2. 潍坊利民 饲料有限公司, 潍坊 261000;
3. 青岛市崂山区沙子口街道农业农村中心, 青岛 266000;
4. 济南斯帕法斯家禽有限公司, 济南 250000
2. Weifang Limin Feed Co., Ltd., Weifang 261000, China;
3. Agricultural and Rural Center, Shazikou Street, Laoshan District, Qingdao City, Qingdao 266000, China;
4. Jinan Spafas Poultry Co., Ltd., Ji′nan 250000, China
磷是机体新陈代谢必需的矿物元素之一,是动物体内除钙以外含量最多的矿物元素[1],广泛参与体内的新陈代谢,是构建全价营养体系的重要依据[1]。研究表明,磷缺乏会对动物生产性能、骨骼健康等方面造成负面影响,严重时直接导致死亡,而磷过量则会影响肠道中钙的吸收,出现骨折、跛行[2-6]。因此,必须在饲粮中加入适宜水平的磷,才能保证动物正常的生长发育。近年来,由于磷资源不断减少以及过量添加造成大量粪磷排泄,寻找新型高效低污染的磷源同时准确评定磷的需要量,成为动物营养研究的热点。随着蛋鸡育种和营养工作的推进,蛋鸡的磷需要量不断下降,NRC推荐的蛋鸡磷需要量从1960年每天每只鸡429 mg,降为1984年的350 mg,1994年又修改为250 mg[7]。饲料磷酸盐产品种类丰富,目前磷酸氢钙(DCP)是国内使用最多的无机磷源,但DCP难溶于水,有效吸收率低于60%,其余则随粪尿排泄,造成生态环境污染。磷酸一二钙(MDCP)是DCP和磷酸二氢钙(MCP)的共晶结合物,水溶磷含量高达17.5%,吸收率>70%,同时MDCP呈酸性,系酸力低,适口性好[8]。因此,与DCP相比,MDCP在提高采食量、维护肠道健康以及减缓应激等方面更具优势,是家禽更好的磷源[9]。鉴于此,本试验在基于国内外对蛋鸡磷元素需求研究的基础上,探究如何通过利用新型MDCP利用率高和植酸酶能够大量释放植酸磷的特点,降低饲粮磷水平以适应蛋鸡生理特点和营养需求,最终降低饲粮成本,节约宝贵的磷资源。
1 材料与方法 1.1 试验设计选取69周龄产蛋高峰后海兰褐商品蛋鸡2 475只,随机分为11个组,每组5个重复,每个重复45只鸡。对照组为玉米-豆粕型基础饲粮(不额外添加任何磷源),试验组分别以DCP[设置非植酸磷(NPP)添加水平分别为0.10%、0.15%、0.20%、0.25%和0.30%)和MDCP(设置NPP添加水平分别为0.07%、0.11%、0.15%、0.18%和0.22%)作为外源磷源;饲粮中均添加1 470 FTU/kg的植酸酶。根据NY/T 33—2004蛋鸡产蛋高峰后(产蛋率 < 85%)营养需求配制饲粮,基础饲粮组成及营养水平见表 1。通过改变DCP和MDCP调整NPP添加水平,DCP、MDCP及植酸酶通过逐级预混合加入饲粮中,每吨预混料添加植酸酶0.98 kg,并通过调整石粉保证钙水平不变,其他营养水平不变。鸡群自由采食,鸡舍温度控制在25 ℃,每天保证16 h光照。试验预试期1周,正试期8周。
![]() |
表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet (air-dry basis) |
饲料级DCP购自云南某集团,其中钙含量为21.38%,总磷含量为16.68%;饲料级MDCP购自云南某集团,其中钙含量为15.58%,总磷含量为21.19%;钙和磷含量均为实测值。植酸酶制剂购自宁夏某集团,其中植酸酶活性为50 000 FTU/g。
1.3 指标检测 1.3.1 生产性能试验期间每天观察蛋鸡的健康状况,准确记录产蛋情况,计算蛋鸡的平均产蛋率、平均蛋重、平均日采食量、料蛋比和破畸蛋率。
![]() |
试验结束,每个组收集50枚蛋(每个重复10枚)。通过日立Robotmation EMT-5200多功能蛋品质测试分析仪测定蛋重、哈氏单位、蛋白高度和蛋黄颜色。用游标卡尺测定并计算蛋形指数和蛋壳厚度。分离蛋黄,并用吸水纸擦干蛋壳,分别称重并记录。
1.3.3 骨代谢调节激素试验结束,每个组选取10只健康、体重相近的试验鸡(每个重复2只鸡),空腹进行翅静脉采血10 mL,离心,收集血清分装于离心管中,-20 ℃保存。采用酶联免疫法测定血清中甲状旁腺素(PTH)、降钙素(CT)和1, 25-二羟基维生素D3[1, 25-(OH)2-VD3]含量,试剂盒均购自江苏酶免实业有限公司,酶标仪为Labsystems Multiskan MS-352型。
1.3.4 骨合成生化指标骨合成生化指标包括骨碱性磷酸酶(BAP)活性及护骨素(OPG)和骨钙蛋白(BGP)含量,方法同1.3.3。
