动物营养学报    2022, Vol. 34 Issue (6): 3570-3582    PDF    
棒晶束解离凹凸棒石对肉鸡生长性能、血清生化指标、抗氧化功能和肉品质的影响
王世祺 , 赵浩然 , 杜明芳 , 陈跃平 , 温超 , 周岩民     
南京农业大学动物科技学院, 南京 210095
摘要: 本试验旨在研究棒晶束解离凹凸棒石对肉鸡生长性能、血清生化指标、抗氧化功能和肉品质的影响。选取1日龄爱拔益加肉雏鸡288只, 随机分为6个组, 每组6个重复, 每个重复8只鸡(公母各占1/2)。各组肉鸡分别饲喂基础饲粮(对照组)、基础饲粮中添加1%常规凹凸棒石以及分别添加0.125%、0.250%、0.500%和1.000%解离凹凸棒石的试验饲粮。试验期42 d。结果表明: 1)与对照组相比, 饲粮添加0.500%解离凹凸棒石显著降低肉鸡试验前期(1~21日龄)料重比(P < 0.05)。2)饲粮添加常规凹凸棒石或解离凹凸棒石对肉鸡血清生化指标均无显著影响(P > 0.05)。3)与对照组相比, 饲粮添加0.500%解离凹凸棒石显著提高肉鸡血清总超氧化物歧化酶活性(P < 0.05), 显著降低血清丙二醛含量(P < 0.05);饲粮添加0.500%和1.000%解离凹凸棒石均显著降低肉鸡胸肌丙二醛含量(P < 0.05)。与对照组和1%常规凹凸棒石添加组相比, 饲粮添加0.500%和1.000%解离凹凸棒石均显著提高肉鸡胸肌谷胱甘肽过氧化物酶活性(P < 0.05)。4)与对照组相比, 饲粮添加0.500%和1.000%解离凹凸棒石分别显著降低肉鸡宰后24和48 h胸肌红度值(P < 0.05), 饲粮添加0.125%、0.500%和1.000%解离凹凸棒石均显著提高肉鸡宰后45 min胸肌pH(P < 0.05), 饲粮添加0.500%解离凹凸棒石显著降低肉鸡胸肌24 h滴水损失(P < 0.05), 饲粮添加不同水平解离凹凸棒石均显著降低肉鸡胸肌24 h蒸煮损失(P < 0.05);此外, 与1%常规凹凸棒石添加组相比, 饲粮添加0.500%解离凹凸棒石显著降低肉鸡胸肌24 h剪切力(P < 0.05)。由此可见, 饲粮添加0.500%解离凹凸棒石能够提高肉鸡生长性能, 提高机体抗氧化功能以及改善肌肉品质, 且效果优于常规凹凸棒石。
关键词: 棒晶束解离    凹凸棒石    肉鸡    生长性能    抗氧化功能    肉品质    
Effects of Crystal-Bundles Disaggregated Palygorskite on Growth Performance, Serum Biochemical Indices, Antioxidant Function and Meat Quality of Broilers
WANG Shiqi , ZHAO Haoran , DU Mingfang , CHEN Yueping , WEN Chao , ZHOU Yanmin     
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Abstract: This experiment aimed to investigate the effects of crystal-bundles disaggregated palygorskite on growth performance, serum biochemical indices, antioxidant function and meat quality of broilers. A total of 288 one-day-old Arbor Acres broiler chicks were randomly allocated into 6 groups, and each of which consisted of 6 replicates with 8 chicks per replicate (half male and half female). Chicks in the groups were given a basal diet (control group), and the basal diet supplemented with 1% conventional palygorskite and disaggregated palygorsikte at the levels of 0.125%, 0.250%, 0.500% and 1.000% for 42 days, respectively. The results showed as follows: 1) compared with the control group, dietary 0.500% disaggregated palygorskite significantly decreased the feed to gain ratio of broilers from 1 to 21 days of age (P < 0.05). 2) Dietary conventional or disaggregated palygorskite had no significant effects on serum biochemical indices of broilers (P > 0.05). 3) Compared with the control group, dietary 0.500% disaggregated palygorskite significantly increased the total superoxide dismutase activity and decreased the malondialdehyde content in serum of broilers (P < 0.05); dietary 0.500% and 1.000% disaggregated palygorskite both significantly decreased the malondialdehyde content in breast muscle of broilers (P < 0.05). Compared with the control group and 1% conventional palygorskite supplemental group, dietary 0.500% and 1.000% disaggregated palygorskite significantly increased the glutathione peroxidase activity in breast muscle of broilers (P < 0.05). 4) Compared with the control group, dietary 0.500% and 1.000% disaggregated palygorskite significantly decreased the redness value of breast muscle of broilers at 24 and 48 h after slaughter, respectively (P < 0.05), dietary 0.125%, 0.500% and 1.000% disaggregated palygorskite significantly increased the pH in breast muscle of broilers at 45 min after slaughter (P < 0.05). Moreover, dietary 0.500% disaggregated palygorskite significantly decreased the drip loss of breast muscle of broilers at 24 h after slaughter (P < 0.05), and different supplemental levels of disaggregated palygorskite significantly reduced the cooking loss of breast muscle of broilers at 24 h after slaughter (P < 0.05). Additionally, compared with the 1% conventional palygorskite supplemental group, dietary 0.500% disaggregated palygorskite significantly reduced the shearing force of breast muscle of broilers at 24 h (P < 0.05). In conclusion, dietary 0.500% disaggregated palygorskite can improve the growth performance, antioxidant function and meat quality of broilers, and its beneficial consequences are more pronounced than its conventional counterpart.
Key words: disaggregation of crystal-bundles    palygorskite    broilers    growth performance    antioxidant function    meat quality    

