2. 湖南农业大学动物科学技术学院, 长沙 410000;
3. 农业农村部养猪科学重点实验室, 重庆 402460
2. College of Animal Science and Technology, Hunan Agriculture University, Changsha 410000, China;
3. Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Affairs, Chongqing 402460, China
人和动物的消化道内寄居着数量庞大的微生物群(细菌为主),它们与宿主形成稳定的共生关系。肠道菌群失衡或有害菌侵袭会影响宿主健康,导致多种肠道疾病和代谢疾病的发生。粪菌移植(fecal microbiota transplantation,FMT)是指将健康供体或自体粪便菌群整体移植到受体消化道,快速、彻底地改变或者重塑后者肠道微生态系统,以期改善受体肠道健康,增强肠道功能或产生与供体相似的代谢特征[1-3]。追溯FMT的起源,我国晋代葛洪所著的《肘后备急方》中即有对“黄汤”治疗腹泻、发热患者的记载。直到1958年,这种历史悠久的菌群移植技术再次投入治疗人类伪膜性肠炎[4]。迄今,FMT已成为有效治疗复发性艰难梭菌感染(Clostridium difficile infection,CDI)等人类肠道疾病的个性化治疗方案[5-7]。与使用单一或复合益生菌相比,FMT介导的肠道菌群变化更具时效性和系统性[8-10]。目前,国内外已经建成2个大型的非营利性粪菌库(中华粪菌库和Openbiome),FMT异地救援性治疗分别在中国和北美等地区广泛开展[11]。
1 FMT的关键技术点 1.1 供体的筛选用于菌群移植的供体粪便通常分为异体来源和自体来源。异体FMT是当前应用的主流,便于实现一对多的治疗,且普遍较自体FMT具有更好的疗效[12-13]。筛选异源粪便时需要考虑供体生理、心理等方面因素,及时排除具有用药史、疾病史和感染史的捐赠者,以期减少或预防不良事件的发生。自体FMT的优点在于排斥性更小,更适用于患者在消化系统手术后自身菌群重塑和恢复[14]。
1.2 菌悬液的制备与保存粪便菌悬液的制备过程主要包括粪便的收集、稀释、离心、过滤、纯化等[15]。根据粪便状态,制备后的菌悬液可分为新鲜粪便菌悬液、冷冻匀质粪便菌悬液和发酵粪便菌悬液[16],不同处理方式会导致悬液中细菌的活力、数量和代谢物成分产生巨大差异。从成本和便捷性考虑,当前多数研究选择使用新鲜粪便菌悬液进行FMT。此外,由于绝大多数肠道菌群属于厌氧菌[17-18],要求整个制备过程在厌氧环境下规范操作进行。
1.3 FMT的递送途径目前在医学上开展FMT有多种方式,包括上消化道移植(口服、鼻胃管或者胃镜给菌)、中消化道移植(鼻肠管和经内镜肠管给菌)和下消化道移植(肠镜、灌肠、直肠软探针递送等)[19-21]。在人类各种炎症性肠病(inflammatory bowel disease, IBD)治疗中,以口服粪菌胶囊和应用灌肠的方式是最为简单和最容易接受的,且具有很高的治愈率[22-25]。
1.4 受体的术前准备受体在接受FMT前需实时监控自身的健康状态,根据实际情况考虑在输送粪菌液前是否接受抗生素、洗肠等处理,并基于递送途径口服抑制胃酸分泌或抑制肠蠕动的药物,以达到更好的移植效果[25-28]。由于不同个体对于外源菌的接受程度不一,FMT施展频次和剂量也需要充分考虑。然而目前这些方面还缺乏足够的研究,没有形成共识。
2 FMT在猪上的应用研究进展基于FMT在人类医学中的应用思路,在动物养殖领域试图将FMT技术移植到畜禽生产中,通过导入外源“健康”或“功能”菌群,加速肠道菌的定植或改善肠道功能,进而提高畜禽健康水平与生产性能[29]。我国是世界上生猪养殖和消费规模最大的国家,研究和建立适合猪的FMT技术对于提高猪养殖技术水平,推动养猪业发展具有重要意义和价值。
2.1 FMT有效改变仔猪肠道菌群施用FMT的主要目的是想要快速而有效的改变受体的肠道微生物区系。处于发育早期的幼龄仔猪肠道菌群还没有完全成熟,且操作更方便,所以目前在猪上进行的FMT研究多集中于新生仔猪或断奶仔猪。
仔猪在出生过程中和出生后肠道迅速定植微生物,主要来源是母体、粪便、乳汁、环境等[30-31]。出生后第1周,仔猪肠道内细菌数量极速增加,并呈现从需氧菌到厌氧菌的转变[32-33]。当前,许多研究选择在仔猪出生后立即开始实施FMT,能够尽可能减少内源肠道菌的影响,让植入菌群快速成为受体动物肠道内的“主力军”[34-35]。不同的研究表明,通过FMT方式可加速新生仔猪肠道菌的定植,明显增加受体肠道细菌的多样性,在自身原有基础上进一步的提高优势菌(通常是有益共生菌)的丰富度和占比,同时减少致病菌的数量,降低环境、母体、哺乳、免疫等复杂因素对仔猪早期肠道菌群的扰乱[36-38]。Hu等[36]研究表明,将成年金华猪的粪便微生物移植给新生仔猪,显著增加仔猪结肠中乳杆菌属(Lactobacillus)、普氏菌属(Prevotella)、瘤胃球菌属(Ruminococcus)等相对丰度,降低了梭杆菌科(Fusobacteriaceae)相对丰度,并加速了屎肠球菌(Enterococcus faecium)、普拉梭菌(Faecalibacterium prausnitzii)等专性厌氧菌的定植进程。Cheng等[37]发现,施用FMT后仔猪肠道有益菌丰度增加,肠杆菌科(Enterobacteriaceae)等致病菌相对丰度下降,触发由肠道微生物相关的肠道黏膜保护性自噬,从而维持了肠屏障的完整性。杜蕾[38]前期在新生无菌(germ free, GF)猪上的研究发现,GF仔猪肠道和免疫系统(如肠系膜淋巴)明显发育迟缓,但是在仔猪出生后2周内进行FMT都能够有效促进或恢复肠道和免疫系统的发育,且移植时间越早越好。
断奶阶段是FMT另一关键时期,由于断奶应激和饲料类型的转变,通常断奶仔猪的腹泻率明显增加,肠道疾病发病率和死淘率显著提高。但此时断奶仔猪的内源肠道菌群已经趋近成熟,FMT的效果会受到一定的影响。一些研究试图通过FMT来改善断奶仔猪的肠道健康,削弱断奶应激对肠道生态系统的损害[39-40]。Hu等[39]研究发现,单独施用FMT或者FMT结合使用谷物乳杆菌(Lactobacillus frumenti)、加氏乳杆菌LA39(Lactobacillus gasseri LA39)等益生菌,均可以使受体仔猪肠道菌群组成趋向于受体发生变化,增加肠道丙酸和丁酸代谢菌的相对丰度,显著降低断奶仔猪腹泻率。
