2. 青海省高原放牧家畜营养与饲料科学重点实验室, 西宁 810016;
3. 青海省牦牛工程技术研究中心, 西宁 810016;
4. 泽库县西卜沙乡 团结村生态畜牧业专业合作社, 泽库 811400
2. Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China;
3. Yak Engineering Technology Research Centre of Qinghai Province, Xining 810016, China;
4. Ecological Animal Husbandry Professional Cooperative of Tuanjie Village, Xibusha Township, Zeku County, Zeku 811400, China
牦牛是青藏高原珍贵的草食家畜,其适应高海拔、低氧环境,并为当地牧民提供牛奶、肉类等必需品,是当地经济发展的主要推动力[1]。随着牦牛产业的迅速发展,牦牛短期育肥模式需要向更加科学的舍饲育肥方向发展,牦牛育肥的精准饲喂将成为研究热点。适宜的饲粮精粗比可以提高反刍动物的生长性能和营养物质的消化能力,优化瘤胃微生物区系。饲粮中高精料水平易导致瘤胃酸中毒;而精料水平过低,反刍动物摄入的能量和蛋白质水平不足,则导致生长性能下降[2-3]。目前,反刍动物在不同饲粮精粗比下对营养物质的消化利用、血清生化指标及瘤胃发酵参数的影响已有较多的研究[4-6]。Chen等[7]研究结果显示,提高饲粮精粗比可以提高母羊的营养物质表观消化率。崔安[8]研究表明,秦川肉牛在饲喂30:70、50:50和70:30的精粗比饲粮时,饲喂70:30精粗比饲粮组的平均日增重(ADG)和瘤胃挥发性脂肪酸产量显著高于其他2组。本试验在对育肥前期牦牛各项指标研究[9]的基础上,以体重为245 kg左右的牦牛为研究对象,探讨不同精粗比饲粮对育肥后期牦牛生长性能、营养物质表观消化率、血清生化指标及瘤胃发酵参数的影响,旨在找出育肥后期牦牛适宜的饲粮精粗比,以达到舍饲牦牛短期育肥的目的。
1 材料与方法 1.1 试验地点本试验于2020年3—4月在青海省贵南县老扎西养殖基地进行。试验在育肥前期试验的基础上继续进行。
1.2 试验动物与试验设计育肥前期试验结束后,选取健康、体况良好和体重[(246.43±14.85) kg]相近的公牦牛36头,随机分为3组,每组12头。3组试验牦牛分别饲喂精粗比为65:35、70:30和75:25的试验饲粮,分别记为C65组、C70组和C75组。预试期15 d,正试期60 d。
1.3 试验饲粮与饲养管理试验饲粮的配制参考《牦牛营养研究论文集》[10],试验饲粮组成及营养水平见表 1。每天饲喂2次(08:00和17:00),保证充足的水源,统一管理。
![]() |
表 1 试验饲粮组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of experimental diets (DM basis) |
正式试验结束时进行空腹颈静脉采血,血样静置后离心,取上清液2 mL置于-20 ℃保存待测。在试验第60天,空腹条件下用胃管式采样器采150 mL瘤胃液,4层纱布过滤后取50 mL瘤胃液立即测定pH,剩余样品液氮保存待测。饲养试验结束后每组选择体重相近的4头牦牛进行消化试验,参照Zhao等[12]方法,连续3 d每隔6 h收集1次粪样,混合连续收集3 d的粪样,取300 g左右,加入30 mL 10 %硫酸固氮。消化试验期间每天采集饲粮及剩余样品,充分混合后取500 g左右,粪样与饲粮65 ℃烘干至恒重,粉碎后-20 ℃保存待测。
1.5 指标测定 1.5.1 生长性能预试期和正试期结束时,对牦牛进行空腹称重并计算平均日增重。每天晨饲前记录投料量,第2天晨饲前记录第1天的余料量,并计算干物质采食量(DMI)和料重比(F/G)。
1.5.2 营养物质表观消化率干物质(DM)、粗蛋白质(CP)、钙(Ca)和磷(P)含量的测定参考国家标准[13-16]。中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)含量的测定采用盐酸不溶灰分(AIA)法[17],计算公式参考赵金标等[18]。
1.5.3 血清生化指标血清生化指标委托青海省人民医院测定,使用仪器为全自动生化仪(AU5831,贝克曼库尔特公司,美国)。
1.5.4 瘤胃发酵参数pH用便携式pH计(HI98108)测定。氨态氮(NH3-N)含量采用比色法[19]测定。采用考马斯亮蓝法[20]测定微生物蛋白(MCP)含量。使用气相色谱仪(GC-2014,岛津公司,日本)测定挥发性脂肪酸(VFA)含量[21-22]。
1.6 数据分析采用SPSS 26.0软件进行单因素方差分析,Duncan氏法进行组间多重比较。所有试验结果以平均值和均值标准误(SEM)表示,P < 0.05表示差异显著。
2 结果 2.1 不同精粗比饲粮对育肥后期牦牛生长性能的影响由表 2可知,C65组和C70组的总增重和平均日增重显著高于C75组(P < 0.05),料重比显著低于C75组(P < 0.05)。各组之间终末体重和干物质采食量无显著差异(P>0.05)。
![]() |
表 2 不同精粗比饲粮对育肥后期牦牛生长性能的影响 Table 2 Effects of diets with different concentrate to roughage ratios on growth performance of yak in late stage of fattening |