凹凸棒石,又称坡缕石或坡缕缟石,是一种天然层链状结构的含水富镁铝硅酸盐黏土矿物,理论分子式为Si8Mg8O20(OH)2(H2O)4·4H2O,是凹凸棒石黏土的主要组分,具有良好的吸附性、胶体性、离子交换性和承载性等特性[1-4]。凹凸棒石对动物无毒、无害,目前已作为饲料原料或添加剂应用于饲粮中。Zhang等[5]研究表明,颗粒饲粮中添加凹凸棒石线性提高了肉鸡的平均日增重(ADG)和平均日采食量(ADFI),且最适添加水平为1%。粉状饲粮中添加1%凹凸棒石虽不影响肉鸡生长性能[6],但可显著提高肉鸡对营养物质的表观利用率[7]。杜明芳[8]研究发现,饲粮添加1%凹凸棒石可以提高肉鸡胸肌抗氧化能力,改善肌肉品质。Cheng等[9]亦报道,凹凸棒石还能够降低肉鸡胸肌和腿肌中铅水平。凹凸棒石能保护动物肠道屏障,减少有毒有害物质黏附到肠道上皮,吸附病原微生物并抑制其在肠道中的繁殖,提高肉鸡肠道、肝脏等器官的抗氧化能力和肠道免疫功能[10-13]。然而,肉鸡粉状饲粮中添加2%纯化后的凹凸棒石显著增加了其料重比(F/G)[14]。凹凸棒石对肉鸡的作用可能与其品位、饲料料型及添加水平有关。研究表明,肉鸡饲粮中凹凸棒石的最适添加水平为1%[7, 15]

天然存在的凹凸棒石黏土中的棒晶多以棒晶束和聚集体形态存在[16-17],影响其理化性质和功能特性。通过棒晶束解离后得到的凹凸棒石比表面积更大[16],纯度更高,功能特性更强[18-19]。常规凹凸棒石因棒晶束聚集而很难分散到水或普通有机溶剂中[20];棒晶束解离后的凹凸棒石多为棒晶纳米结构,具有更好的分散性[17];凹凸棒石棒晶上存在多个不同的吸附位点[21],解离后的凹凸棒石吸附性能更强。Xu等[22-24]发现,解离凹凸棒石的分散性以及胶体性均显著提高。Lu等[25]报道,利用纳米凹凸棒石良好的分散性能与零价铁、聚苯胺结合制备纳米复合材料,对六价铬离子(Cr6+)具有良好的吸附性能。解离凹凸棒石比常规凹凸棒石具有更好的理化性质和功能特性,因此,推测解离凹凸棒石应用于肉鸡饲粮中将具有更强的生物学功能,但目前凹凸棒石的应用研究报道均为常规天然凹凸棒及其改性产品,有关解离凹凸棒石在饲粮中的应用研究则未见报道。为此,本试验将不同水平的解离凹凸棒石添加于饲粮中,研究其对肉鸡生长性能、血清生化指标、抗氧化功能以及肌肉品质的影响,以期为解离凹凸棒石在肉鸡饲粮中的合理应用提供参考依据。

1 材料与方法 1.1 试验材料

试验所用解离凹凸棒石与常规凹凸棒石均由江苏某有限公司提供。常规凹凸棒石为天然凹凸棒石采矿后经晒干、粉碎制得,解离凹凸棒石由常规凹凸棒石采用棒晶束解离工艺制得。凹凸棒石粒径采用MASTERSIZER 2000型激光粒度仪(马尔文仪器有限公司,英国)进行分析,比表面积通过ASAP2020型全自动比表面积及微孔孔隙分析仪(麦克仪器公司,美国)进行分析。结果见表 1。解离凹凸棒石粒径较小、比表面积更大。

表 1 凹凸棒石粒径及比表面积 Table 1 Particle size and specific surface area of palygorskite
1.2 试验设计和饲养管理

选取288只1日龄爱拔益加(AA)肉雏鸡,随机分为6个组,每组6个重复,每个重复8只(公母各占1/2)。肉鸡饲养于多层鸡笼中,每笼为1个重复,各重复之间初始体重接近(P > 0.05),各组肉鸡分别饲喂基础饲粮(对照组)、基础饲粮中添加1%常规凹凸棒石以及分别添加0.125%、0.250%、0.500%和1.000%解离凹凸棒石的试验饲粮。试验所用饲粮为玉米-豆粕型饲粮,料型为粉状。试验期42 d,其中第1~21天为前期、第22~42天为后期。试验期间肉鸡自由采食和饮水,23 h光照、1 h黑暗,肉鸡免疫程序按照常规进行。基础饲粮组成及营养水平见表 2

表 2 基础饲粮组成及营养水平(风干基础) Table 2 Composition and nutrient levels of basal diets (air-dry basis) 
1.3 试验仪器

HI-9125型pH计(portable pH meter)购自意大利HANNA Instruments公司;CR-10型色差仪(colorimeter)购自日本Konica Minolta公司;ASAP2020型全自动比表面积及微孔孔隙分析仪(specific surface area and micro pore analyzer)购自美国麦克公司;5804-R型台式低温离心机(refrigerated centrifuge)购自德国Eppendorf公司;PK-02200D型匀浆机(homogenizer)购自美国Pro Science公司;C-LM3B型肌肉嫩度仪(muscle tenderness meter)购自中国TENOVO公司;ZKSY-600智能恒温型水浴锅(thermostat water bath)购自上海浦东荣丰科学仪器有限公司。