2.2 FMT对猪生长和健康的影响 2.2.1 FMT增强宿主代谢功能宿主对于食物中营养物质的消化和吸收在很大程度上依赖于肠道菌群[41-42]。除了分解宿主自身不能消化利用的纤维等营养素,肠道菌群还能产生多种维生素、氨基酸、有机酸等营养物质。多数情况下,FMT介导的菌群移植整体增加猪的肠道菌群多样性和丰富度,可提高宿主对营养组分的消化利用率[43-45]。例如,通过FMT引入的大量杆菌属(Bacillus)可以促进初级胆汁酸向次级胆汁酸的转变,这对饲粮中的脂质吸收和利用很有帮助[46]。此外,FMT引入的优势菌,如乳杆菌属、瘤胃球菌科(Ruminococcaceae)等明显促进短链脂肪酸(SCFAs)的产生,除了为后肠提供能量,还可以作为信号分子调控机体代谢平衡和能量稳态[47]。
2.2.2 FMT改善肠道屏障和分泌功能细菌的定植能够直接影响宿主肠道发育和健康[48]。研究表明,FMT介导的一些功能性细菌(如梭菌属、Clostridium)引入可以利用芳香族氨基酸(如色氨酸)产生多种抗炎性代谢物(如吲哚丙酸、吲哚乙酸等)减少肠道炎症发生[49],增加肠道黏膜分泌性免疫球蛋白A(sIgA)阳性细胞密度和杯状细胞数量,并提高黏蛋白2(MUC2)、β-防御素-2(BD-2)、Toll样受体(TLR)2/4的表达,刺激免疫细胞的成熟和活化[50-51]。本实验室前期在仔猪上的菌群移植试验也表明,供体猪结肠菌移植可有效提高仔猪回肠的紧密连接蛋白闭锁小带蛋白-1(ZO-1)的表达,提高结肠黏膜层厚度和MUC2的表达[52]。近期,本实验室分析了菌群移植对仔猪肠道分泌功能的影响,试验结果表明,菌群移植介导的肠道菌群变化能够影响到肠分泌细胞(EECs)的数量和功能,胃肠道产生的饥饿素、胆囊收缩素等多种激素和小肽的表达量都发生明显的改变;这些激素和细胞因子可通过“肠-脑轴”作用于中枢神经系统,调控宿主食欲和能量稳态[53]。
2.2.3 FMT降低免疫损伤随着仔猪饮食由母乳向植物性固体饲料的转变,断奶后短期内乳酸菌属数量持续下降,负责固体饲料消化和利用的拟杆菌属(Bacteroides)、瘤胃球菌属(Ruminococcus)数量的减少,这可能是仔猪出现断奶应激的原因[54]。Xiang等[40]研究发现,益生菌与母源FMT联用能够引起受体仔猪肠道乳酸菌属(Lactobacillus)等优势菌的占位优势扩大,毛螺菌科(Lachnospiraceae)、梭杆菌科(Fusobacteriaceae)等致病菌的相对丰度显著降低;血浆中炎症因子含量明显下降,削弱了由断奶应激造成的炎症反应和氧化应激损伤。黄金华等[55]研究报道,基础饲粮中添加7%的健康哺乳母猪粪菌液能够显著降低断奶仔猪的下痢率,从而提高断奶仔猪的成活率。
2.3 FMT导致的负面影响虽然多数研究都报道了FMT处理对肠道菌群干预的有效性。但值得注意的是,FMT处理带来的并不完全都是有益效果,一些研究也指出,FMT会产生额外的负面影响。Mccormack等[56]发现,给予新生仔猪灌喂8 mL的供体猪粪便菌悬液,会严重损害仔猪的肠道形态,导致仔猪体重减轻,并且4次灌喂后这种负面影响明显大于仅1次灌喂。其原因在于完整的粪便菌群中含有大量致病菌,如链球菌属(Streptococcus)、弯曲杆菌属(Campylobacter)等。Diao等[57]比较了3种供体猪(藏猪、大白猪和荣昌猪)FMT对同一批受体仔猪的影响效果。研究发现,藏猪FMT改善了仔猪的生长性能,增强仔猪肠道消化吸收酶的活性,但是大白猪和荣昌猪FMT则破坏仔猪的肠道菌群平衡,一定程度上损害肠道健康。这也提示实施FMT时,选择适合的猪种和对应的生理阶段是需要加以考虑的。本实验室前期的研究也发现,将同一头健康成年猪的粪便菌群和结肠菌群分别移植给2组新生仔猪,产生的效果有明显的差异:FMT更有利于仔猪的日增重和脂肪沉积,结肠菌移植更有利于肠道发育和肠道健康;并且FMT在一定程度上引起了受体仔猪肠道的炎症反应,增加白细胞介素-1(IL-1)等促炎因子的产生[52]。很明显,由于FMT是不加选择的整体移植,难免会导入一些对健康不利的细菌或者细菌代谢物(如脂多糖、细菌毒素等),这可能会引起机体过度免疫反应或者肠道炎症的发生。因此,合理、谨慎地挑选供体动物及细菌来源,规范FMT的操作流程和处理方式对于菌群移植的成功非常重要。表 1列举了部分较为典型的仔猪FMT试验研究。
![]() |
表 1 仔猪FMT试验 Table 1 Research of FMT on piglets |
从目前的医学报道来看,使用FMT治疗IBD具有较高的安全性。也有个别病案报道,一些病人接受FMT之后会出现轻微的发热、腹胀、腹痛、便秘等反应,但这些不良反应在短期都能够得到缓解和消失[13, 59-60]。这种现象被认为是残留的致病菌和移植过程中内镜操作出现的不良反应。相比于人类临床医学中FMT的相关报道,在实际猪生产中可以建立更简便的FMT方案[61]。即排除在动物上应用FMT的心理障碍及伦理道德纷争后,在筛选合格的供受体猪同时,对分离菌群、量化移植细菌、规范移植流程等方面进行标准化,这对于实际生产具有重要意义。考虑到猪的生产周期、淘汰年限等方面因素,在实际生产中几乎不可能参照人类医学临床研究那样进行长期的随访,因此严格把控供体健康和菌源的安全性成了FMT在猪生产中应用的基本保障。
在筛选供体猪时必须仔细挑选生长性能(体重、体长、体表洁净度、日增重、采食量等)较为优秀的个体,进一步通过血清、粪便检测排除携带各类病源的个体[62-63]。此外,可提前针对性的对供体猪进行:1)益生元或者益生菌干预以提高肠道菌群丰富度和代谢功能;2)给予抗生素和驱虫药处理以清除自身携带的致病菌和寄生虫作为额外补充方案。
菌液制备和移植过程中的风险控制也是极其重要的环节。Zhang等[64]提出了洗涤菌群移植的概念:基于自主研发的自动菌群净化系统,将制备好的粪菌悬液进行微滤,之后进行3次以上的离心和重悬[15, 61]。该方法可去除菌悬液中的粪便颗粒、寄生虫虫卵、真菌、病毒及其代谢物等成分,有效降低了FMT临床应用不良事件的发生率。虽然目前在畜牧领域还没有相似的报道,但借鉴此改进方法对猪用FMT菌液进行适度的净化和纯化,去除有害的特殊组分(菌、代谢物、残渣碎片等),进一步提高安全性是非常有必要的。同时,严格把控制备环境参数,如使用合适的细菌保护剂、稳定剂,优化冷冻或干燥处理条件,延长菌液的储存时间和有效性,避免菌悬液污染和失活是必不可少的。刘敏等[65]比较了不同制备方式(静置和离心)和不同保存方式(液氮冻存、-80 ℃冻存、液氮24 h+-80 ℃冻存)对菌液的影响。研究发现离心法获得细菌活性低于静置法;将静置法制备好的猪粪便菌悬液-80 ℃冷冻保存1周,与新鲜粪菌悬液在细菌活性与菌群组成上没有显著差异。这些结果为大样本、长距离猪FMT的应用提供了重要技术参考。