由表 3可知,随着饲粮精粗比的增加,干物质、粗蛋白质、中性洗涤纤维表观消化率逐渐降低,均在C65组最高;其中,C65组和C70组的干物质表观消化率显著高于C75组(P < 0.05),C65组的粗蛋白质表观消化率显著高于C75组(P < 0.05),C65组的中性洗涤纤维表观消化率显著高于C70组和C75组(P < 0.05)。各组之间酸性洗涤纤维表观消化率无显著差异(P>0.05)。
![]() |
表 3 不同精粗比饲粮对育肥后期牦牛营养物质表观消化率的影响 Table 3 Effects of diets with different concentrate to roughage ratios on nutrient apparent digestibilities of yak in late stage of fattening |
由表 4可知,C75组的血清球蛋白(GLB)含量和谷丙转氨酶(ALT)活性显著低于C65组和C70组(P < 0.05)。各组之间其余血清生化指标无显著差异(P>0.05)。
![]() |
表 4 不同精粗比饲粮对育肥后期牦牛血清生化指标的影响 Table 4 Effects of diets with different concentrate to roughage ratios on serum biochemical indexes of yak in late stage of fattening |
由表 5可知,随着饲粮精粗比的增加,瘤胃液pH和MCP含量逐渐降低,C65组的瘤胃液pH和MCP含量显著高于C70组和C75组(P < 0.05)。随着饲粮精粗比的增加,瘤胃液NH3-N含量逐渐升高,C65组的瘤胃液NH3-N含量显著低于C70组和C75组(P < 0.05)。C65组的瘤胃液异丁酸含量显著低于C70组和C75组(P < 0.05)。C65组的瘤胃液异戊酸含量显著低于C70组(P < 0.05)。
![]() |
表 5 不同精粗比饲粮对育肥后期牦牛瘤胃发酵参数的影响 Table 5 Effects of diets with different concentrate to roughage ratios on rumen fermentation parameters of yak in late stage of fattening |
育肥牦牛在最后45~60 d称为育肥后期,这段时期要控制饲料的精粗比,并且要给牦牛提供更多的精饲料和充足的饮水;这种饲喂方式可以促进肌肉生长[23]。适宜的精料比例会对营养物质的消化起到促进作用[24]。探究育肥后期牦牛适宜饲粮精粗比也显得尤为重要。戴东文等[9]研究发现,饲粮精粗比为65:35组牦牛的平均日增重显著高于其他各组。李蒋伟等[25]研究了不同饲粮精粗比对藏羊生长性能的影响,发现饲喂精粗比为60:40的饲粮时,藏羊的平均日增重最高。本试验结果表明,育肥后期牦牛的平均日增重在C65组最高,与以上研究结果一致。刘晓牧等[26]研究表明,增加精料饲喂量可改变反刍动物瘤胃微生物区系,增强粗纤维的降解能力,提高干物质采食量。本试验结果表明,3组之间牦牛的干物质采食量差异不显著,原因可能是高精料水平下反刍动物所需的干物质采食量比较稳定。料重比随着饲粮精料水平的增加而增加,原因可能是高精料水平下,瘤胃微生物区系的平衡被打破,导致营养物质不被吸收、营养物质表观消化率降低。由此可见,育肥后期的牦牛对精料耐受能力有限[27]。
3.2 不同精粗比饲粮对育肥后期牦牛营养物质表观消化率的影响当饲粮精料比例过高时,瘤胃内大量碳水化合物发酵导致pH降低,同时降低了粗饲料在瘤胃内的分解速率,从而降低了反刍动物的营养物质表观消化率[24]。本试验结果表明,随着饲粮精粗比的增加,干物质表观消化率逐渐降低,且C65组和C70组显著高于C75组。这与周汉林等[28]研究中当精料比例超过70%时干物质表观消化率降低是一致的。徐萍等[29]李斌昌[30]研究发现,当精料的进食水平增加或者饲粮精粗比增加时,肉牛粗蛋白质表观消化率显著升高。但本试验研究表明,随着饲粮精粗比的增加,育肥后期牦牛粗蛋白质表观消化率逐渐降低,其原因可能是育肥后期牦牛在高精料水平下,65:35的精粗比是较为合适的。饲粮中的中性洗涤纤维含量变化是通过调整精粗比来实现的,随着饲粮精粗比的增加,中性洗涤纤维表观消化率逐渐降低,C65组的中性洗涤纤维表观消化率最高,这与李斌昌等[31]对中性洗涤纤维表观消化率的研究结果一致。
3.3 不同精粗比饲粮对育肥后期牦牛血清生化指标的影响血清中的各项生化指标都与动物机体的代谢有着密切的联系,葡萄糖是动物生长发育和机体代谢的主要来源,是机体中糖动态平衡的主要体现,也能反映机体的健康和营养水平。本试验结果表明,C65组血清葡萄糖含量最高,随着饲粮精粗比的增加,血清葡萄糖含量逐渐下降。燕文平等[32]研究结果表明,在一定的范围内适当提高精料的比例,血清葡萄糖含量也会随之增加,与本试验结果不一致。这说明超过一定的精料水平后,瘤胃内容物发酵异常使革兰氏阳性菌增殖,导致产生大量乳酸,影响机体代谢和生长发育[33]。
血清总蛋白、尿素氮含量是反映动物对营养物质吸收和代谢的重要指标[9, 24, 34]。本试验中,血清总蛋白含量随着饲粮精粗比的增加而降低,血清尿素氮含量随着饲粮精粗比的增加而升高。戴东文等[9]研究发现,血清总蛋白含量随着饲粮精粗比的增加先升高再降低,在精粗比为65:35时达到最大;血清尿素氮含量随着饲粮精粗比的增加先降低再升高,在精粗比为65:35时最小,此结果与本试验结果一致。随着饲粮精粗比的增加,血清尿素氮含量升高,说明动物体内氮沉积减少,蛋白质合成量也减少,育肥效果不理想。
血清中转氨酶的活性与肝脏的代谢密切相关。肝脏代谢异常会导致肝细胞受损,从而导致血清转氨酶的活性升高[35]。本试验表明,C65组和C70组的血清谷丙转氨酶活性显著高于C75组,说明在一定范围内提高精料水平有利于牦牛的育肥,同时也可能会对反刍动物的肝脏代谢产生影响。球蛋白具有免疫作用,机体的蛋白之水平在一定程度上可反映机体的免疫状况[36]。本试验表明,C65组和C70组的血清球蛋白含量显著高于C75组,表明适当提高精料水平有助于提高牦牛自身的免疫功能。