1.3.5 骨吸收生化指标骨吸收生化指标包括抗酒石酸酸性磷酸酶(TRACP)活性及Ⅰ型胶原C端肽(CTX-Ⅰ)和骨桥蛋白(OPN)含量,方法同1.3.3。
1.4 数据处理使用SAS 9.2软件对数据进行方差分析,样本平均值采用Duncan氏法进行多重比较,P < 0.05表示差异显著。
2 结果 2.1 不同磷源和水平对69~78周龄蛋鸡生产性能的影响由表 2可知,从全期来看,蛋鸡在69~78周龄时,不同磷源和水平对蛋鸡的平均产蛋率、平均蛋重、料蛋比和破畸蛋率均没有造成显著影响(P>0.05)。但是饲粮中0.20%、0.25%和0.30% NPP添加水平的DCP组以及0.07%~0.22% NPP添加水平的MDCP组的平均日采食量显著高于对照组以及0.10%、0.15% NPP添加水平的DCP组(P < 0.05)。
![]() |
表 2 不同磷源和水平对69~78周龄蛋鸡生产性能的影响 Table 2 Effects of different phosphorus sources and levels on performance of laying hens aged from 69 to 78 weeks |
由表 3可知,不同磷源和水平对69~78周龄蛋鸡的蛋形指数、蛋壳强度、蛋壳厚度、蛋白高度、哈氏单位、蛋壳比和蛋黄比等蛋品质指标均无显著影响(P>0.05)。但与对照组和DCP组相比,MDCP组蛋黄颜色等级显著提高(P < 0.05),其中0.18% NPP添加水平的MDCP组蛋黄颜色等级处于最高。
![]() |
表 3 不同磷源和水平对69~78周龄蛋鸡蛋品质的影响 Table 3 Effects of different phosphorus sources and levels on egg quality of laying hens aged from 69 to 78 weeks |
由表 4可知,磷水平显著影响69~78周龄蛋鸡血清PTH含量(P < 0.05),对照组血清PTH含量处于最高,达到了493.27 ng/L,其中0.15%、0.25%和0.30% NPP添加水平的DCP组以及0.11% NPP添加水平的MDCP组血清PTH含量显著低于对照组(P < 0.05)。不同磷源和水平对蛋鸡血清CT和1, 25-(OH)2-VD3含量无显著影响(P>0.05)。
![]() |
表 4 不同磷源和水平对69~78周龄蛋鸡骨代谢调节激素的影响 Table 4 Effects of different phosphorus sources and levels on bone metabolism regulation hormone of laying hens aged from 69 to 78 weeks |
由表 5可知,对照组69~78周龄蛋鸡血清OPG含量处于最高,且0.15%~0.30% NPP添加水平的DCP组和0.11%、0.15%和0.18% NPP添加水平的MDCP组血清OPG含量显著低于对照组(P < 0.05)。不同磷源和水平对蛋鸡血清BGP含量和BAP活性无显著影响(P>0.05)。
![]() |
表 5 不同磷源和水平对69~78周龄蛋鸡骨合成生化指标的影响 Table 5 Effects of different phosphorus sources and levels on bone synthesis biochemical indices of laying hens aged from 69 to 78 weeks |
由表 6可知,与对照组相比,0.15%~0.30% NPP添加水平的DCP组和0.11%~0.22% NPP添加水平的MDCP组69~78周龄蛋鸡血清TRACP活性显著降低(P < 0.05),对照组蛋鸡血清中的TRACP活性和CTX-Ⅰ含量均处于最高,且DCP组和MDCP血清CTX-Ⅰ含量均显著低于对照组(P < 0.05)。不同磷源和水平对蛋鸡血清OPN含量无显著影响(P>0.05)。
![]() |
表 6 不同磷源和水平对69~78周龄蛋鸡骨吸收生化指标的影响 Table 6 Effects of different phosphorus sources and levels on bone resorption biochemical indices of laying hens aged from 69 to 78 weeks |