目前在人类临床研究和不同的动物试验中,给菌的频次、剂量等参数都难以统一。Hu等[39]的试验中,给仔猪灌服细菌量为108 CFU/mL(2 mL)菌悬液的抗腹泻效果比灌服细菌量为109 CFU/mL(2 mL)的菌悬液时更强。Mccormack等[56]的试验表明,单次灌喂细菌量为1.2×109 CFU/mL(8 mL)的粪菌悬液可能会破坏新生仔猪肠道内环境稳态,进而引发动物腹泻、生长发育阻滞、炎症反应等。这些结果提示应该根据受体猪的日龄和体况优化FMT方案,无论是口服或者灌肠都需避免单次给菌剂量(悬液体积或总细菌量)过大、频率过高、菌液温度过低造成的生理应激,减小FMT造成的负面影响。
3.2 猪FMT的个性化设计由于在猪上开展FMT研究通常都是数十头以上的群体试验,同批次的菌液数量、稳定性、投送难度、经济成本等都需要考虑。目前最常见的方法是简单的使用新鲜粪便制成悬液直接灌胃给受体猪[66],然而这种操作方法仅适用于仔猪,难以在成年猪上开展。未来如果在规模化猪场开展菌群移植的生产应用,同批次的接种量将会达到数百至上万头猪只规模。开发出安全、标准化的给药途径必须能够满足生产数量的需求。这必须通过机械设备进行自动化的后肠灌注或者利用微囊包被技术制备粪菌胶囊然后口服投递才能应对[67],但是目前相关技术还不成熟,需要进一步的建立和完善。最终我们期望能够建立起一整套类似仔猪免疫程序的菌群移植程序,通过快捷、安全、有效的途径完成菌群移植,促进仔猪早期肠道发育和肠道微生态系统的完整,甚至改善仔猪的生长和生产性能。然而粪菌悬液制备的不可重复性和理想供体猪稀缺的问题始终存在。此外,建立标准、安全、丰富的动物粪菌库可能是解决菌源问题的根本途径。
在未来,可以针对以下几点改善猪FMT的应用效果:1)根据不同品种、生理阶段或体型大小,确定较为适宜的施用剂量、细菌数量、频次、温度等主要参数。2)研究和开发粪便细菌厌氧分离装置、微囊包被技术、菌液洗涤纯化技术、细菌微发酵技术、自动化灌喂或者灌肠设备等,建立标准化的菌群供给方式。3)根据不同生产目标开展差异化的FMT研究。例如,使用健康母体、异体成年猪或抗腹泻率高的地方猪进行FMT,调控新生仔猪、断奶仔猪的肠道内环境稳态,改善肠道健康[57-67];选用不同生长指标和代谢特征的猪种或个体,以获取较为理想的供体特性来解决实际生产需要;利用生理状态良好的近缘(自身原有冻存健康菌或同栏健康猪)进行FMT,恢复由于肠道菌群紊乱导致妊娠母猪的难产、便秘、缺乳及食欲调控等问题。4)结合益生菌、益生元、后生元等其他微生物调控方案进行复合式的FMT干预方法。
4 小结目前的研究表明,在畜禽生产中使用FMT这一新型“器官移植”方法可以有效、快速改变和提升动物肠道健康和消化功能。但是也存在标准不一、技术粗放、安全风险高等缺陷。未来,根据猪的饮食习惯和生理特点,建立更加标准规范的FMT操作规程,在提高FMT安全性、有效性、便利性的同时,降低使用成本和操作难度,特别是针对猪的不同生理阶段(如妊娠母猪)和不同养殖目的(如提高瘦肉率)制定规范化或个性化的FMT方案是需要努力的方向。
[1] |
HOLVOET T, JOOSSENS M, VÁZQUEZ-CASTELLANOS J F, et al. Fecal microbiota transplantation reduces symptoms in some patients with irritable bowel syndrome with predominant abdominal bloating: short- and long-term results from a placebo-controlled randomized trial[J]. Gastroenterology, 2021, 160(1): 145-157. e8. DOI:10.1053/j.gastro.2020.07.013 |
[2] |
LI N, ZUO B, HUANG S M, et al. Spatial heterogeneity of bacterial colonization across different gut segments following inter-species microbiota transplantation[J]. Microbiome, 2020, 8(1): 161. DOI:10.1186/s40168-020-00917-7 |
[3] |
CHU N D, CROTHERS J W, NGUYEN L T T, et al. Dynamic colonization of microbes and their functions after fecal microbiota transplantation for inflammatory bowel disease[J]. mBio, 2021, 12(4): e0097521. DOI:10.1128/mBio.00975-21 |
[4] |
EISEMAN B, SILEN W, BASCOM G S, et al. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis[J]. Surgery, 1958, 44(5): 854-859. |
[5] |
IANIRO G, BIBBÒ S, PORCARI S, et al. Fecal microbiota transplantation for recurrent C. difficile infection in patients with inflammatory bowel disease: experience of a large-volume European FMT center[J]. Gut Microbes, 2021, 13(1): 1994834. DOI:10.1080/19490976.2021.1994834 |
[6] |
EL-SALHY M, HATLEBAKK J G, GILJA O H, et al. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study[J]. Gut, 2020, 69(5): 859-867. DOI:10.1136/gutjnl-2019-319630 |
[7] |
KAROLEWSKA-BOCHENEK K, LAZOWSKA-PRZEOREK I, GRZESIOWSKI P, et al. Faecal microbiota transfer-a new concept for treating cytomegalovirus colitis in children with ulcerative colitis[J]. Annals of Agricultural and Environmental Medicine, 2021, 28(1): 56-60. |