3.4 不同精粗比饲粮对育肥后期牦牛瘤胃发酵参数的影响挥发性脂肪酸可以为反刍动物提供60%~80%的可消化能量,是瘤胃微生物增殖的重要碳源,也是评价瘤胃发酵状况的主要指标[37]。秦正君等[38]研究发现,精饲料比例越高,瘤胃中的总挥发性脂肪酸含量随之升高,pH随之降低。本试验研究结果表明,C65组的瘤胃液pH显著高于C70组和C75组,瘤胃液总挥发性脂肪酸含量随着饲粮精粗比的增加逐渐升高,从而导致瘤胃pH降低[32]。本试验还发现,饲粮精粗比的变化对瘤胃液乙酸、丙酸、丁酸含量没有显著影响,而异丁酸含量随着饲粮精粗比的增加逐渐升高,异戊酸含量随着饲粮精粗比的增加先升高再降低。其原因可能是精料比例过高、动物年龄、采食时间、反刍动物的健康状况以及饲养环境或海拔高度的影响[39]。NH3-N是合成MCP的前体物质,其含量是反刍动物瘤胃发酵参数的重要指标,也是瘤胃微生物生长的重要条件。本试验研究表明,随着饲粮精粗比的增加,瘤胃液NH3-N含量逐渐升高,瘤胃液MCP含量逐渐下降。胡丹丹[40]研究发现,奶牛瘤胃中NH3-N含量随着饲粮精粗比的增加而升高,与本试验结果一致。这说明了在精料比例增加的过程中,NH3-N的利用被抑制,导致合成的MCP含量降低,本试验中随着精料比例的增加MCP含量降低也证实了这一点。
4 结论增加饲粮精粗比可降低育肥后期牦牛总增重和平均日增重,对蛋白质的合成、营养物质的消化有一定的抑制作用。本试验条件下,育肥后期牦牛饲粮精粗比为65:35时育肥效果最佳。
[1] |
LONG R J, DING L M, SHANG Z H, et al. The yak grazing system on the Qinghai-Tibetan plateau and its status[J]. The Rangeland Journal, 2008, 30(2): 241-246. DOI:10.1071/RJ08012 |
[2] |
TAYYAB U, WILKINSON R G, CHARLTON G L, et al. Grass silage particle size when fed with or without maize silage alters performance, reticular pH and metabolism of Holstein-Friesian dairy cows[J]. Animal, 2019, 13(3): 524-532. DOI:10.1017/S1751731118001568 |
[3] |
王思飞. 日粮精粗比对滩羊肉品质以及体脂和肌肉CLA调控的影响[D]. 硕士学位论文. 银川: 宁夏大学, 2018. WANG S F. Effects of dietary forage to concentrate ratio on meat quality and CLA of Tan sheep[D]. Master's Thesis. Yinchuan: Ningxia University, 2018. (in Chinese) |
[4] |
AMAT S, MCKINNON J J, PENNER G B, et al. Effects of dietary sulfur concentration and forage-to-concentrate ratio on ruminal fermentation, sulfur metabolism, and short-chain fatty acid absorption in beef heifers[J]. Journal of Animal Science, 2014, 92(2): 712-723. DOI:10.2527/jas.2013-7254 |
[5] |
郝怀志, 白滨, 董俊, 等. 不同精粗比日粮对肉用绵羊的生产性能影响[J]. 畜牧兽医杂志, 2016, 35(6): 7-9, 12. HAO H Z, BAI B, DONG J, et al. Effect of different dietary forage to concentrate ratios on the growth performance of mutton sheep[J]. Journal of Animal Science and Veterinary Medicine, 2016, 35(6): 7-9, 12 (in Chinese). DOI:10.3969/j.issn.1004-6704.2016.06.002 |
[6] |
DE O, NASCIMENTO, SANTOS S A, DOS S, PINA D, et al. Effect of roughage-to-concentrate ratios combined with different preserved tropical forages on the productive performance of feedlot lambs[J]. Small Ruminant Research, 2020, 182: 15-21. DOI:10.1016/j.smallrumres.2019.11.002 |
[7] |
CHEN H, WANG C J, HUASAI S, et al. Effects of dietary forage to concentrate ratio on nutrient digestibility, ruminal fermentation and rumen bacterial composition in Angus cows[J]. Scientific Reports, 2021, 11(1): 17023. DOI:10.1038/s41598-021-96580-5 |