磷是动物机体必需的矿物元素,广泛参与机体内几乎全部的代谢活动[10]。饲粮磷水平对养殖经济效益起着至关重要的作用,磷供应不足会对蛋鸡生产性能和健康状况产生不利影响,但如果过量添加会使大量未被消化的磷排出体外,导致土壤磷含量超标以及磷资源大量浪费,因此选择生物效价较高的磷源并搭配植酸酶,以降低饲粮无机磷用量,这对节约养殖成本、减少环境污染具有重要的意义[11]。Nie等[12]研究发现,饲喂0.30% NPP水平组的蛋鸡平均蛋重以及日产蛋量显著高于饲喂0.20% NPP水平组蛋的鸡。谭占坤[3]分别以DCP和MDCP作为25~49周龄罗曼粉壳蛋鸡饲粮磷源,结果发现,MDCP显著提高46~49周龄蛋鸡的平均日采食量,不添加任何磷源的玉米-豆粕基础饲粮组(NPP水平为0.12%)蛋鸡的产蛋率、产蛋量和平均蛋重显著低于0.05%~0.30% NPP添加水平组,最适宜NPP添加水平为0.10%(饲粮NPP水平为0.22%)。而Jing等[13]研究结果显示,饲喂19~31周龄的白壳蛋鸡不同磷水平的饲粮,产蛋量、蛋重和饲料转化效率均无显著差异,饲粮NPP水平为0.15%时即可满足产蛋鸡需要。Nie等[12]研究发现,28周龄的粉壳蛋鸡饲粮NPP水平为0.30%即可达到最佳的产蛋性能。耿爱莲等[14]指出饲粮NPP水平为0.29%时即可保证蛋鸡的产蛋需要。刘景等[10]在肉鸡养殖后期分别以DCP和MDCP作为磷源,当MDCP的NPP水平为DCP的NPP水平的60%时,其末重、平均日增重无显著差异。程曦[15]以MDCP作为磷源,分别添加0、0.05%、0.10%、0.15%、0.20%、0.25%和0.30%的NPP(饲粮NPP水平分别为0.12%、0.17%、0.22%、0.27%、0.32%、0.37%和0.42%),并搭配2 000 FTU/kg的植酸酶,结果表明不同的NPP水平饲粮对25~40周龄海兰褐蛋鸡的生产性能与蛋品质的影响无显著差异。本试验结果表明,玉米-豆粕型基础饲粮添加1 470 FTU/kg植酸酶,不同磷源和水平对69~78周龄海蓝褐蛋鸡的平均产蛋率、平均蛋重、料蛋比和破软畸率的影响均无显著的差异,原因可能是植酸酶可以大量释放原料中植酸磷,促进了机体对磷的吸收利用,饲粮0.19%~0.30%的NPP水平能够满足69~78周龄海蓝褐蛋鸡产蛋需求。试验同时发现,以MDCP作为磷源提高采食量效果更明显,这与谭占坤[3]的试验结果类似,其中0.18% NPP添加水平(饲粮NPP水平为0.30%)的平均采食量最高,原因是由于MDCP为MCP与DCP的络合产物,pH呈弱酸性,有利于刺激食欲。
3.2 不同磷源和水平对69~78周龄蛋鸡蛋品质的影响蛋壳厚度和蛋壳强度对于鸡蛋的贮存运输有重要影响,是衡量蛋品质的重要指标[16]。蛋壳磷含量不到1%,但对于防止蛋壳的破损起到重要作用。孙飞[17]研究表明,罗曼蛋鸡饲粮0.35% NPP水平组的蛋壳强度和蛋壳厚度高于0.25%和0.30% NPP水平组,而蛋壳比无显著差异。聂伟[18]在研究农大3号蛋鸡产蛋高峰后饲粮磷水平需要量的过程中发现,随着饲粮NPP水平的提高,57周龄蛋鸡蛋壳强度呈线性增加。但也有研究发现饲粮磷水平对蛋壳质量无显著影响,Panda等[19]和Keshavarz等[20]研究表明,蛋鸡饲粮NPP水平在0.15%~0.30%时,壳重比、蛋壳厚度和蛋壳强度均无显著差异。孙文强[21]通过在26~40周龄海兰褐蛋鸡饲粮中分别添加0.05%、0.10%、0.15%、0.20%、0.25%和0.30%等6个NPP水平(饲粮NPP水平分别为0.12%、0.17%、0.22%、0.27%、0.32%、0.37%和0.42%)的DCP,并搭配2 000 FTU/kg植酸酶,结果发现蛋品质指标无显著变化,与对照组(不额外添加任何磷源)也无显著差异。本试验结果表明,饲粮添加1 470 FTU/kg植酸酶的情况下,不同NPP水平的DCP和MDCP对69~78周龄蛋鸡的蛋壳厚度、蛋壳强度和蛋壳比例等蛋品质指标均无显著差异。蛋黄颜色是评价鸡蛋品质的重要感官指标,消费者更倾向于蛋黄颜色深的鸡蛋。本试验发现,饲粮以MDCP作为磷源,能够显著提高蛋黄颜色等级,且0.18% NPP添加水平的MDCP组(饲粮NPP水平为0.30%)的蛋黄颜色等级最高。原因可能是由于呈酸性的MDCP被吸收后,能够调节胃肠pH,促进了类胡萝卜素的吸收以及在蛋黄中的沉积。目前关于MDCP对蛋黄颜色的影响相关报道较少,有待进行深入的研究。
3.3 不同磷源和水平对69~78周龄蛋鸡骨代谢的影响动物机体对骨骼钙磷代谢有完善的调控机制,主要通过PTH、CT和1, 25-(OH)2-VD3通过反馈机制进行调节[22]。PTH是由甲状旁腺分泌的一种调控血液和骨骼钙磷含量的激素,通过间接活化破骨细胞而发挥其对骨吸收的间接调控作用。CT能降低血钙浓度,抑制破骨细胞生长。1, 25-(OH)2-VD3促进成骨细胞对钙的转运,加快骨的代谢和更新。研究表明,25~36周龄蛋鸡基础饲粮未添加任何无机磷(NPP水平为0.12%)显著提高了血清中PTH、CT和1, 25-(OH)2-VD3的含量[3]。章世元等[23]饲喂老龄笼养罗曼蛋鸡0.15%、0.25%和0.35%这3个NPP水平的饲粮,血清PTH和CT含量均无显著差异。本次研究结果表明,对照组(不额外添加磷源,NPP水平为0.12%)蛋鸡血清PTH含量最高,0.15%、0.25%和0.30% NPP添加水平的DCP组(饲粮NPP水平分别为0.27%、0.37%和0.42%)血清PTH含量显著低于对照组,血清CT含量无显著变化。原因可能是由于低磷引起蛋鸡对钙吸收减少,刺激蛋鸡分泌PTH促进骨吸收,刺激钙从骨组织中释放。而随着蛋鸡日龄的增加,体内钙、磷储备减少,即使PTH升高,也难将血清钙和磷含量提高到高峰期水平,因此血清CT含量不再升高。