[8] |
HAYASE E, HASHIMOTO D, NAKAMURA K, et al. R-spondin1 expands paneth cells and prevents dysbiosis induced by graft-versus-host disease[J]. The Journal of Experimental Medicine, 2017, 214(12): 3507-3518. DOI:10.1084/jem.20170418 |
[9] |
储琼芳. 粪便移植和益生菌能有效抑制小鼠肠道内艰难梭菌的定植[D]. 硕士学位论文. 北京: 中国疾病预防控制中心, 2018. CHU Q F. Fecal microbiota transplantation and probiotics effectively reduce the intestinal colonization of Clostridium difficile in a mouse model[D]. Master's Thesis. Beijing: Chinese Center for Disease Control and Prevention, 2018. (in Chinese) |
[10] |
SUEZ J, ZMORA N, ZILBERMAN-SCHAPIRA G, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT[J]. Cell, 2018, 174(6): 1406-1423. e16. DOI:10.1016/j.cell.2018.08.047 |
[11] |
张发明, 张婷. 从粪菌移植到菌群移植[J]. 科学通报, 2019, 64(3): 285-290. ZHANG F M, ZHANG T. From fecal microbiota transplantation to microbiota transplantation[J]. Chinese Science Bulletin, 2019, 64(3): 285-290 (in Chinese). |
[12] |
KANG D W, ADAMS J B, COLEMAN D M, et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota[J]. Scientific Reports, 2019, 9(1): 5821. DOI:10.1038/s41598-019-42183-0 |
[13] |
ROSSEN N G, FUENTES S, VAN DER SPEK M J, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis[J]. Gastroenterology, 2015, 149(1): 110-118. e4. DOI:10.1053/j.gastro.2015.03.045 |
[14] |
TAUR Y, COYTE K, SCHLUTER J, et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant[J]. Science Translational Medicine, 2018, 10(460): eaap9489. DOI:10.1126/scitranslmed.aap9489 |
[15] |
CUI B T, LI P, XU L J, et al. Step-up fecal microbiota transplantation (FMT) strategy[J]. Gut Microbes, 2016, 7(4): 323-328. DOI:10.1080/19490976.2016.1151608 |
[16] |
ZHANG F M, LUO W S, SHI Y, et al. Should we standardize the 1 700-year-old fecal microbiota transplantation?[J]. American Journal of Gastroenterology, 2012, 107(11): 1755. |
[17] |
CARMODY R N, BISANZ J E, BOWEN B P, et al. Cooking shapes the structure and function of the gut microbiome[J]. Nature Microbiology, 2019, 4(12): 2052-2063. DOI:10.1038/s41564-019-0569-4 |
[18] |
NDONGO S, TALL M L, NGOM I I, et al. Olsenella timonensis sp. nov., a new bacteria species isolated from the human gut microbiota[J]. New Microbes and New Infections, 2019, 32: 100610. DOI:10.1016/j.nmni.2019.100610 |
[19] |
YU E W, GAO L, STASTKA P, et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: the FMT-TRIM double-blind placebo-controlled pilot trial[J]. PLoS Medicine, 2020, 17(3): e1003051. DOI:10.1371/journal.pmed.1003051 |
[20] |
ZHANG F, ZUO T, YEOH Y K, et al. Longitudinal dynamics of gut bacteriome, mycobiome and virome after fecal microbiota transplantation in graft-versus-host disease[J]. Nature Communications, 2021, 12(1): 65. DOI:10.1038/s41467-020-20240-x |
[21] |
