动物营养学报    2022, Vol. 34 Issue (8): 4988-4999    PDF    
饲粮粗蛋白质水平对肉鸡消化酶活性及能量、蛋白质代谢的影响
叶晓梦 , 宋明强 , 孙晓晓 , 王钰明 , 解竞静 , 萨仁娜 , 张虎 , 赵峰     
中国农业科学院北京畜牧兽医研究所, 动物营养学国家重点实验室, 北京 100193
摘要: 本试验旨在研究饲粮粗蛋白质(CP)水平对肉鸡生长性能及消化功能的影响, 并探讨由此是否引起了对饲粮表观代谢能(AME)测定的差异。试验包括2个部分。第1部分考察饲粮CP水平对肉鸡生长性能及消化酶活性的影响。采用完全随机区组设计, 以7日龄体重为区组, 饲粮设置2个CP水平, 即高CP水平(HP)饲粮(8~21日龄饲粮CP水平为22.57%, 22~35日龄饲粮CP水平为20.65%)和低CP水平(LP)饲粮(8~21日龄饲粮CP水平为19.29%, 22~35日龄饲粮CP水平为17.49%), 每个处理6个重复, 其中8~21日龄每个重复24只鸡, 22~35日龄每个重复17只鸡。第2部分考察饲喂不同CP水平饲粮的肉鸡对排泄物中可消化养分及饲粮能量和蛋白质代谢的影响。采用2×2两因素完全随机设计, 试验鸡的来源设2个处理, 即饲喂HP饲粮的肉鸡和饲喂LP饲粮的肉鸡; 经肉鸡消化代谢的饲粮设2个处理, 即HP饲粮(21~28日龄, CP水平为22.57%;35~42日龄, CP水平为20.65%)和LP饲粮(21~28日龄, CP水平为19.29%;35~42日龄, CP水平为17.49%), 每个处理6个重复, 其中21~28日龄每个重复4只鸡, 35~42日龄每个重复2只鸡。结果表明: 1)饲喂LP饲粮的肉鸡8~21日龄平均日增重(ADG)显著高于饲喂HP饲粮的肉鸡(P < 0.05), 而2种CP水平饲粮饲喂的肉鸡22~35日龄ADG无显著差异(P>0.05)。2)肉鸡饲喂HP饲粮与饲喂LP饲粮相比, 21日龄空肠液淀粉酶、糜蛋白酶和回肠液淀粉酶活性显著升高(P < 0.05);35日龄回肠液淀粉酶活性显著升高(P < 0.05)。3)21~28日龄, 饲喂HP饲粮肉鸡的每千克饲粮摄入量的排泄物酶水解物能值(EHGE/DMI)及每兆焦总能摄入量的排泄物酶水解物能值(EHGE/GEI)与饲喂LP饲粮肉鸡无显著差异(P>0.05)。4)饲喂不同CP水平饲粮的肉鸡对饲粮AME、氮校正表观代谢能(AMEn)、能量表观代谢率(AME/GE)、氮校正能量表观代谢率(AMEn/GE)及CP代谢率均无显著影响(P>0.05)。由此可见, 虽然饲粮CP水平影响了肉鸡的ADG和消化液中部分消化酶的活性, 但对生物学法测定的饲粮AME及CP代谢率无显著影响。
关键词: 粗蛋白质水平    肉鸡    生长性能    消化酶    代谢能    
Effects of Dietary Crude Protein Level on Digestive Enzyme Activities, Metabolism of Energy and Protein of Broilers
YE Xiaomeng , SONG Mingqiang , SUN Xiaoxiao , WANG Yuming , XIE Jingjing , SA Renna , ZHANG Hu , ZHAO Feng     
The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Abstract: This experiment was conducted to investigate the effects of dietary crude protein (CP) level on growth performance and digestion function of broilers, and to make sure whether it caused differences in the determination of apparent metabolizable energy (AME) of diets. Two trials were included in this experiment. Trial 1 was to investigate the effects of dietary CP level on growth performance and digestive enzyme activities of broilers. Two CP level diets consisted of high CP level (HP) diet (22.57% CP for days 8 to 21 and 20.65% CP for days 22 to 35) and low CP level (LP) diet (19.29% CP for days 8 to 21 and 17.49% CP for days 22 to 35) were used in a completely randomized block design according to the body weight at 7 days of age. Each treatment consisted of 6 replicates of 24 broilers from 8 to 21 days of age or 17 broilers from 22 to 35 days of age. Trial 2 was to investigate the effects of broilers fed diets contained different CP levels on digestible nutrients in excreta and metabolism of energy and protein of diets. The two sources of broilers fed HP diets or LP diets and two diets of HP diets (22.57% CP for days 21 to 28 and 20.65% CP for days 35 to 45) or LP diets (19.29% CP for days 21 to 28 and 17.49% CP for days 35 to 42) were used in a 2×2 two-factor completely randomized design. Each treatment consisted of 6 replicates of 4 broilers from 21 to 28 days of age or 2 broilers from 35 to 42 days of age. The results showed as follows: 1) the average daily gain (ADG) of 8 to 21 days of age was significantly higher of broilers fed LP diet than HP diet (P < 0.05), but no significant difference was observed in ADG of 22 to 35 days of age of broilers fed two CP level diets (P>0.05). 2) The activities of amylase and chymotrypsin in jejunum fluid and the activity of amylase in ileal fluid on day 21 of broilers fed HP diet were significantly increased (P < 0.05), and the activity of amylase in ileum fluid on day 35 of broilers fed HP diet was significantly increased compared with these of broliers fed LP diet (P < 0.05). 3) From 21 to 28 days of age, enzymatic hydrolystae gross energy (EHGE) of excreta per kg dietary intake (EHGE/DMI) and EHGE of excrta per MJ intake (EHGE/GEI) of broilers fed HP diet had no significant differences compared with these of broliers fed LP diet (P < 0.05). 4) Broilers fed diets contained different CP levels from 25 to 28 days of age or 39 to 42 days of age had no significant effects on AME, nitrogen-corrected apparent metabolizable energy (AMEn), AME/GE, AMEn/GE and CP metabolizability of diets (P>0.05). In conclusion, although dietary CP level affects ADG and the activities of some digestive enzymes in digestive fluid of broilers, it has no significant effect on the determination of dietary AME and CP metabolizability by biological method.
Key words: protein level    chicken    growth performance    digestive enzyme    metabolizable energy    