1.4 样品采集

试验第42天,从每个重复中选取1只接近平均体重的健康公鸡进行屠宰,屠宰前空腹。采取颈动脉放血,采集血液于洁净离心管中,室温倾斜放置析出血清,在低温离心机中以4 ℃、3 000 r/min离心15 min后分装血清,放置于-20 ℃冰箱中保存待测。采集肉鸡左侧部分胸大肌于自封袋,-20 ℃保存备用;取右侧全部胸大肌样品,保存在4 ℃下用于后续的肉品质检测。

1.5 指标测定 1.5.1 生长性能

于肉鸡21和42日龄,以各重复为单位对已禁食12 h后的肉鸡进行空腹称重,并统计各重复肉鸡试验期间的耗料量。计算肉鸡各阶段的平均体重、ADG、ADFI和F/G,并统计试验期间各重复肉鸡死淘情况以校正F/G。

1.5.2 血清生化指标

取分装血清,采用试剂盒(南京建成生物工程研究所)的方法测定血清中总蛋白(TP)、白蛋白(ALB)、总胆固醇(TC)、甘油三酯(TG)和葡萄糖(GLU)含量,操作严格按照试剂盒说明书进行。

1.5.3 抗氧化功能

组织匀浆液制备:称取0.3 g肌肉样品与4 ℃预冷的灭菌生理盐水按照比例1 ∶ 4(质量体积比)混合后匀浆,匀浆液于4 ℃、3 500 r/min离心10 min,取上清液分装,于-20 ℃下保存待测。

取组织匀浆上清液和血清于4 ℃解冻,按照试剂盒说明书所述方法测定肉鸡血清、胸肌中总超氧化物歧化酶(T-SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)活性和谷胱甘肽(GSH)、丙二醛(MDA)含量及总抗氧化能力(T-AOC)。上述指标测定所用试剂盒均购自南京建成生物工程研究所。

1.5.4 胸肌肉品质 1.5.4.1 pH

参考Wu等[26]的方法,在屠宰后45 min、4 ℃冷藏24以及48 h后,在样品1 cm深度3处不同位置用pH计测定胸肌样品的pH,取平均值。

1.5.4.2 色度

参考Wu等[26]的方法,将屠宰后45 min、4 ℃冷藏24以及48 h后的肌肉样品,使用色差仪测定在不同位置肉色3次,包括亮度(L*)、红度(a*)和黄度(b*)值,取平均值。

1.5.4.3 滴水损失

参考Liu等[27]的方法,肉鸡屠宰后,取10 g左右肌肉样品,塑料框缠绕上棉线,将肌肉用回形针悬挂于棉线上,确保肉样肌纤维方向垂直地面并且肉样间互相不接触,用保鲜膜将塑料框封口后,放置4 ℃恒温冰箱中,经过24和48 h后取出后擦干后称重。计算公式如下:

1.5.4.4 蒸煮损失

参考Liu等[27]的方法,肌肉样品于4 ℃恒温环境中24和48 h后,称取10 g左右样品,于样品中心位置插入温度计,放进自封袋中,将袋口排气封口放入水浴锅中,待温度达到70 ℃后,计时20 min。取出冷却至室温后擦干称重。计算公式如下:

1.5.4.5 剪切力

参考Gao等[28]的方法,沿肌肉纤维方向将蒸煮后的肌肉样品修整成1 cm×1 cm×3 cm的长条块状,肌肉纤维垂直方向用肌肉嫩度仪进行切割测定剪切力,每个肉样测定3次读数并记录,单位为N,取平均值。

1.6 数据统计分析

试验数据经Excel 2019进行初步处理后,然后采用SPSS 20.0软件进行单因素方差分析(one-way ANOVA)。利用多项式比较法确定添加解离凹凸棒石水平与测定指标的线性(linear)关系和二次(quadratic)效应。各组间差异采用Duncan氏多重比较法检验组间差异显著性,以P < 0.05为显著差异,结果以平均值(mean)和均值标准误(SEM)表示。

2 结果与分析 2.1 解离凹凸棒石对肉鸡生长性能的影响

表 3可知,饲粮添加解离凹凸棒石线性降低了肉鸡1~21日龄F/G(linear,P=0.004)。与对照组相比,0.500%解离凹凸棒石添加组肉鸡1~21日龄F/G显著下降(P < 0.05)。不同类型凹凸棒石添加组肉鸡1~21日龄F/G无显著差异(P > 0.05)。饲粮添加不同类型凹凸棒石对肉鸡21和42日龄平均体重、试验各阶段的ADG和ADGI以及试验后期和试验全期的F/G均无显著影响(P > 0.05)。

表 3 解离凹凸棒石对肉鸡生长性能的影响 Table 3 Effects of disaggregated palygorskite on growth performance of broilers
2.2 解离凹凸棒石对肉鸡血清生化指标的影响

表 4可知,与对照组相比,饲粮添加不同类型的凹凸棒石对肉鸡血清葡萄糖、总胆固醇、甘油三酯、总蛋白以及白蛋白含量均无显著影响(P > 0.05),不同添加水平的解离凹凸棒石以及不同类型凹凸棒石间肉鸡各血清生化指标亦无显著差异(P > 0.05)。

表 4 解离凹凸棒石对肉鸡血清生化指标的影响 Table 4 Effects of disaggregated palygorskite on serum biochemical indices of broilers
2.3 解离凹凸棒石对肉鸡血清抗氧化指标的影响