李振东, 张雪, 何帅. 结肠途径经内镜肠道植管术用于溃疡性结肠炎患者粪菌移植和肠道给药的效果[J]. 当代医学, 2021, 27(1): 26-28. LI Z D, ZHANG X, HE S. The effect of colonic endoscopic intestinal catheterization for fecal bacteria transplantation and intestinal administration in patients with ulcerative colitis[J]. Contemporary Medicine, 2021, 27(1): 26-28 (in Chinese). DOI:10.3969/j.issn.1009-4393.2021.01.009 |
[22] |
RUPAWALA A H, GACHETTE D, BAKHIT M, et al. Management of severe and severe/complicated Clostridoides difficile infection using sequential fecal microbiota transplant by retention enema[J]. Clinical Infectious Diseases, 2021, 73(4): 716-719. DOI:10.1093/cid/ciab041 |
[23] |
CROTHERS J W, CHU N D, NGUYEN L T T, et al. Daily, oral FMT for long-term maintenance therapy in ulcerative colitis: results of a single-center, prospective, randomized pilot study[J]. BMC Gastroenterology, 2021, 21(1): 281. DOI:10.1186/s12876-021-01856-9 |
[24] |
PARAMSOTHY S, PARAMSOTHY R, RUBIN D T, et al. Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis[J]. Journal of Crohn's & Colitis, 2017, 11(10): 1180-1199. |
[25] |
BAJAJ J S, SALZMAN N H, ACHARYA C, et al. Fecal microbial transplant capsules are safe in hepatic encephalopathy: a phase 1, randomized, placebo-controlled trial[J]. Hepatology, 2019, 70(5): 1690-1703. DOI:10.1002/hep.30690 |
[26] |
BAJAJ J S, KASSAM Z, FAGAN A, et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial[J]. Hepatology, 2017, 66(6): 1727-1738. DOI:10.1002/hep.29306 |
[27] |
STALEY C, HAMILTON M J, VAUGHN B P, et al. Successful resolution of recurrent Clostridium difficile infection using freeze-dried, encapsulated fecal microbiota; pragmatic cohort study[J]. The American Journal of Gastroenterology, 2017, 112(6): 940-947. DOI:10.1038/ajg.2017.6 |
[28] |
JOHNSEN P H, HILPVSCH F, CAVANAGH J P, et al. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial[J]. The Lancet.Gastroenterology & Hepatology, 2018, 3(1): 17-24. |
[29] |
BOJANOVA D P, BORDENSTEIN S R. Fecal transplants: what is being transferred?[J]. PLoS Biology, 2016, 14(7): e1002503. DOI:10.1371/journal.pbio.1002503 |
[30] |
JIANG L L, FENG C P, TAO S Y, et al. Maternal imprinting of the neonatal microbiota colonization in intrauterine growth restricted piglets: a review[J]. Journal of Animal Science and Biotechnology, 2019, 10: 88. DOI:10.1186/s40104-019-0397-7 |
[31] |
刘作华, 杜蕾, 齐仁立. 仔猪早期肠道微生物变化特点及饲养管理措施[J]. 饲料工业, 2020, 41(19): 5-11. LIU Z H, DU L, QI R L. The dynamic changes of gut microbiota and feed managements in piglets at early life[J]. Feed Industry, 2020, 41(19): 5-11 (in Chinese). |
[32] |
HUANG S M, LI N, LIU C, et al. Characteristics of the gut microbiota colonization, inflammatory profile, and plasma metabolome in intrauterine growth restricted piglets during the first 12 hours after birth[J]. Journal of Microbiology, 2019, 57(9): 748-758. DOI:10.1007/s12275-019-8690-x |
[33] |
LIU Y, ZHENG Z J, YU L H, et al. Examination of the temporal and spatial dynamics of the gut microbiome in newborn piglets reveals distinct microbial communities in six intestinal segments[J]. Scientific Reports, 2019, 9(1): 3453. DOI:10.1038/s41598-019-40235-z |