BAP是成骨细胞的一种细胞外酶,与骨基质矿化密切相关,血清BAP活性与成骨细胞活性呈线性关系,被认为是最精确的骨形成标志物之一[24]。BGP主要由成熟成骨细胞以及增生软骨细胞合成[25],血清BGP含量直接反映骨质疏松患者成骨细胞活性和骨形成情况[26]。OPG主要通过OPG/核因子-κB受体活化因子(RANK)/RANK配体(RANKL)系统调节骨代谢;OPG可提高骨密度,抑制破骨细胞f-肌动蛋白环形成,诱导破骨细胞凋亡[27]。研究发现,OPG基因敲除大鼠骨质疏松症发病率增加[28]。郭文文[29]研究表明,妊娠后期母猪饲粮添加植酸酶,磷水平显著影响骨合成指标BAP、OPG和BGP,且随着饲粮磷水平的降低呈线性和二次升高。本试验结果发现,低磷水平组的血清OPG含量显著增加,0.30% NPP添加水平的DCP组(饲粮NPP水平为0.42%)血清OPG含量处于最低。原因可能是由于较低饲粮磷摄入量引起骨盐沉积不足,机体代偿性骨吸收,刺激成骨细胞及骨髓基质细胞分泌表达OPG,直接抑制OPG/RANKL/RANK信号传导通路中RANKL/RANK结合,促进成熟破骨细胞凋亡,从而抑制骨溶解。
TRACP是酸性磷酸酶6种同工酶中的一种,是具有高敏感度的骨吸收指标,TRACP活性升高见于畸形性骨炎、高转换型骨质疏松等病例[30]。CTX-Ⅰ含量反映破骨细胞骨吸收活性,升高程度与破骨细胞活性增高程度一致。OPN由溶骨细胞和骨细胞分泌,能抑制骨矿晶体的生成和增殖。王德海[31]研究发现,随着断奶仔猪饲粮磷水平的降低,血清TRACP活性及CTX-Ⅰ和OPN含量都呈线性和二次升高。本试验结果表明,磷水平对骨吸收生化指标——血清TRACP活性和CTX-Ⅰ含量造成了显著影响,低磷水平显著提高了血清TRACP活性和CTX-Ⅰ含量,这可能是由于肠道吸收的磷随饲粮磷水平的降低而降低,机体通过PTH调节破骨细胞活性,促进骨吸收,动员骨钙、磷入血来维持机体钙、磷的稳态[32],对照组(不额外添加任何磷源)血清TRACP活性和CTX-Ⅰ含量均处于最高,说明植酸酶虽然能够释放部分植酸磷,但饲粮0.12% NPP水平仍然不能满足骨代谢的磷需求,关于畜牧养殖动物骨代谢指标的相关研究报道较少,其作用机理有待进一步研究。
4 结论① 在饲粮添加1 470 FTU/kg植酸酶的前提下,低磷水平不会对69~78周龄蛋鸡的产蛋率和料蛋比造成负面影响,但以MDCP作为磷源可提高蛋黄颜色等级。
② 降低饲粮磷水平,蛋鸡骨吸收生化指标升高,同时骨合成生化指标代偿性升高。
③ 综合考虑生产性能、无机磷用量以及骨代谢健康等指标,69~78周龄蛋鸡饲粮中,MDCP作为无机磷源时适宜的NPP添加水平为0.11%(饲粮NPP水平为0.23%);DCP作为无机磷源时适宜的NPP添加水平为0.15%(饲粮NPP水平为0.27%),MDCP更适合作为磷源。
[1] |
王秀静. 不同无机磷源对断奶仔猪生长性能、肠道形态结构及肠道稳态的影响[D]. 硕士学位论文. 南昌: 江西农业大学, 2015. WANG X J. Regulation of different inorganic phosphorus source on growth performance, intestinal morphology structure and intestinal steady state of weaned piglets[D]. Master′s Thesis. Nanchang: Jiangxi Agricultural University, 2015. (in Chinese) |
[2] |
杨露晴, 刘国庆, 马秋刚, 等. 小麦-DDGS饲粮磷水平对京红代蛋鸡产蛋后期产蛋性能、蛋壳品质的影响[J]. 饲料研究, 2019, 42(8): 29-32. YANG L Q, LIU G Q, MA Q G, et al. Effect of dietary phosphorus level in wheat-DDGS diet on laying performance and shell quality during late period of Jinghong laying hens[J]. Feed Research, 2019, 42(8): 29-32 (in Chinese). |
[3] |