饲粮粗蛋白质(CP)水平对快速型肉鸡的生长有较大的影响,由此导致因饲粮CP水平的不同而出现相同日龄的肉鸡在体重上有较大差异。这一差异是否会引起肉鸡消化功能的差别,从而影响对同一饲粮代谢能(ME)的测定有待深入研究。在白羽肉鸡对饲料原料ME的测定中,一般以日龄定义试验鸡的生理状态[1-2]。Khalil等[3]和Olukosi等[4]报道了肉鸡对饲料养分的消化率随周龄的变化而呈现差异。Lopez等[5]的试验结果表明,采用2批次肉鸡代谢试验测定玉米和豆粕的表观代谢能(AME)存在0.23~1.09 MJ/kg的差异。通常情况下,同一品种相同体重的肉鸡对AME的总摄入量相对接近[6-7],当饲粮CP摄入量未满足其最大生长需要量时,日增重随饲粮CP摄入量的增加而增加[8-9],而当CP摄入量超过满足其最大生长需要量时,日增重随饲粮CP摄入量的增加不变甚至降低[10-11],从而表现出饲粮CP水平对肉鸡体重的影响。此外,Fisinin等[12]报道,肉鸡回肠淀粉酶和蛋白酶活性均随饲粮蛋白质水平的增加而增加,然而,Swatson等[13]的试验结果表明,饲粮蛋白质水平对蔗糖酶活性却无显著影响。为此,饲喂不同CP水平的饲粮是否会引起快速型白羽肉鸡生长性能及肠液消化酶活性的差异,进而影响到对饲粮ME的测定结果,对探讨白羽肉鸡测定饲料ME的精度及准确性至关重要。因此,本研究以2种CP水平饲粮饲喂的肉鸡为对象,研究其生长性能、胃肠道消化酶活性对饲粮ME的影响,为白羽肉鸡对饲料ME的准确测定提供参考。

1 材料与方法 1.1 试验动物及饲粮

从孵化场购进360只1日龄雄性爱拔益加(AA)肉仔鸡,于3层网上笼养。根据《鸡饲养标准》(NY/T 33—2004)及《蛋鸡、肉鸡配合饲料》(T/CFIAS 002—2018)推荐的营养需要量配制试验饲粮。舍内通风、饲养密度和免疫程序等按照《AA肉鸡管理手册》进行,期间自由采食和饮水。其中,1~7日龄肉仔鸡全部饲喂幼雏饲粮。在8~35日龄,试验鸡分别饲喂高CP水平(HP)饲粮(8~21日龄,CP水平为22.57%;22~35日龄,CP水平为20.65%)和低CP水平(LP)饲粮(8~21日龄,CP水平为19.29%;22~35日龄,CP水平为17.49%)。试验饲粮组成及营养水平见表 1