表 5可知,饲粮添加解离凹凸棒石能够线性降低肉鸡血清中MDA含量(linear,P=0.036),且能够线性提高血清中T-SOD活性(linear,P=0.022)。与对照组相比,0.500%解离凹凸棒石添加组肉鸡血清中MDA含量显著下降(P < 0.05),而血清T-SOD活性显著升高(P < 0.05),但与其他水平的解离凹凸棒石添加组无显著差异(P > 0.05),而1%常规凹凸棒石添加组和其他水平的解离凹凸棒石添加组肉鸡血清MDA含量及T-SOD活性无显著差异(P > 0.05),且饲粮中添加常规凹凸棒石或解离凹凸棒石对肉鸡血清中GSH含量以及血清T-AOC以及GSH-Px和CAT活性无显著影响(P > 0.05)。

表 5 解离凹凸棒石对肉鸡血清抗氧化指标的影响 Table 5 Effects of disaggregated palygorskite on serum antioxidant indices of broilers
2.4 解离凹凸棒石对肉鸡胸肌抗氧化指标的影响

表 6可知,饲粮添加解离凹凸棒石线性降低了肉鸡胸肌中MDA含量(linear,P=0.001),线性提高了胸肌中GSH-Px活性(linear,P < 0.001)。与对照组相比,饲粮添加1%常规凹凸棒石显著降低了肉鸡胸肌中MDA含量(P < 0.05),而添加0.500%和1.000%解离凹凸棒石均显著降低肉鸡胸肌中MDA含量(P < 0.05),不同类型凹凸棒石添加组间肉鸡胸肌MDA含量无显著差异(P > 0.05)。与对照组和1%常规凹凸棒石添加组相比,饲粮添加0.500%和1.000%解离凹凸棒石均能显著提高肉鸡胸肌中GSH-Px活性(P < 0.05),且以0.500%解离凹凸棒石添加组效果较佳。与对照组相比,饲粮添加不同类型的凹凸棒石对肉鸡胸肌中GSH含量、T-AOC以及T-SOD和CAT活性均无显著影响(P > 0.05)。

表 6 解离凹凸棒石对肉鸡胸肌抗氧化指标的影响 Table 6 Effects of disaggregated palygorskite on breast muscle antioxidant indices of broilers
2.5 解离凹凸棒石对肉鸡胸肌肉品质的影响

表 7可知,饲粮添加解离凹凸棒石线性降低了肉鸡屠宰后24(linear,P=0.047)和48 h(linear,P=0.014)的胸肌a*值,并且线性提高了屠宰后24 h的胸肌pH(linear,P < 0.001)。与对照组相比,0.500%解离凹凸棒石添加组肉鸡屠宰后24 h胸肌a*值显著降低(P < 0.05),且与其他水平的解离凹凸棒石添加组无显著差异(P > 0.05);1.000%解离凹凸棒石添加组肉鸡屠宰后48 h胸肌a*值显著降低(P < 0.05),且与其他水平的解离凹凸棒石添加组无显著差异(P > 0.05)。与对照组相比,饲粮添加不同水平解离凹凸棒石和常规凹凸棒石对肉鸡胸肌L*和b*值均无显著影响(P > 0.05)。

表 7 解离凹凸棒石对肉鸡胸肌肉色及pH的影响 Table 7 Effects of disaggregated palygorskite on breast muscle color and pH of broilers

与对照组和0.250%解离凹凸棒石添加组相比,0.500%和1.000%解离凹凸棒石添加组肉鸡宰后45 min胸肌pH显著升高(P < 0.05)。不同类型凹凸棒石添加组间肉鸡45 min胸肌pH无显著差异(P > 0.05),饲粮添加不同水平解离凹凸棒石和常规凹凸棒石对胸肌24和48 h的pH均无显著影响(P > 0.05)。

表 8可知,饲粮添加解离凹凸棒石线性降低了肉鸡胸肌24 h滴水损失(linear,P < 0.001)和胸肌24 h蒸煮损失(linear,P=0.004)。与对照组相比,饲粮添加0.250%、0.500%和1.000%解离凹凸棒石均能够显著降低肉鸡胸肌24 h滴水损失(P < 0.05),而添加1%常规凹凸棒石和0.125%解离凹凸棒石对胸肌24 h滴水损失无显著影响(P > 0.05);与对照组和1%常规凹凸棒石添加组相比,饲粮添加不同水平解离凹凸棒石均能显著降低肉鸡胸肌24 h蒸煮损失(P < 0.05),但不同水平的解离凹凸棒石添加组之间无显著差异(P > 0.05)。与1%凹凸棒石添加组相比,0.500%解离凹凸棒石添加组肉鸡胸肌24 h剪切力显著降低(P < 0.05),而其他水平的解离凹凸棒石添加组肉鸡胸肌24 h剪切力均无显著差异(P > 0.05),且各解离凹凸棒石添加组肉鸡胸肌24 h剪切力与对照组相比均无显著差异(P > 0.05)。饲粮添加凹凸棒石对肉鸡胸肌48 h滴水损失、48 h蒸煮损失和48 h剪切力均无显著影响(P > 0.05)。

表 8 解离凹凸棒石对肉鸡胸肌系水力及嫩度的影响 Table 8 Effects of disaggregated palygorskite on breast muscle water holding capacity and tenderness of broilers
3 讨论 3.1 解离凹凸棒石对肉鸡生长性能的影响