谭占坤. 磷来源和水平对蛋鸡生产性能、蛋品质和骨骼质量的影响[D]. 硕士学位论文. 雅安: 四川农业大学, 2011. TAN Z K. Effect of phosphorus source and level on performance, egg quality, and bone quality of laying hens[D]. Master′s Thesis. Ya′an: Sichuan Agricultural University, 2011. (in Chinese) |
[4] |
敖翔, 何健. 磷在肉仔鸡上的营养作用及其生物学利用率的研究进展[J]. 饲料与畜牧, 2018(5): 59-64. AO X, HE J. Research progress on nutritional effect and biological utilization of phosphorus in broilers[J]. Feed and Husbandry, 2018(5): 59-64 (in Chinese). |
[5] |
王菊, 赵华, 陈小玲, 等. 饲粮非植酸磷水平对肉鸭生长性能和消化功能的影响[J]. 动物营养学报, 2020, 32(1): 206-214. WANG J, ZHAO H, CHEN X L, et al. Effects of dietary non-phytate phosphorus level on growth performance and digestive function of meat ducks[J]. Chinese Journal of Animal Nutrition, 2020, 32(1): 206-214 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.01.026 |
[6] |
CALVO M S, TUCKER K L. Is phosphorus intake that exceeds dietary requirements a risk factor in bone health?[J]. Annals of the New York Academy of Sciences, 2013, 1301(1): 29-35. DOI:10.1111/nyas.12300 |
[7] |
SOHAIL S S, ROLAND D A. Influence of dietary phosphorus on performance of Hy-Line W36 hens[J]. Poultry Science, 2002, 81(1): 75-83. DOI:10.1093/ps/81.1.75 |
[8] |
万敏艳, 张保海, 王宏博, 等. 磷酸一二钙对肉仔鸡相对生物学利用率的研究[J]. 动物营养学报, 2018, 30(9): 3353-3363. WAN M Y, ZHANG B H, WANG H B, et al. A study of relative bioavailability of mono-dicalcium phosphate on broilers[J]. Chinese Journal of Animal Nutrition, 2018, 30(9): 3353-3363 (in Chinese). DOI:10.3969/j.issn.1006-267x.2018.09.003 |
[9] |
万荣, 谢木林. 新型磷源Ⅲ型磷酸氢钙在肉鸡上相对生物学利用率的应用研究[J]. 饲料广角, 2014(16): 16-19. WAN R, XIE M L. Application of a new phosphorus source type Ⅲ calcium hydrogen phosphate in broilers[J]. Feed China, 2014(16): 16-19 (in Chinese). DOI:10.3969/j.issn.1002-8358.2014.16.005 |
[10] |
刘景, 陈炳钿, 李忠荣, 等. 磷酸一二钙不同添加水平对肉鸡后期生产性能、胫骨和血液指标的影响[J]. 家畜生态学报, 2021, 42(4): 40-44. LIU J, CHEN B D, LI Z R, et al. Effects of different levels of monocalcium phosphate on production performance, tibia and blood parameters of broilers at late stage[J]. Acta Ecologae Animalis Domastici, 2021, 42(4): 40-44 (in Chinese). DOI:10.3969/j.issn.1673-1182.2021.04.008 |