表 1 试验饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of experimental diets (air-dry basis)  
1.2 试验设计及样品采集

本试验分为2部分。

第1部分:考察饲粮CP水平对肉鸡生长性能及消化酶活性的影响。采用完全随机区组设计(以7日龄体重为区组),试验鸡分别饲喂HP饲粮(8~21日龄为CP水平为22.57%,22~35日龄为CP水平为20.65%)和LP饲粮(8~21日龄CP水平为19.29%,22~35日龄CP水平为17.49%),每个处理6个重复,其中8~21日龄每个重复24只鸡,22~35日龄每个重复17只鸡。记录8~21日龄和22~35日龄期间肉鸡采食量及体增重。在21和35日龄,从各处理的每个重复选取体重接近、健康的3只肉鸡,二氧化碳(处置浓度≥45%)致死后,分别收集肌胃、十二指肠、空肠、回肠的食糜,放在-20 ℃冻存,用于消化酶活性的测定。

第2部分:分别在21~28日龄和35~42日龄,参考欧洲方法[14]及农业农村部《白羽肉鸡饲料原料代谢能和净能测定技术规程》[15]进行代谢试验,考察饲喂不同CP水平饲粮的肉鸡对排泄物中可消化养分及饲粮AME、CP代谢率的影响。采用2×2两因素完全随机设计,根据试验鸡的来源设2个处理,即饲喂HP饲粮的肉鸡(21~28日龄:体重=792 g;35~42日龄:体重=1 840 g)和饲喂LP饲粮的肉鸡(21~28日龄:体重=824 g;35~42日龄:体重=1 950 g);根据肉鸡代谢试验采食的饲粮设2个处理,即HP饲粮(21~28日龄CP水平为22.57%,35~42日龄CP水平为20.65%)和LP饲粮(21~28日龄CP水平为19.29%,35~42日龄CP水平为17.49%),共计4个处理,每个处理6个重复,其中21~28日龄每个重复4只鸡,35~42日龄每个重复2只鸡。2期代谢试验分别于21和35日龄将试验鸡转移至代谢笼中,预饲3 d后,分别于24和38日龄16:00断料,禁食17 h后,分别于25和39日龄09:00饲喂试验饲粮,再分别在28和42日龄16:00再次断料至29和43日龄09:00。期间收集全部的排泄物,并计算累计采食量。

1.3 样品处理及化学分析

精确称取1 g左右肌胃食糜,加5 mL pH 2.0的盐酸溶液混合均匀,以11 739×g的转速离心10 min,取上清液用于胃蛋白酶活性的测定。同时精确称取2 g食糜,测其水分含量。取各肠段食糜,以11 739×g的转速离心10 min,然后将同一处理内同一重复的上清液涡旋混合,分装制备肠液样品,用于测定淀粉酶、胰蛋白酶和糜蛋白酶活性。胃蛋白酶和淀粉酶活性采用终止法[16-17]进行测定;胰蛋白酶和糜蛋白酶活性采用动力学法[18-19]进行测定。样品水分含量的测定参考GB/T 6435—2014的方法。样品氮和CP含量的测定参照GB/T 6432—2018的方法,以K 9840自动凯氏定氮仪测定。饲粮及排泄物总能(GE)按ISO 9831 ∶ 1998的方法,以PARR 6400氧弹计测定。排泄物酶水解物能值(EHGE)的测定参考Zhao等[20]的方法,通过单胃动物仿生消化系统测定。

1.4 计算公式

式中:EHGE/DMI指每千克饲粮摄入量的排泄物EHGE;EHGE/GEI指每兆焦饲粮摄入量的排泄物EHGE。

1.5 数据处理及统计分析

采用SAS 9.4的MEANS模块进行基本统计量分析。饲粮CP水平对肉鸡生长性能和消化酶活性的影响通过GLM模块进行方差分析,其中7日龄体重为区组,饲粮CP水平为主效应。饲喂不同CP水平饲粮的肉鸡对排泄物中可消化养分及饲粮AME、CP代谢率的影响采用GLM模块进行两因素方差分析,并采用Duncan氏法对平均值进行多重比较。P < 0.05为差异显著。