凹凸棒石等黏土类矿物可提高饲粮颗粒质量、调节食糜黏度和改善动物肠道健康和发育[29-30],增加食麋在畜禽肠道内通过的时间,使消化酶能够更好地与饲粮中营养物质作用[31]。凹凸棒石在通过动物消化道时,消化液能够通过离子交换作用,释放凹凸棒石中含有的矿物质元素,帮助合成所需的酶、激素等蛋白质物质[32]。Cheng等[14]研究发现,粉状饲粮中添加0.5%或1.0%凹凸棒石,不影响肉鸡ADG、ADFI以及F/G,而添加2.0%凹凸棒石显著提高肉鸡F/G。而Zhang等[5]研究报道,颗粒饲粮中添加凹凸棒石可显著提高肉鸡的ADG和ADFI,且添加水平为1%时能够显著提高肉鸡ADG。Tang等[33]研究指出,凹凸棒石可提高断奶仔猪的ADG,且能促进机体对粗蛋白质的消化。Lv等[34]研究报道,仔猪饲粮中添加凹凸棒石帮助提高了机体营养物质利用率,从而改善生长性能。但Qiao等[30]研究发现,饲粮添加2.0%凹凸棒石和改性凹凸棒石均未改变蛋鸡采食量和饲料转化率。有关凹凸棒石对畜禽生长性能的作用研究效果不一,这可能与动物品种、饲粮料型(粉状或颗粒饲粮)、凹凸棒石品位和添加水平等有关。本试验中,与对照组相比,饲粮添加1%常规凹凸棒石对肉鸡前期的F/G没有显著影响,与本实验室之前所得结论[35]一致,但饲粮添加0.500%解离凹凸棒石能够显著降低肉鸡试验前期(1~21日龄)的F/G。这可能是因为解离凹凸棒石具有更大的比表面积,使饲粮在动物肠道内的通过速度降低,使机体能够更好地消化吸收营养物质。

3.2 解离凹凸棒石对肉鸡血清生化指标的影响

血清中总蛋白含量能够反映机体内营养状况以及机体对蛋白质和氨基酸的利用情况,而白蛋白由肝细胞合成,其含量能够指示动物肝脏合成功能,二者能够反映动物体内蛋白质代谢水平[36-38]。血清中的葡萄糖影响动物体内对能量代谢与吸收的水平,而胆固醇和甘油三酯含量是反映机体脂质代谢的关键指标[36]。本试验中,不同的饲粮处理对肉鸡的血清生化指标均无显著影响,表明添加解离凹凸棒石不会对肉鸡生理、营养和健康状况造成影响,这与Zhang等[5]和Chen等[7]结果相一致。

3.3 解离凹凸棒石对肉鸡抗氧化功能的影响

动物的氧化还原系统在调节机体发挥多种生物学功能中起关键作用,主要由活性氧、自由基、活性氧生成系统以及抗氧化系统构成[39]。SOD能够将超氧自由基转化为过氧化氢,然后过氧化氢在CAT的催化下转变为水,或者由GSH-Px在以GSH为还原剂的条件下催化过氧化物转变为羟基化合物[40]。MDA和T-AOC分别是衡量动物体内脂质过氧化的程度和整体抗氧化能力的重要指标,二者水平的高低显示了机体抗氧化的能力[41-42]。本试验发现,相比于对照组,不同试验组肉鸡血清和肌肉抗氧化功能均有所改善。此外,相比于对照组,饲粮添加0.500%解离凹凸棒石能够显著降低肉鸡血清中MDA含量,且显著提高血清SOD活性。类似地,罗有文等[10]研究发现,凹凸棒石能够显著降低肉鸡血浆中的MDA含量,并且显著提高血浆SOD和GSH-Px活性。Wu等[43]研究亦发现,饲粮添加2%沸石能够显著降低肉鸡肝脏中的MDA含量并且显著提高肝脏SOD和CAT活性。本试验中,相比于对照组,饲粮添加0.500%和1.000%解离凹凸棒石均能够显著降低肉鸡胸肌中MDA含量;相比于对照组和1%常规凹凸棒石添加组,饲粮添加0.500%和1.00%解离凹凸棒石均能显著提高肉鸡胸肌中GSH-Px活性。以上结果表明,饲粮中添加解离凹凸棒石能够提高肉鸡血清以及胸肌抗氧化功能,并且效果优于常规凹凸棒石。可能是解离凹凸棒石比表面积更大,吸附能力更强,能够更好地吸附肠道中的病原微生物、重金属及霉菌毒素等,因此动物体内的氧化应激水平有效降低[44]

3.4 解离凹凸棒石对肉鸡肉品质的影响

肌肉品质的优劣通常通过色泽、pH、系水力以及剪切力等指标评定[45]。其中,肉色L*值能够反映氧合肌红蛋白水平,a*值反映脱氧肌红蛋白水平,b*值则反映高铁肌红蛋白水平[46]。在评定胸肌色泽过程中,L*值越大表示肌肉亮度高,也意味着肌肉发白,肉质越差;当a*值越大并且b*值越小表示肉色好,反之则肉质越差[47]。pH能够影响肌肉颜色以及系水力,并且对肌肉嫩度和保质期也有一定影响,是肉品质性状的一个重要指标[48]。肌肉系水力一般是指肌肉的保水能力,通常用滴水损失和蒸煮损失来进行评估,肌肉的滴水损失和蒸煮损失越低,系水力越高、嫩度越佳[49-50]。杜明芳[8]和Cheng等[14]研究均发现,在饲粮中添加一定水平凹凸棒石能够影响胸肌肉色,降低肌肉中a*和b*值。本试验中,与对照组相比,饲粮添加0.500%和1.000%解离凹凸棒石分别显著降低了肉鸡胸肌24和48 h a*值,与上述结果一致。肉色的变化与色素含量、肌红蛋白形式和内部反射系数有关,因此该试验结果可能与凹凸棒石吸附肌肉中色素有关[8]。此外,本试验还发现,相比于对照组,在肉鸡饲粮中添加解离凹凸棒石能够提高胸肌45 min pH,显著降低胸肌24 h蒸煮损失,且添加0.500%解离凹凸棒石能够显著降低胸肌24 h滴水损失。同时,与1%常规凹凸棒石添加组相比,饲粮添加0.500%解离凹凸棒石可显著降低肉鸡胸肌24 h剪切力,提高嫩度。以上结果提示,解离凹凸棒石具有改善肌肉品质的功效,合适的添加水平在改善肌肉嫩度方面效果优于常规凹凸棒石。解离凹凸棒石能够改善肉鸡肌肉品质,可能是解离凹凸棒石比表面积更大,其含有的镁元素能够更好地释放出来,而镁元素能够提高胸肌肌肉pH和系水力,从而降低了表面水分流失[51]