[11] |
龚家竹. 我国饲料磷酸盐技术发展纪事[J]. 磷肥与复肥, 2018, 33(12): 38-43, 69. GONG J Z. Development notes of feed-grade phosphate technology in China[J]. Phosphate & Compound Fertilizer, 2018, 33(12): 38-43, 69 (in Chinese). DOI:10.3969/j.issn.1007-6220.2018.12.010 |
[12] |
NIE W, YANG Y, YUAN J M, et al. Effect of dietary nonphytate phosphorus on laying performance and small intestinal epithelial phosphate transporter expression in Dwarf pink-shell laying hens[J]. Journal of Animal Science and Biotechnology, 2013, 4(1): 34. DOI:10.1186/2049-1891-4-34 |
[13] |
JING M, ZHAO S, ROGIEWICZ A, et al. Assessment of the minimal available phosphorus needs of laying hens: implications for phosphorus management strategies[J]. Poultry Science, 2018, 97(7): 2400-2410. DOI:10.3382/ps/pey057 |
[14] |
耿爱莲, 赵向红, 张尧, 等. 饲粮有效磷水平对散养北京油鸡生产性能和鸡蛋品质的影响[J]. 中国家禽, 2015, 37(18): 18-21. GENG A L, ZHAO X H, ZHANG Y, et al. Effects of dietary available phosphorus levels on production performance and egg quality of Beijing You chicken under free range system[J]. China Poultry, 2015, 37(18): 18-21 (in Chinese). |
[15] |
程曦. 饲粮非植酸磷水平对蛋鸡产蛋性能和磷代谢的影响[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2019. CHENG X. Effects of dietary non-phytate phosphorus levels on laying performance and phosphorus metabolism of laying hens[D]. Master′s Thesis. Yangling: Northwest A & F University, 2019. (in Chinese) |
[16] |
李树鹏, 郝艳霜, 赵国先, 等. 饲粮钙磷水平对太行鸡产蛋性能和蛋品质的影响[J]. 北方牧业, 2021(20): 19-20, 23. LI S P, HAO Y S, ZHAO G X, et al. Effects of dietary calcium and phosphorus levels on laying performance and egg quality of Taihang chickens[J]. Northern Journal of Animal Husbandry, 2021(20): 19-20, 23 (in Chinese). |
[17] |
孙飞. 不同磷水平和钙磷比对高产蛋鸡蛋品质的影响[J]. 湖南饲料, 2016(6): 38-41. SUN F. Effects of different phosphorus levels and calcium phosphorus ratio on the quality of high-yield eggs[J]. Hunan Feed, 2016(6): 38-41 (in Chinese). DOI:10.3969/j.issn.1673-7539.2016.06.017 |
[18] |
