产蛋中后期蛋鸡饲粮中添加槲皮素显著提高了血清脂联素和瘦素含量,提高了GLU的利用率和胰岛素敏感性[50],通过胰岛素的增加和脂肪酸氧化[51],降低肥胖和血清GLU含量,提示槲皮素有利于改善产蛋中后期蛋鸡的糖、脂代谢,进一步证实槲皮素在改善肥胖和糖尿病方面的有益作用。

4 结论

饲粮中添加100~600 mg/kg槲皮素可线性增加产蛋中后期蛋鸡血清脂联素和瘦素含量,降低血清和肝脏甘油三酯含量,调节糖、脂代谢,减少腹脂沉积,改善蛋壳腺正常分泌功能,进而改善产蛋中后期蛋品质。在本试验条件下,饲粮中添加300 mg/kg槲皮素对蛋鸡的作用效果最佳。

参考文献
[1]
张佳兰, 赵玉琴, 高玉鹏. 蛋鸡周龄对褐壳蛋蛋壳品质的影响[J]. 西北农业学报, 2008, 17(2): 48-50, 69.
ZHANG J L, ZHAO Y Q, GAO Y P. Effect of age of brown hen on eggshell quality[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 17(2): 48-50, 69 (in Chinese). DOI:10.3969/j.issn.1004-1389.2008.02.012
[2]
AITKEN R J, JONES K T, ROBERTSON S A. Reactive oxygen species and sperm function-in sickness and in health[J]. Journal of Andrology, 2012, 33(6): 1096-1106. DOI:10.2164/jandrol.112.016535
[3]
张龙超. 矮小型蛋鸡蛋品质性状遗传分析及相关分子标记的研究[D]. 硕士学位论文. 北京: 中国农业大学, 2004.
ZHANG L C. Genetic analysis and the associated molecular markers of the egg quality traits in dwarf layers[D]. Master's Thesis. Beijing: China Agricultural University, 2004. (in Chinese)
[4]
霍清合, 李芳, 李爱军. 肉种鸡全程体重控制要点[J]. 中国家禽, 2004, 26(21): 47-48.
HUO Q H, LI F, LI A J. Main points of weight control of broiler breeders[J]. China Poultry, 2004, 26(21): 47-48 (in Chinese). DOI:10.3969/j.issn.1004-6364.2004.21.021
[5]
张平平, 刘艳芬, 刘铀. 植物黄酮类提取物在家禽上的研究进展[J]. 饲料与畜牧, 2010(7): 36-39.
ZHANG P P, LIU Y F, LIU Y. Research progress of plant flavonoids extract on poultry[J]. Feed and Husbandry, 2010(7): 36-39 (in Chinese).
[6]
HOLLMAN P C, KATAN M B. Health effects and bioavailability of dietary flavonols[J]. Free Radical Research, 1999, 31(Suppl.): S75-S80.
[7]
ROMERO M, JIMÉNEZ R, SÁNCHEZ M, et al. Quercetin inhibits vascular superoxide production induced by endothelin-1:role of NADPH oxidase, uncoupled eNOS and PKC[J]. Atherosclerosis, 2009, 202(1): 58-67. DOI:10.1016/j.atherosclerosis.2008.03.007
[8]
JOHINKE D, DE GRAAF S P, BATHGATE R. Quercetin reduces the in vitro production of H2O2 during chilled storage of rabbit spermatozoa[J]. Animal Reproduction Science, 2014, 151(3/4): 208-219.
[9]
MORALES-CANO D, MENENDEZ C, MORENO E, et al. The flavonoid quercetin reverses pulmonary hypertension in rats[J]. PLoS One, 2014, 9(12): e114492. DOI:10.1371/journal.pone.0114492
[10]
LIU Y, LI Y, LIU H N, et al. Effect of quercetin on performance and egg quality during the late laying period of hens[J]. British Poultry Science, 2013, 54(4): 510-514. DOI:10.1080/00071668.2013.799758
[11]
LIU H N, LIU Y, HU L L, et al. Effects of dietary supplementation of quercetin on performance, egg quality, cecal microflora populations, and antioxidant status in laying hens[J]. Poultry Science, 2014, 93(2): 347-353. DOI:10.3382/ps.2013-03225
[12]
HAN C Y, CHAUDHRY M T, YAO J Y, et al. Effects of quercetin on performance and lipid metabolism in laying hens[J]. Journal of Northeast Agricultural University(English Edition), 2017, 24(2): 29-36.