[8] |
崔安. 不同精粗比日粮对舍饲秦川肉牛甲烷产量和瘤胃发酵的影响[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2016. CUI A. The effects of different concentrate to forage ratio in Qinchuan beef cattle mathane gas emissions and rumen fermentation[D]. Master's Thesis. Yangling: Northwest A&F University, 2016. (in Chinese) |
[9] |
戴东文, 王书祥, 周振明, 等. 不同精粗比饲粮对育肥前期牦牛生长性能、血清生化指标及瘤胃发酵参数的影响[J]. 动物营养学报, 2021, 33(3): 1555-1564. DAI D W, WANG S X, ZHOU Z M, et al. Effects of diets with different concentrate-roughage ratios on growth performance, serum biochemical indexes and rumen fermentation parameters of yak in early stage of fattening[J]. Chinese Journal of Animal Nutrition, 2021, 33(3): 1555-1564 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.03.037 |
[10] |
胡令浩. 牦牛营养研究论文集[M]. 西宁: 青海人民出版社, 1997. HU L H. Recent advances in yak nutrition[M]. Xining: Qinghai People's Publishing House, 1997 (in Chinese). |
[11] |
冯仰廉, 陆治年. 奶牛营养需要和饲料成分[M]. 3版. 北京: 中国农业出版社, 2007. FENG Y L, LU Z N. The nutritional requirements and feed ingredients of dairy cows[M]. 3rd ed. Beijing: China Agriculture Press, 2007 (in Chinese). |
[12] |
ZHAO X H, CHEN Z D, ZHOU S, et al. Effects of daidzein on performance, serum metabolites, nutrient digestibility, and fecal bacterial community in bull calves[J]. Animal Feed Science and Technology, 2017, 225: 87-96. DOI:10.1016/j.anifeedsci.2017.01.014 |
[13] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 饲料中水分的测定: GB/T 6435—2014[S]. 北京: 中国标准出版社, 2014. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Determination of moisture in feed stuffs: GB/T 6435—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese) |
[14] |
国家市场监督管理总局, 国家标准化管理委员会. 饲料中粗蛋白的测定凯氏定氮法: GB/T 6432—2018[S]. 北京: 中国标准出版社, 2018. State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Determination of crude protein in feeds-Kjeldahl method: GB/T 6432—2018[S]. Beijing: Standards Press of China, 2018. (in Chinese) |
[15] |
中华人民共和国国家质量监督检验检疫总局. 饲料中钙的测定: GB/T 6436—2002[S]. 北京: 中国标准出版社, 2002. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Determination of calcium in feed: GB/T 6436—2002[S]. Beijing: Standards Press of China, 2002. (in Chinese) |
[16] |
中华人民共和国国家质量监督检验检疫总局. 饲料中总磷的测定分光光度法: GB/T 6437—2002[S]. 北京: 中国标准出版社, 2002. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Determination of phosphorus in feed—spectphotometry: GB/T 6437—2002[S]. Beijing: Standards Press of China, 2002. (in Chinese) |