[34] |
CHENG C S, WEI H K, WANG P, et al. Early intervention with faecal microbiota transplantation: an effective means to improve growth performance and the intestinal development of suckling piglets[J]. Animal, 2019, 13(3): 533-541. DOI:10.1017/S1751731118001611 |
[35] |
XIANG Q H, WU X Y, PAN Y, et al. Early intervention using fecal microbiota transplantation combined with probiotics influence the growth performance, diarrhea, and intestinal barrier function of piglets[J]. Applied Sciences, 2020, 10(2): 568. DOI:10.3390/app10020568 |
[36] |
HU L S, GENG S J, LI Y, et al. Exogenous fecal microbiota transplantation from local adult pigs to crossbred newborn piglets[J]. Frontiers in Microbiology, 2017, 8: 2663. |
[37] |
CHENG S S, MA X, GENG S J, et al. Fecal microbiota transplantation beneficially regulates intestinal mucosal autophagy and alleviates gut barrier injury[J]. mSystems, 2018, 3(5): e00137-18. |
[38] |
杜蕾. 菌群移植对新生仔猪肠道发育的影响[D]. 硕士学位论文. 重庆: 西南大学, 2018. DU L. Effect of fecal microbiota transplantat on intestinal development of newborn piglets[D]. Master's Thesis. Chongqing: Southwest University, 2018. (in Chinese) |
[39] |
HU J, MA L B, NIE Y F, et al. A Microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets[J]. Cell Host & Microbe, 2018, 24(6): 817-832. e8. |
[40] |
XIANG Q H, WU X Y, PAN Y, et al. Early-life intervention using fecal microbiota combined with probiotics promotes gut microbiota maturation, regulates immune system development, and alleviates weaning stress in piglets[J]. International Journal of Molecular Sciences, 2020, 21(2): 503. DOI:10.3390/ijms21020503 |
[41] |
QUAN J P, CAI G Y, YE J, et al. A global comparison of the microbiome compositions of three gut locations in commercial pigs with extreme feed conversion ratios[J]. Scientific Reports, 2018, 8(1): 4536. DOI:10.1038/s41598-018-22692-0 |
[42] |
STANISLAWSKI M A, DABELEA D, LANGE L A, et al. Gut microbiota phenotypes of obesity[J]. NPJ Biofilms and Microbiomes, 2019, 5(1): 18. DOI:10.1038/s41522-019-0091-8 |
[43] |
GENG S J, CHENG S S, LI Y, et al. Faecal microbiota transplantation reduces susceptibility to epithelial injury and modulates tryptophan metabolism of the microbial community in a piglet model[J]. Journal of Crohn's & Colitis, 2018, 12(11): 1359-1374. |
[44] |
YANG H, HUANG X C, FANG S M, et al. Unraveling the fecal microbiota and metagenomic functional capacity associated with feed efficiency in pigs[J]. Frontiers in Microbiology, 2017, 8: 1555. DOI:10.3389/fmicb.2017.01555 |
[45] |
MCCORMACK U M, CURIÃO T, BUZOIANU S G, et al. Exploring a possible link between the intestinal microbiota and feed efficiency in pigs[J]. Applied and Environmental Microbiology, 2017, 83(15): e00380-17. |
[46] |