[13]
索艳丽, 李垚, 刘莹, 等. 槲皮素对蛋鸡蛋壳品质的影响[J]. 中国畜牧兽医, 2013, 40(2): 75-79.
SUO Y L, LI Y, LIU Y, et al. Effect of quercetin on eggshell quality in laying hens[J]. China Animal Husbandry & Veterinary Medicine, 2013, 40(2): 75-79 (in Chinese). DOI:10.3969/j.issn.1671-7236.2013.02.018
[14]
呼林林. 槲皮素对蛋鸡生产性能、蛋品质、胆固醇含量的影响[D]. 硕士学位论文. 哈尔滨: 东北农业大学, 2014.
HU L L. Effects of quercetin on performance, egg quality, cholesterol content in laying hens[D]. Master's Thesis. Harbin: Northeast Agricultural University, 2014. (in Chinese)
[15]
张琳, 李垚, 冯香安, 等. 槲皮素对蛋鸡生产性能及脂类代谢的影响[J]. 中国畜牧兽医, 2013, 40(1): 89-93.
ZHANG L, LI Y, FENG X A, et al. Effect of quercetin on production performance and lipids metabolism of laying hens[J]. China Animal Husbandry & Veterinary Medicine, 2013, 40(1): 89-93 (in Chinese). DOI:10.3969/j.issn.1671-7236.2013.01.024
[16]
NI Y D, ZHU Q, ZHOU Z L, et al. Effect of dietary daidzein on egg production, shell quality, and gene expression of ER-alpha, GH-R, and IGF-IR in shell glands of laying hens[J]. Journal of Agricultural and Food Chemistry, 2007, 55(17): 6997-7001. DOI:10.1021/jf071085r
[17]
SHI S R, GU H, CHANG L L, et al. Safety evaluation of daidzein in laying hens: part Ⅰ. Effects on laying performance, clinical blood parameters, and organs development[J]. Food and Chemical Toxicology, 2013, 55: 684-688. DOI:10.1016/j.fct.2013.01.009
[18]
刘瑞玲, 张力, 郑中朝, 等. 大豆异黄酮对樱桃谷鸭脂质代谢的影响[J]. 甘肃农业大学学报, 2006, 41(3): 26-30.
LIU R L, ZHANG L, ZHENG Z C, et al. Efects of soybean isoflavone on lipid metabolism of cherry valley duck[J]. Journal of Gansu Agricultural University, 2006, 41(3): 26-30 (in Chinese). DOI:10.3969/j.issn.1003-4315.2006.03.006
[19]
金芳, 李垚, 刘红南, 等. 槲皮素对39周龄蛋鸡生产性能的影响[J]. 中国畜牧杂志, 2013, 49(5): 62-65.
JIN F, LI Y, LIU H N, et al. Effect of quercetin on performance of 39-week-old laying hens[J]. Chinese Journal of Animal Science, 2013, 49(5): 62-65 (in Chinese).
[20]
代重山, 汤树生, 张朝明, 等. 槲皮素的生物学功能及其在鸡生产中的应用[J]. 中国饲料, 2014(3): 34-36.
DAI C S, TANG S S, ZHANG C M, et al. Biological function of querecetin and its application in chicken production[J]. China Feed, 2014(3): 34-36 (in Chinese).
[21]
HINCKE M T, NYS Y, GAUTRON J, et al. The eggshell: structure, composition and mineralization[J]. Frontiers in Bioscience-Landmark, 2012, 17(4): 1266-1280.
[22]
卜舒扬. 不同产蛋期蛋鸡小肠及肾脏钙磷代谢相关因子表达变化的研究[D]. 硕士学位论文. 沈阳: 沈阳农业大学, 2017.
BU S Y. Study of intestine and kidney calcium-phosphorus metabolism related factors expression levels in different laying periods hens[D]. Master's Thesis. Shenyang: Shenyang Agricultural University, 2017. (in Chinese)
[23]
王德满. 糖尿病骨质疏松发病机制研究进展[J]. 医学信息, 2015, 28(6): 356-357.