[17] |
LEE C, HRISTOV A N. Short communication: evaluation of acid-insoluble ash and indigestible neutral detergent fiber as total-tract digestibility markers in dairy cows fed corn silage-based diets[J]. Journal of Dairy Science, 2013, 96(8): 5295-5299. DOI:10.3168/jds.2012-6442 |
[18] |
赵金标, 宋孝明, 李忠超, 等. 不同纤维原料在生长猪的有效能和营养物质表观全肠道消化率的测定[J]. 动物营养学报, 2021, 33(11): 6114-6122. ZHAO J B, SONG X M, LI Z C, et al. Determination of available energy and nutrient apparent total tract digestibility of different fibrous ingredients in growing pigs[J]. Chinese Journal of Animal Nutrition, 2021, 33(11): 6114-6122 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.11.013 |
[19] |
冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进[J]. 畜牧与饲料科学, 2010(6): 37. FENG Z C, GAO M. Improvement of the method of measuring ammonia N concentration of rumen liquid by colorimetric determination[J]. Animal Husbandry and Feed Science, 2010(6): 37 (in Chinese). DOI:10.3969/j.issn.1672-5190.2010.06.015 |
[20] |
高雨飞. 高精料日粮条件下烟酸对牛瘤胃微生物区系的影响[D]. 硕士学位论文. 南昌: 江西农业大学, 2016. GAO Y F. Effects of niacin on microorganism system in the rumen of cattle under high-concentrate diet[D]. Master's Thesis. Nanchang: Jiangxi Agricultural University, 2016. (in Chinese) |
[21] |
曹庆云, 周武艺, 朱贵钊, 等. 气相色谱测定羊瘤胃液中挥发性脂肪酸方法研究[J]. 中国饲料, 2006(24): 26-28. CAO Q Y, ZHOU W Y, ZHU G Z, et al. Study on the methods of determination of volatile fatty acid in the rumen liquid of lambs by gas chromatography[J]. China Feed, 2006(24): 26-28 (in Chinese). DOI:10.3969/j.issn.1004-3314.2006.24.011 |
[22] |
王加启. 反刍动物营养学研究方法[M]. 北京: 现代教育出版社, 2011. WANG J Q. Ruminant nutrition research method[M]. Beijing: Modern Education Press, 2011 (in Chinese). |
[23] |
朱丰华. 育肥牛的饲养与管理[J]. 兽医导刊, 2021(7): 76. ZHU F H. Feeding and management of fattening cattle[J]. Veterinary Orientation, 2021(7): 76 (in Chinese). |
[24] |
姜南, 朱彦宾, 孙光明, 等. 不同精粗比饲粮对牦牛养分表观消化率、血浆生化及抗氧化指标的影响[J]. 中国草食动物科学, 2021, 41(3): 43-48. JIANG N, ZHU Y B, SUN G M, et al. Effects of roughage to concentrate ratio on nutrient apparent digestibility, plasma biochemical parameters and antioxidant capacity of yak[J]. China Herbivore Science, 2021, 41(3): 43-48 (in Chinese). DOI:10.3969/j.issn.2095-3887.2021.03.008 |
[25] |
李蒋伟, 王志有, 侯生珍, 等. 日粮精粗比对育肥藏羊瘤胃组织形态及微生物菌群的影响[J]. 草业学报, 2021, 30(3): 100-109. LI J W, WANG Z Y, HOU S Z, et al. Effects of dietary concentrate: roughage ratio on rumen morphology and microbial flora in fattening Tibetan sheep[J]. Acta Prataculturae Sinica, 2021, 30(3): 100-109 (in Chinese). |