4 结论

饲粮添加解离凹凸棒石具有提高肉鸡生长性能、增强机体抗氧化功能、提高胸肌系水力和嫩度以及改善肉品质的作用。本试验条件下,肉鸡饲粮中添加0.500%解离凹凸棒石效果较佳,且优于添加1%常规凹凸棒石,表明解离凹凸棒石的生物学作用优于常规凹凸棒石。

参考文献
[1]
FROST R L, LOCOS O B, RUAN H D, et al. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites[J]. Vibrational Spectroscopy, 2001, 27(1): 1-13. DOI:10.1016/S0924-2031(01)00110-2
[2]
GIUSTETTO R, LLABRÉS I, XAMENA F X, RICCHIARDI G, et al. Maya blue: a computational and spectroscopic study[J]. The Journal of Physical Chemistry.B, 2005, 109(41): 19360-19368. DOI:10.1021/jp048587h
[3]
KREKELER M P S, GUGGENHEIM S. Defects in microstructure in palygorskite-sepiolite minerals: a transmission electron microscopy (TEM) study[J]. Applied Clay Science, 2008, 39(1/2): 98-105.
[4]
GUGGENHEIM S, KREKELER M P S. Chapter 1-the structures and microtextures of the palygorskite-sepiolite group minerals[M]//GALÀN E, SINGER A. Developments in clay science. Amsterdam: Elsevier B.V., 2011: 3-32.
[5]
ZHANG L, YAN R, ZHANG R Q, et al. Effect of different levels of palygorskite inclusion on pellet quality, growth performance and nutrient utilization in broilers[J]. Animal Feed Science and Technology, 2017, 223: 73-81. DOI:10.1016/j.anifeedsci.2016.10.019
[6]
PAPPAS A C, ZOIDIS E, THEOPHILOU N, et al. Effects of palygorskite on broiler performance, feed technological characteristics and litter quality[J]. Applied Clay Science, 2010, 49(3): 276-280. DOI:10.1016/j.clay.2010.06.003
[7]
CHEN Y P, CHENG Y F, YANG W L, et al. An evaluation of palygorskite inclusion on the growth performance and digestive function of broilers[J]. Applied Clay Science, 2016, 129: 1-6. DOI:10.1016/j.clay.2016.03.032
[8]
杜明芳. 不同粒度凹凸棒石在肉鸡饲料中的应用研究[D]. 硕士学位论文. 南京: 南京农业大学, 2018.
DU M F. Study on the application of palygorskite with different particle size in broiler feed[D]. Master's Thesis. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
[9]
CHENG Y F, CHEN Y P, WEN C, et al. Evaluation of dietary palygorskite supplementation on growth performance, mineral accumulations, antioxidant capacities, and meat quality of broilers fed lead-contaminated diet[J]. Biological Trace Element Research, 2018, 181(2): 314-322. DOI:10.1007/s12011-017-1047-6
[10]
罗有文, 王龙昌, 周岩民, 等. 沸石、凹凸棒石黏土对肉鸡抗氧化性能和组织胆固醇的影响[J]. 粮食与饲料工业, 2006(12): 37-39.
LUO Y W, WANG L C, ZHOU Y M, et al. Effects of zeolite and attapulgite on antioxidation performance and tissue cholesterol of broilers[J]. Cereal & Feed Industry, 2006(12): 37-39 (in Chinese). DOI:10.3969/j.issn.1003-6202.2006.12.017
[11]
李伟, 王小建, 刘耀东. 日粮添加坡缕石对1~21 d肉鸡生长性能、肠道免疫、抗氧化性能和肠道形态的影响[J]. 中国饲料, 2018(14): 32-36.
LI W, WANG X J, LIU Y D. Effects of palygorskite on growth performance, intestinal immunity, antioxidation and intestinal morphology of broilers at 1 to 21 d[J]. China Feed, 2018(14): 32-36 (in Chinese).
[12]
SU Y, CHEN Y P, CHEN L J, et al. Effects of different levels of modified palygorskite supplementation on the growth performance, immunity, oxidative status and intestinal integrity and barrier function of broilers[J]. Journal of Animal Physiology and Animal Nutrition, 2018, 102(6): 1574-1584. DOI:10.1111/jpn.12974
[13]
靳蕊. 凹凸棒石对青脚麻鸡肠道健康、免疫功能和抗生素抗性基因丰度影响的研究[D]. 硕士学位论文. 南京: 南京农业大学, 2021: 40-45.
JIN R. Study on effects of palygorskite on intestinal health, immune function, and antibiotic resistance gene abundance of partridge shank chickens[D]. Master's Thesis. Nanjing: Nanjing Agricultural University, 2021: 40-45. (in Chinese)
[14]
CHENG Y F, CHEN Y P, LI X H, et al. Effects of palygorskite inclusion on the growth performance, meat quality, antioxidant ability, and mineral element content of broilers[J]. Biological Trace Element Research, 2016, 173(1): 194-201. DOI:10.1007/s12011-016-0649-8
[15]
CHEN Y P, CHENG Y F, LI X H, et al. Dietary palygorskite supplementation improves immunity, oxidative status, intestinal integrity, and barrier function of broilers at early age[J]. Animal Feed Science and Technology, 2016, 219: 200-209. DOI:10.1016/j.anifeedsci.2016.06.013
[16]
XU J X, ZHANG J P, WANG Q, et al. Disaggregation of palygorskite crystal bundles via high-pressure homogenization[J]. Applied Clay Science, 2011, 54(1): 118-123. DOI:10.1016/j.clay.2011.07.020
[17]