LEE Y, YOSHITSUGU R, KIKUCHI K, et al. Combination of soya pulp and Bacillus coagulans lilac-01 improves intestinal bile acid metabolism without impairing the effects of prebiotics in rats fed a cholic acid-supplemented diet[J]. British Journal of Nutrition, 2016, 116(4): 603-610. DOI:10.1017/S0007114516002270 |
[47] |
张卓. 粪菌移植和结肠菌移植对新生仔猪生长、代谢及肠道健康的差异影响[D]. 硕士学位论文. 重庆: 西南大学, 2021. ZHANG Z. Differential effects of fecal microbiota transplantation and colonic microbiota transplantation on growth, metabolism and intestinal health of neonatal piglets[D]. Master's Thesis. Chongqing: Southwest University, 2021. (in Chinese) |
[48] |
XIAO Y, YAN H L, DIAO H, et al. Early gut microbiota intervention suppresses DSS-induced inflammatory responses by deactivating TLR/NLR signalling in pigs[J]. Scientific Reports, 2017, 7(1): 3224. DOI:10.1038/s41598-017-03161-6 |
[49] |
DARKOH C, PLANTS-PARIS K, BISHOFF D, et al. Clostridium difficile modulates the gut microbiota by inducing the production of indole, an interkingdom signaling and antimicrobial molecule[J]. mSystems, 2019, 4(2): e00346-18. |
[50] |
XU R Y, WAN J J, LIN C H, et al. Effects of early intervention with antibiotics and maternal fecal microbiota on transcriptomic profiling ileal mucusa in neonatal pigs[J]. Antibiotics, 2020, 9(1): 35. |
[51] |
TENG T, GAO F, HE W, et al. An early fecal microbiota transfer improves the intestinal conditions on microflora and immunoglobulin and antimicrobial peptides in piglets[J]. Journal of Agricultural and Food Chemistry, 2020, 68(17): 4830-4843. DOI:10.1021/acs.jafc.0c00545 |
[52] |
QI R L, ZHANG Z, WANG J, et al. Introduction of colonic and fecal microbiota from an adult pig differently affects the growth, gut health, intestinal microbiota and blood metabolome of newborn piglets[J]. Frontiers in Microbiology, 2021, 12: 623673. |
[53] |
张卓, 黄金秀, 杨飞云, 等. 早期粪菌移植对仔猪肠道发育、肠道菌群组成和肠道激素分泌的影响[J]. 动物营养学报, 2021, 33(7): 3745-3758. ZHANG Z, HUANG J X, YANG F Y, et al. Effects of early fecal microbiota transplantation on intestinal development, intestinal microbiota composition and intestinal hormone secretion of piglets[J]. Chinese Journal of Animal Nutrition, 2021, 33(7): 3745-3758 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.07.017 |
[54] |
YANG Q L, HUANG X Y, WANG P F, et al. Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by age-related dietary changes[J]. MicrobiologyOpen, 2019, 8(12): e923. |
[55] |
黄金华, 李泰佑, 宁国信, 等. 粪菌移植技术对断奶仔猪生长性能和下痢率的影响[J]. 黑龙江畜牧兽医, 2018(10): 60-62. HUANG J H, LI T Y, NING G X, et al. Effects of fecal bacteria transplantation on growth performance and dysentery rate of weaned piglets[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018(10): 60-62 (in Chinese). |
[56] |
MCCORMACK U M, CURIÃO T, WILKINSON T, et al. Fecal microbiota transplantation in gestating sows and neonatal offspring alters lifetime intestinal microbiota and growth in offspring[J]. mSystems, 2018, 3(3): e00134-17. |