[26] |
刘晓牧, 王中华, 李福昌, 等. 精料补饲水平对绵羊饲料利用效率和氮平衡的影响[J]. 畜牧兽医学报, 2004, 35(3): 266-269. LIU X M, WANG Z H, LI F C, et al. The influence of mixed concentrate supplementation level on feed conversion rate and nitrogen balance in sheep fed dry corn stalk based diets[J]. Acta Veterinaria et Zootechnica Sinica, 2004, 35(3): 266-269 (in Chinese). DOI:10.3321/j.issn:0366-6964.2004.03.006 |
[27] |
程光民, 徐相亭, 刘洪波. 饲粮精粗比对育成期杜寒杂交羊生产性能、血清生化指标及经济效益的影响[J]. 黑龙江畜牧兽医, 2017(1): 125-127, 134. CHENG G M, XU X T, LIU H B. The effect of dietary concentrate to forage ratio on the production performance, serum biochemical indexes and economic benefits of Duhan hybrid sheep during the breeding period[J]. Heilongjiang Animal Science and Veterinary Medicine, 2017(1): 125-127, 134 (in Chinese). |
[28] |
周汉林, 莫放, 李琼, 等. 日粮中性洗涤纤维水平对中国荷斯坦公牛营养物质消化率的影响[J]. 海南大学学报(自然科学版), 2006, 24(3): 275-283. ZHOU H L, MO F, LI Q, et al. Influence of dietary neutral detergent fiber levels on Chinese Holstein male calves' digestibility of nutrient substances[J]. Natural Science Journal of Hainan University (Natural Science Edition), 2006, 24(3): 275-283 (in Chinese). DOI:10.3969/j.issn.1004-1729.2006.03.015 |
[29] |
徐萍, 莫放, 陈瑶, 等. 日粮精料进食水平对肉牛消化道营养物质流量和表观消化率的影响[J]. 中国草食动物, 2007, 27(4): 12-15. XU P, MO F, CHEN Y, et al. Effects of dietary concentrate intake on abomasum nutrient flows and nutrient digestibility of diets on total digestive tract in steers[J]. China Herbivores, 2007, 27(4): 12-15 (in Chinese). DOI:10.3969/j.issn.2095-3887.2007.04.004 |
[30] |
李斌昌. 日粮精粗比对不同月龄后备奶牛甲烷排放与生长性能和营养物质消化的影响[D]. 硕士学位论文. 兰州: 甘肃农业大学, 2019. LI B C. Effects of the ratios of concentrates to roughages on methane emission, growth performance and nutrient digestion of replacement heifers at different ages[D]. Master's Thesis. Lanzhou: Gansu Agricultural University, 2019. (in Chinese) |
[31] |
李斌昌, 董利锋, 王贝, 等. 日粮不同精粗比对9月龄后备奶牛甲烷排放与生长性能及营养物质消化率的影响[J]. 饲料工业, 2019, 40(11): 12-18. LI B C, DONG L F, WANG B, et al. Effects of concentrate-to-forage ratio on methane emissions, growth performance and apparent digestibility of nutrients in 9-month-old dairy cows[J]. Feed Industry, 2019, 40(11): 12-18 (in Chinese). |
[32] |
燕文平, 张莹莹, 王聪, 等. 不同精粗比日粮对肉牛生产性能和血液指标的影响[J]. 饲料研究, 2014(21): 54-57. YAN W P, ZHANG Y Y, WANG C, et al. Effects of diets with different concentrate-to-forage ratios on production performance and blood indexes of beef cattle[J]. Feed Research, 2014(21): 54-57 (in Chinese). |