聂伟. 日粮磷水平对矮小型蛋鸡产蛋性能、蛋壳品质及钙磷吸收的影响[D]. 博士学位论文. 北京: 中国农业大学, 2013. NIE W. Effects of dietary phosphorus levels on laying performance、egg shell quality and Ca and P absorption in laying hens with drawf gene[D]. Ph. D. Thesis. Beijing: China Agricultural University, 2013. (in Chinese) |
[19] |
PANDA A K, RAO S V R, RAJU M V L N, et al. Effects of dietary non-phytate phosphorus levels on egg production, shell quality and nutrient retention in white leghorn layers[J]. Asian-Australasian Journal of Animal Sciences, 2005, 18(8): 1171-1175. DOI:10.5713/ajas.2005.1171 |
[20] |
KESHAVARZ K, NAKAJIMA S. Re-evaluation of calcium and phosphorus requirements of laying hens for optimum performance and eggshell quality[J]. Poultry Science, 1993, 72(1): 144-153. DOI:10.3382/ps.0720144 |
[21] |
孙文强. 产蛋鸡在不同磷水平饲粮下的磷营养过程分析[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2018. SUN W Q. Analysis of phosphorus nutrition process in laying hens fed diets with different phosphorus levels[D]. Master′s Thesis. Yangling: Northwest A & F University, 2018. (in Chinese) |
[22] |
杜光波, 王友刚, 蒋蓓蕾. 日粮高水平非植酸磷对肉鹅生长性能、胫骨成分含量及钙磷代谢的影响[J]. 中国饲料, 2018(16): 27-31. DU G B, WANG Y G, JIANG B L. Effects of dietary high non-phytate phosphorus level on growth performance, tibia bone composition and metabolism of calcium and phosphorus of geese[J]. China Feed, 2018(16): 27-31 (in Chinese). |
[23] |
章世元, 俞路, 王雅倩, 等. 不同磷水平对老龄笼养蛋鸡内分泌及骨密度的影响[J]. 江苏农业学报, 2009, 25(1): 142-146. ZHANG S Y, YU L, WANG Y Q, et al. Effects of phosphorus level on endocrine and bone density of old cage layers[J]. Jiangsu Journal of Agricultural Sciences, 2009, 25(1): 142-146 (in Chinese). DOI:10.3969/j.issn.1000-4440.2009.01.027 |
[24] |
张萌萌, 张秀珍, 邓伟民, 等. 骨代谢生化指标临床应用专家共识(2019)[J]. 中国骨质疏松杂志, 2019, 25(10): 1357-1372. ZHANG M M, ZHANG X Z, DENG W M, et al. Expert consensus on clinical application of biochemical indicators of bone metabolism (2019)[J]. Chinese Journal of Osteoporosis, 2019, 25(10): 1357-1372 (in Chinese). DOI:10.3969/j.issn.1006-7108.2019.10.001 |
[25] |
SAHIN ERSOY G, GIRAY B, SUBAS S, et al. Interpregnancy interval as a risk factor for postmenopausal osteoporosis[J]. Maturitas, 2015, 82(2): 236-240. DOI:10.1016/j.maturitas.2015.07.014 |