WANG M D. Advances in the pathogenesis of diabetic osteoporosis[J]. Medical Information, 2015, 28(6): 356-357 (in Chinese).
[24]
ARJMANDI B H, LUCAS E A, KHALIL D A, et al. One year soy protein supplementation has positive effects on bone formation markers but not bone density in postmenopausal women[J]. Nutrition Journal, 2005, 4: 8. DOI:10.1186/1475-2891-4-8
[25]
李炜, 牛建昭, 王继峰, 等. 槲皮素的植物雌激素作用及其受体机制研究[J]. 中国医院药学杂志, 2015, 35(2): 91-95.
LI W, NIU J Z, WANG J F, et al. Research on phytoestrogenic effects and its receptor mechanism of quercetin[J]. Chinese Journal of Hospital Pharmacy, 2015, 35(2): 91-95 (in Chinese).
[26]
刘莹. 槲皮素对蛋鸡生产性能和蛋品质的影响[D]. 硕士学位论文. 哈尔滨: 东北农业大学, 2013.
LIU Y. Effects of quercetin on performance and egg quality in laying hens[D]. Master's Thesis. Harbin: Northeast Agricultural University, 2013. (in Chinese)
[27]
郎香花, 章敏, 陈心怡, 等. 重组人血小板生成素联合小剂量的地塞米松治疗重症原发免疫性血小板减少症的效果[J]. 当代医药论丛, 2018, 16(4): 107-108.
LANG X H, ZHANG M, CHEN X Y, et al. Effects of recombinant human thrombopoietin combined with low-dose dexamethasone in the treatment of severe primary immune thrombocytopenia[J]. Contemporary Medicine Forum, 2018, 16(4): 107-108 (in Chinese).
[28]
赵志勇, 缪珩, 韦玉和, 等. 大型血小板比率与2型糖尿病并发缺血性脑卒中的关系[J]. 川北医学院学报, 2016, 31(2): 211-213.
ZHAO Z Y, MIAO H, WEI Y H, et al. Relationship between large platelet ratio and type 2 diabetes mellitus complicated by ischemic stroke[J]. Journal of North Sichuan Medical College, 2016, 31(2): 211-213 (in Chinese).
[29]
王改合, 王娅菲. 血小板四项参数检测在脑缺血性疾病中的变化分析[J]. 中国临床研究, 2013, 26(5): 500.
WANG G H, WANG Y F. Analysis of changes of four parameters of platelet in cerebral ischemic diseases[J]. Chinese Journal of Clinical Research, 2013, 26(5): 500 (in Chinese).
[30]
宋卫珍, 周晓婷, 郑江南. 肺栓塞患者中大型血小板比率的临床价值[J]. 中外医学研究, 2019, 17(21): 27-29.
SONG W Z, ZHOU X T, ZHENG J N. The clinical value of platelet-large cell ratio of patients with pulmonary embolism[J]. Chinese and Foreign Medical Research, 2019, 17(21): 27-29 (in Chinese).
[31]
PENG J, LI Q D, LI K Y, et al. Quercetin improves glucose and lipid metabolism of diabetic rats: involvement of Akt signaling and SIRT1[J]. Journal of Diabetes Research, 2017, 2017: 3417306.
[32]
PAN Y E, LIU Z C, CHANG C J, et al. Feed restriction ameliorates metabolic dysregulation and improves reproductive performance of meat-type country chickens[J]. Animal Reproduction Science, 2014, 151(3/4): 229-236.
[33]
李云雷, 薛夫光, 徐松山, 等. 产蛋后期母鸡脂肪沉积量与繁殖性能相关性研究[J]. 畜牧兽医学报, 2018, 49(6): 1163-1168.
LI Y L, XUE F G, XU S S, et al. Relationship between fat deposition and reproduction performance of Beijing-You chickens during the late stage of reproductive period[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(6): 1163-1168 (in Chinese).
[34]
ROCCA C, ALBANO L, GRANIERI M C, et al. Novel anti-obesity quercetin-derived Q2 prevents metabolic disorders in rats fed with high-fat diet[J]. Vascular Pharmacology, 2018, 103/105: 58.
[35]
ESEBERRI I, MIRANDA J, LASA A, et al. Doses of quercetin in the range of serum concentrations exert delipidating effects in 3T3-L1 preadipocytes by acting on different stages of adipogenesis, but not in mature adipocytes[J]. Oxidative Medicine and Cellular Longevity, 2015, 2015: 480943.