[33] |
叶尔兰·阿赛提. 羊瘤胃酸中毒的病因、临床症状、诊断和综合疗法[J]. 现代畜牧科技, 2021(7): 93-94. YEERLAN A S T. The etiology, clinical symptoms, diagnosis and comprehensive treatment of rumen acidosis in sheep[J]. Modern Animal Husbandry Science & Technology, 2021(7): 93-94 (in Chinese). |
[34] |
柏峻, 李美发, 辛均平, 等. 饲粮能量水平对育肥后期锦江牛营养物质表观消化率、瘤胃发酵及血清生化指标的影响[J]. 动物营养学报, 2020, 32(4): 1713-1720. BAI J, LI M F, XIN J P, et al. Effects of dietary energy level on nutrient apparent digestibility, rumen fermentation and serum biochemical indexes of Jinjiang cattle in later stage of fattening[J]. Chinese Journal of Animal Nutrition, 2020, 32(4): 1713-1720 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.04.030 |
[35] |
TIAN X Z, LI J X, LUO Q Y, et al. Effects of purple corn anthocyanin on blood biochemical indexes, ruminal fluid fermentation, and rumen microbiota in goats[J]. Frontiers in Veterinary Science, 2021, 8: 715710. DOI:10.3389/fvets.2021.715710 |
[36] |
张振宇, 梁春年, 姚喜喜, 等. 日粮不同营养水平对牦牛生产性能、屠宰指标和血清生化指标的影响[J]. 畜牧兽医学报, 2021, 52(1): 135-143. ZHANG Z Y, LIANG C N, YAO X X, et al. Effects of different nutrition levels of diets on production performance, slaughter indexes and serum biochemical indexes of yak[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(1): 135-143 (in Chinese). |
[37] |
ZHANG X, WANG H C, GUO X S. Comparative analysis of rumen fermentation parameters and bacterial profiles during adaption to different fattening stages in beef cattle fed TMR with various forage silage[J]. Animal Feed Science and Technology, 2021, 278: 115006. DOI:10.1016/j.anifeedsci.2021.115006 |
[38] |
秦正君, 王若勇, 时国峰, 等. 日粮精粗比对奶牛瘤胃发酵及生产性能的影响[J]. 畜牧兽医杂志, 2018, 37(1): 83-85. QIN Z J, WANG R Y, SHI G F, et al. Effect of dietary concentration and roughage ratio to rumen fermentation and production performance on dairy cow[J]. Journal of Animal Science and Veterinary Medicine, 2018, 37(1): 83-85 (in Chinese). DOI:10.3969/j.issn.1004-6704.2018.01.033 |
[39] |
李伟忠, 单安山. 挥发性脂肪酸在动物体内的作用[J]. 饲料博览, 2003(10): 5-7. LI W Z, SHAN A S. Impact of volatile fatty acid in animal[J]. Feed Review, 2003(10): 5-7 (in Chinese). DOI:10.3969/j.issn.1001-0084.2003.10.002 |
[40] |
胡丹丹. 不同精粗比日粮下奶牛瘤胃发酵与菌群结构及血清生化指标变化的研究[D]. 硕士学位论文. 银川: 宁夏大学, 2019. HU D D. Study the changes of rumen fermentation, flora structure and serum biochemical parameters on dairy cows with different ratios of concentrate and roughage[D]. Master's Thesis. Yinchuan: Ningxia University, 2019. (in Chinese) |