[57] |
DIAO H, YAN H L, XIAO Y, et al. Modulation of intestine development by fecal microbiota transplantation in suckling pigs[J]. RSC Advances, 2018, 8(16): 8709-8720. |
[58] |
NIEDERWERDER M C, CONSTANCE L A, ROWLAND R R R, et al. Fecal microbiota transplantation is associated with reduced morbidity and mortality in porcine circovirus associated disease[J]. Frontiers in Microbiology, 2018, 9: 1631. |
[59] |
VERMEIRE S, JOOSSENS M, VERBEKE K, et al. Donor species richness determines faecal microbiota transplantation success in inflammatory bowel disease[J]. Journal of Crohn's & Colitis, 2016, 10(4): 387-394. |
[60] |
CUI B T, LI P, XU L J, et al. Step-up fecal microbiota transplantation strategy: a pilot study for steroid-dependent ulcerative colitis[J]. Journal of Translational Medicine, 2015, 13: 298. |
[61] |
ZHANG F M, CUI B T, HE X X, et al. Microbiota transplantation: concept, methodology and strategy for its modernization[J]. Protein & Cell, 2018, 9(5): 462-473. |
[62] |
刁慧, 严鸿林, 肖熠, 等. 不同品种猪肠道菌群结构和肠道发育模式的差异及其通过粪便移植在无菌小鼠上的传递性[C]//中国畜牧兽医学会动物营养学分会第十二次动物营养学术研讨会论文集, 武汉: 中国畜牧兽医学会动物营养学分会, 2016: 272. DIAO H, YAN H L, XIAO Y, et al. Differences in intestinal microflora structure and intestinal developmental pattern among different breeds of pigs and their transitability in germ-free mice by fecal transplantation[C]//Proceedings of the 12th Animal Nutrition Symposium of Animal Nutrition Branch of Chinese Animal Husbandry and Veterinary Society, Wuhan: Animal Nutrition Branch of Chinese Association of Animal Science and Veterinary Medicine, 2016: 272. (in Chinese) |
[63] |
HU J, CHEN L L, TANG Y M, et al. Standardized preparation for fecal microbiota transplantation in pigs[J]. Frontiers in Microbiology, 2018, 9: 1328. |
[64] |
ZHANG T, LU G C, ZHAO Z, et al. Washed microbiota transplantation vs. manual fecal microbiota transplantation: clinical findings, animal studies and in vitro screening[J]. Protein & Cell, 2020, 11(4): 251-266. |
[65] |
刘敏, 吴金鸳, 陈从英. 不同粪菌悬液处理方式对猪粪菌移植过程中细菌活性及活菌组成的影响[J]. 畜牧兽医学报, 2020, 51(5): 1040-1048. LIU M, WU J Y, CHEN C Y. Effects of different treatments of faecal microbial suspensions on the activity and composition of live bacteria in faecal microbiota transplantation in pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 1040-1048 (in Chinese). |
[66] |
顾婕. 粪菌移植技术在养猪生产中的研究进展[J]. 广东饲料, 2021, 30(2): 48-50. GU J. Research progress of fecal bacteria transplantation technology in pig production[J]. Guangdong Feed, 2021, 30(2): 48-50 (in Chinese). |
[67] |
杨禄良. 饲用乳酸菌稳定性和耐受性新技术与应用[C]//第二届饲料微生态制剂应用技术研讨会暨微生态制剂大会论文集, 北京: 饲料与畜牧编辑部, 2012: 67-73. YANG L L. New technology and application of stability and tolerance of feed lactic acid bacteria[C]//Proceedings of the 2nd Feed Probiotics Application Technology Seminar and Probiotics Conference, Beijing: Feed and Animal Husbandry Editorial Department, 2012: 67-73. (in Chinese) |