[36]
HSU C L, YEN G C. Induction of cell apoptosis in 3T3-L1 pre-adipocytes by flavonoids is associated with their antioxidant activity[J]. Molecular Nutrition & Food Research, 2006, 50(11): 1072-1079.
[37]
AHN J, LEE H, KIM S, et al. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways[J]. Biochemical and Biophysical Research Communications, 2008, 373(4): 545-549.
[38]
王密. 槲皮素调节肉鸡脂质代谢的信号转导机制[D]. 博士学位论文. 哈尔滨: 东北农业大学, 2020.
WANG M. Signal transduction mechanism of quercetin regulating lipid metabolism in broilers[D]. Ph. D. Thesis. Harbin: Northeast Agricultural University, 2020. (in Chinese)
[39]
李秀丽, 邹继红, 刘青妍, 等. 槲皮素改善肝细胞脂质堆积作用的实验研究[J]. 时珍国医国药, 2011, 22(10): 2384-2386.
LI X L, ZHOU J H, LIU Q Y, et al. Effects of quercetin on lipid accumulation in hepatocytes[J]. Lishizhen Medicine and Materia Research, 2011, 22(10): 2384-2386 (in Chinese).
[40]
PANCHAL S K, POUDYAL H, BROWN L. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats[J]. The Journal of Nutrition, 2012, 142(6): 1026-1032.
[41]
LEE J S, CHA Y J, LEE K H, et al. Onion peel extract reduces the percentage of body fat in overweight and obese subjects: a 12-week, randomized, double-blind, placebo-controlled study[J]. Nutrition Research and Practice, 2016, 10(2): 175-181.
[42]
MOON J, DO H J, KIM O Y, et al. Antiobesity effects of quercetin-rich onion peel extract on the differentiation of 3T3-L1 preadipocytes and the adipogenesis in high fat-fed rats[J]. Food and Chemical Toxicology, 2013, 58: 347-354.
[43]
MENEZES R, RODRIGUEZ-MATEOS A, KALTSATOU A, et al. Impact of flavonols on cardiometabolic biomarkers: a Meta-analysis of randomized controlled human trials to explore the role of inter-individual variability[J]. Nutrients, 2017, 9(2): 117.
[44]
YANG H, YANG T T, HENG C, et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice[J]. Phytotherapy Research, 2019, 33(12): 3140-3152.
[45]
GLÄBER G, GRAEFE E U, STRUCK F, et al. Comparison of antioxidative capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites[J]. Phytomedicine, 2002, 9(1): 33-40.
[46]
李垚, 赵伟, 欧阳文文, 等. 槲皮素对肉鸡脂肪细胞脂质代谢作用[J]. 东北农业大学学报, 2013, 44(3): 58-65.
LI Y, ZHAO W, OUYANG W W, et al. Effect of quercetin lipid metabolism in adipocytes[J]. Journal of Northeast Agricultural University, 2013, 44(3): 58-65 (in Chinese).
[47]
左伟勇, 王国杰, 韩正康. 添喂大豆黄酮对蛋鸡摄食行为及有关内分泌的影响[J]. 南京农业大学学报, 2003, 26(3): 76-79.
ZUO W Y, WANG G J, HAN Z K. Effect of diet supplemented with daidzein on the feed intake and endocrine mechanism involved in laying hens[J]. Journal of Nanjing Agricultural University, 2003, 26(3): 76-79 (in Chinese).
[48]
JEONG S M, KANG M J, CHOI H N, et al. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice[J]. Nutrition Research and Practice, 2012, 6(3): 201-207.
[49]
GABALLAH H H, ZAKARIA S S, MWAFY S E, et al. Mechanistic insights into the effects of quercetin and/or GLP-1 analogue liraglutide on high-fat diet/streptozotocin-induced type 2 diabetes in rats[J]. Biomedicine & Pharmacotherapy, 2017, 92: 331-339.
[50]
KADOWAKI T, YAMAUCHI T. Adiponectin and adiponectin receptors[J]. Endocrine Reviews, 2005, 26(3): 439-451.
[51]
YAMAUCHI T, KAMON J, WAKI H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity[J]. Nature Medicine, 2001, 7(8): 941-946.