张凯. 凹凸棒土棒晶束解离研究[D]. 硕士学位论文. 郑州: 郑州大学, 2018: 1-10.
ZHANG K. Researches of crystal-bundles dissociation of palygorskite[D]. Master's Thesis. Zhengzhou: Zhengzhou University, 2018: 1-10. (in Chinese)
[18]
GALÁN E. Properties and applications of palygorskite-sepiolite clays[J]. Clay Minerals, 1996, 31(4): 443-453. DOI:10.1180/claymin.1996.031.4.01
[19]
CORMA A, MIFSUD A, SANZ E. Influence of the chemical composition and textural characteristics of palygorskite on the acid leaching of octahedral cations[J]. Clay Minerals, 1987, 22(2): 225-232. DOI:10.1180/claymin.1987.022.2.10
[20]
WANG W B, WANG A Q. Recent progress in dispersion of palygorskite crystal bundles for nanocomposites[J]. Applied Clay Science, 2016, 119(Part 1): 18-30.
[21]
WANG L H, SHENG J. Graft polymerization and characterization of butyl acrylate onto silane-modified attapulgite[J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2003, 40(11): 1135-1146. DOI:10.1081/MA-120024829
[22]
XU J X, WANG W B, WANG A Q. Superior dispersion properties of palygorskite in dimethyl sulfoxide via high-pressure homogenization process[J]. Applied Clay Science, 2013, 86: 174-178. DOI:10.1016/j.clay.2013.10.006
[23]
XU J X, WANG W B, WANG A Q. Effects of solvent treatment and high-pressure homogenization process on dispersion properties of palygorskite[J]. Powder Technology, 2013, 235: 652-660. DOI:10.1016/j.powtec.2012.11.035
[24]
XU J X, WANG W B, WANG A Q. Influence of anions on the electrokinetic and colloidal properties of palygorskite clay via high-pressure homogenization[J]. Journal of Chemical and Engineering Data, 2013, 58(3): 764-772. DOI:10.1021/je301280u
[25]
LU H L, XU H, CHEN Y, et al. ZVI/PANI/ATP composite by static polymerization as adsorbent for removal of Cr(vi)[J]. RSC Advances, 2014, 4(12): 5873-5879. DOI:10.1039/c3ra45890c
[26]
WU P, WEN C, LENG Z X, et al. Effect of oolong tea (Camellia sinensis) powder particle size on growth performance, fat deposition, meat quality and antioxidant activity in meat ducks[J]. Animal Feed Science and Technology, 2014, 194: 131-135. DOI:10.1016/j.anifeedsci.2014.05.009
[27]
LIU G Q, ZONG K, ZHANG L L, et al. Dietary methionine affect meat quality and myostatin gene exon 1 region methylation in skeletal muscle tissues of broilers[J]. Agricultural Sciences in China, 2010, 9(9): 1338-1346. DOI:10.1016/S1671-2927(09)60224-8
[28]
GAO T, LI J L, ZHANG L, et al. Effect of different tumbling marination treatments on the quality characteristics of prepared pork chops[J]. Asian-Australasian Journal of Animal Sciences, 2015, 28(2): 260-267.
[29]
ZHANG J M, LV Y F, TANG C H, et al. Effects of dietary supplementation with palygorskite on intestinal integrity in weaned piglets[J]. Applied Clay Science, 2013, 86: 185-189. DOI:10.1016/j.clay.2013.10.009
[30]
QIAO L H, CHEN Y P, WEN C, et al. Effects of natural and heat modified palygorskite supplementation on the laying performance, egg quality, intestinal morphology, digestive enzyme activity and pancreatic enzyme mRNA expression of laying hens[J]. Applied Clay Science, 2015, 104: 303-308. DOI:10.1016/j.clay.2014.12.010
[31]
SAFAEIKATOULI M, BOLDAJI F, DASTAR B, et al. The effect of dietary silicate minerals supplementation on apparent ileal digestibility of energy and protein in broiler chickens[J]. International Journal of Agriculture & Biology, 2012, 14(2): 299-302.
[32]
SLAMOVA R, TRCKOVA M, VONDRUSKOVA H, et al. Clay minerals in animal nutrition[J]. Applied Clay Science, 2011, 51(4): 395-398. DOI:10.1016/j.clay.2011.01.005
[33]
TANG C H, WANG X Q, ZHANG J M. Effects of supplemental palygorskite instead of zinc oxide on growth performance, apparent nutrient digestibility and fecal zinc excretion in weaned piglets[J]. Animal Science Journal, 2014, 85(4): 435-439. DOI:10.1111/asj.12162
[34]
LV Y F, TANG C H, WANG X Q, et al. Effects of dietary supplementation with palygorskite on nutrient utilization in weaned piglets[J]. Livestock Science, 2015, 174: 82-86. DOI:10.1016/j.livsci.2015.02.004
[35]
陈跃平. 凹凸棒石和L-苏氨酸对肉鸡肠道的保护作用研究[D]. 博士学位论文. 南京: 南京农业大学, 2017: 60-61.
CHEN Y P. Study on the protective effects of palygorskite and L-threonine on the intestine of broilers[D]. Ph. D. Thesis. Nanjing: Nanjing Agricultural University, 2017: 60-61. (in Chinese)