[26] |
NⅡMI R, KONO T, NISHIHARA A, et al. Determinants associated with bone mineral density increase in response to daily teriparatide treatment in patients with osteoporosis[J]. Bone, 2014, 66: 26-30. DOI:10.1016/j.bone.2014.05.017 |
[27] |
BOROŃN' D, KOTRYCH D, BARTKOWIAK-WIECZOREK J, et al. Polymorphisms of OPG and their relation to the mineral density of bones in pre- and postmenopausal women[J]. International Immunopharmacology, 2015, 28(1): 477-486. DOI:10.1016/j.intimp.2015.07.015 |
[28] |
FURUYA Y, UCHIDA K, YASUDA H. Stimulation of bone formation in cortical bone of the mice treated with a novel bone anabolic peptide with osteoclastogenesis inhibitory activity[J]. Arthritis Research & Therapy, 2012, 14(1): P20. |
[29] |
郭文文. 饲粮不同磷水平和钙磷比添加植酸酶对母猪和仔猪钙磷代谢的影响[D]. 硕士学位论文. 泰安: 山东农业大学, 2015. GUO W W. Effects of different dietary phosphorus levels and ratio of calcium to phosphorus with phytase addition on metabolism of sows and piglets[D]. Master′s Thesis. Tai′an: Shandong Agricultural University, 2015. (in Chinese) |
[30] |
张萌萌, 张秀珍, 邓伟民, 等. 骨代谢生化指标临床应用专家共识(2020)[J]. 中国骨质疏松杂志, 2020, 26(6): 781-796. ZHANG M M, ZHANG X Z, DENG W M, et al. Expert consensus on clinical application of biochemical indicators of bone metabolism (2020)[J]. Chinese Journal of Osteoporosis, 2020, 26(6): 781-796 (in Chinese). DOI:10.3969/j.issn.1006-7108.2020.06.001 |
[31] |
王德海. 不同无机磷水平和植酸酶对断奶仔猪骨骼钙磷代谢及肠道相关基因表达的影响[D]. 硕士学位论文. 泰安: 山东农业大学, 2015. WANG D H. Effects of different inorganic phosphorus levels and phytase on the bone calcium and phosphorus metabolism and intestinal related gene expression of weaned piglets[D]. Master′s Thesis. Tai′an: Shandong Agricultural University, 2015. (in Chinese) |
[32] |
任跃昌. 不同无机磷源及水平对产蛋后期蛋鸡生产性能、蛋品质和骨代谢的影响[D]. 硕士学位论文. 泰安: 山东农业大学, 2021. REN Y C. Effects of different inorganic phosphorus sources and levels on production performance, egg quality and bone metabolism of layers in late laying period[D]. Master′s Thesis. Tai′an: Shandong Agricultural University, 2021. (in Chinese) |