[36]
TOGHYANI M, TOHIDI M, GHEISARI A A, et al. Performance, immunity, serum biochemical and hematological parameters in broiler chicks fed dietary thyme as alternative for an antibiotic growth promoter[J]. African Journal of Biotechnology, 2010, 9(40): 6819-6825.
[37]
ZHANG Q Y, ZHANG S, CONG G L, et al. Effects of soy protein concentrate in starter phase diet on growth performance, blood biochemical indices, carcass traits, immune organ indices and meat quality of broilers[J]. Animals, 2021, 11(2): 281. DOI:10.3390/ani11020281
[38]
原立海, 王安. 低温和维生素A对育成蛋鸭生产性能及生化指标的影响[J]. 东北农业大学学报, 2008, 39(2): 207-212.
YUAN L H, WANG A. Effects of cold stress and vitamin A on productivity and biochemical indexes in young laying ducks in cage[J]. Journal of Northeast Agricultural University, 2008, 39(2): 207-212 (in Chinese). DOI:10.3969/j.issn.1005-9369.2008.02.015
[39]
孙全贵, 龙子, 张晓迪, 等. 抗氧化系统研究新进展[J]. 现代生物医学进展, 2016, 16(11): 2197-2200, 2190.
SUN Q G, LONG Z, ZHANG X D, et al. Novel progress in antioxidant system[J]. Progress in Modern Biomedicine, 2016, 16(11): 2197-2200, 2190 (in Chinese).
[40]
HE L, HE T, FARRAR S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species[J]. Cellular Physiology and Biochemistry, 2017, 44(2): 532-553. DOI:10.1159/000485089
[41]
罗丹, 廖祉亦, 温超, 等. 凹凸棒石吸附剂对蛋鸡生产性能、血清生化指标、抗氧化功能及玉米赤霉烯酮残留的影响[J]. 中国家禽, 2018, 40(20): 28-32.
LUO D, LIAO Z Y, WEN C, et al. Effects of dietary attapulgite adsorbent on production performance, serum biochemical indexes, antioxidant capacity and zearalenone residues of laying hens[J]. China Poultry, 2018, 40(20): 28-32 (in Chinese).
[42]
OZDEMIR D, UYSAL N, TUGYAN K, et al. The effect of melatonin on endotoxemia-induced intestinal apoptosis and oxidative stress in infant rats[J]. Intensive Care Medicine, 2007, 33(3): 511-516. DOI:10.1007/s00134-006-0492-z
[43]
WU Y N, WU Q J, ZHOU Y M, et al. Effects of clinoptilolite on growth performance and antioxidant status in broilers[J]. Biological Trace Element Research, 2013, 155(2): 228-235. DOI:10.1007/s12011-013-9777-6
[44]
WANG J P, CHI F, KIM I H. Effects of montmorillonite clay on growth performance, nutrient digestibility, vulva size, faecal microflora, and oxidative stress in weaning gilts challenged with zearalenone[J]. Animal Feed Science and Technology, 2012, 178(3/4): 158-166.
[45]
WEN Y Y, LIU H H, LIU K, et al. Analysis of the physical meat quality in partridge (Alectoris chukar) and its relationship with intramuscular fat[J]. Poultry Science, 2020, 99(2): 1225-1231. DOI:10.1016/j.psj.2019.09.009
[46]
蒋步云. 植物多酚对黄羽肉抗氧化性能及肉品质影响的研究[D]. 硕士学位论文. 长沙: 湖南农业大学, 2014.
JIANG B Y. Effects of botanical polyphenol on antioxidant capacity and meat quality of yellow broilers[D]. Master's Thesis. Changsha: Hunan Agricultural University, 2014. (in Chinese)
[47]
孙京新. 冷却猪肉肉色质量分析与评定及肉色稳定性研究[D]. 博士学位论文. 南京: 南京农业大学, 2004: 18-24.
SUN J X. Analysis and assessment of chilled pork color and its color stability[D]. Ph. D. Thesis. Nanjing: Nanjing Agricultural University, 2004: 18-24. (in Chinese)
[48]
BERNAD L, CASADO P D, MURILLO N L, et al. Meat quality traits in the Greater rhea (Rhea americana) as influenced by muscle, sex and age[J]. Poultry Science, 2018, 97(5): 1579-1587. DOI:10.3382/ps/pey005
[49]
HONG J C, STEINER T, AUFY A, et al. Effects of supplemental essential oil on growth performance, lipid metabolites and immunity, intestinal characteristics, microbiota and carcass traits in broilers[J]. Livestock Science, 2012, 144(3): 253-262. DOI:10.1016/j.livsci.2011.12.008
[50]
ZHANG C, LUO J Q, YU B, et al. Dietary resveratrol supplementation improves meat quality of finishing pigs through changing muscle fiber characteristics and antioxidative status[J]. Meat Science, 2015, 102: 15-21. DOI:10.1016/j.meatsci.2014.11.014
[51]
杨雪, 冷智贤, 颜瑞, 等. 凹凸棒石黏土对生长育肥猪生产性能、金属含量及肉品质的影响[J]. 中国粮油学报, 2015, 30(4): 96-101.
YANG X, LENG Z X, YAN R, et al. Effects of attapulgite on growth performance, metal content in blood, muscle and meat quality of growing-finishing pigs[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(4): 96-101 (in Chinese).