2 结果与分析 2.1 饲粮CP水平对肉鸡生长性能的影响

表 2可知,8~21日龄,饲粮CP水平对料重比(F/G)和可代谢CP平均日摄入量(ADMCPi)无显著影响(P>0.05);LP饲粮相对于HP饲粮显著提高了肉鸡的平均日增重(ADG)、平均日采食量(ADFI)及AME平均日摄入量(ADAMEi)(P < 0.05)。22~35日龄,饲粮CP水平对肉鸡ADG、ADFI及F/G均无显著影响(P>0.05);LP饲粮相对于HP饲粮显著提高了ADAMEi(P < 0.05),显著降低了ADMCPi(P < 0.05)。8~35日龄,饲粮CP水平对肉鸡ADG、F/G无显著影响(P>0.05);LP饲粮相对于HP饲粮显著提高了ADFI、ADAMEi(P < 0.05),而显著降低了ADMCPi(P < 0.05)。

表 2 饲粮CP水平对肉鸡生长性能的影响 Table 2 Effects of dietary crude protein level on growth performance of broilers
2.2 饲粮CP水平对肉鸡胃肠道pH及消化酶活性的影响

表 3可知,8~21日龄,饲粮CP水平对肉鸡肌胃食糜pH及胃液中胃蛋白酶活性无显著影响(P>0.05);相较LP饲粮,HP饲粮显著地提高了空肠液淀粉酶和糜蛋白酶以及回肠液淀粉酶活性(P < 0.05),而对各小肠段pH、十二指肠液消化酶活性及空肠液和回肠液其他消化酶活性无显著影响(P>0.05)。

表 3 饲粮CP水平对肉鸡胃肠道pH及消化酶活性的影响 Table 3 Effects of dietary crude protein level on pH and digestive enzyme activities in gastrointestinal tract of broilers

22~35日龄,饲粮CP水平对肉鸡肌胃食糜pH及胃液中胃蛋白酶活性无显著影响(P>0.05);相较LP饲粮,HP饲粮显著地提高了回肠液中淀粉酶活性(P < 0.05),而对十二指肠液、空肠液和回肠液pH及其他消化酶活性无显著影响(P>0.05)。

2.3 饲喂不同CP水平饲粮的肉鸡排泄物中可消化养分的差异

表 4可知,21~28日龄,饲喂不同CP水平饲粮的肉鸡对19.29%和22.57% CP饲粮排泄物的体外干物质消化率(IVDMD)、体外能量消化率(EHGE/GE)、每千克饲粮摄入量的排泄物酶水解物能值(EHGE/DMI)、每兆焦饲粮摄入量的排泄物EHGE(EHGE/GEI)均无显著的互作效应(P>0.05)。同一饲粮经饲喂LP饲粮的肉鸡代谢后排泄物的IVDMD和EHGE/GE均显著高于饲喂HP饲粮的肉鸡(P < 0.05),但2组肉鸡的EHGE/DMI和EHGE/GEI无显著差异(P>0.05)。19.29% CP饲粮的肉鸡排泄物IVDMD和EHGE/GE与22.57% CP饲粮的肉鸡排泄物无显著差异(P>0.05),但EHGE/DMI和EHGE/GEI显著地低于22.57% CP饲粮的肉鸡排泄物(P < 0.05)。

表 4 饲喂不同CP水平饲粮的肉鸡排泄物中可消化干物质和能量的差异 Table 4 Difference in digestible dry matter and energy in excreta of broilers fed diets with different crude protein levels1)

35~42日龄,饲喂不同CP水平饲粮的肉鸡对20.65%和17.49% CP饲粮排泄物的IVDMD、EHGE/GE、EHGE/DMI、EHGE/GEI均有显著的互作效应(P < 0.05)。饲喂LP饲粮的肉鸡代谢17.49% CP饲粮后排泄物的IVDMD、EHGE/GE、EHGE/DMI、EHGE/GEI显著地高于饲喂HP饲粮的肉鸡(P < 0.05),而饲喂LP饲粮的肉鸡代谢20.65% CP饲粮后排泄物的IVDMD、EHGE/GE显著地低于饲喂HP饲粮的肉鸡(P < 0.05),EHGE/DMI和EHGE/GEI则与饲喂HP饲粮的肉鸡无显著差异(P>0.05)。

2.4 饲喂不同CP水平饲粮的肉鸡对饲粮能量和蛋白质代谢的差异

表 5可知,在21~28日龄和35~42日龄,饲喂不同CP水平饲粮的肉鸡对测定的2种饲粮的干物质消化率(DMD)、AME、AMEn、能量表观代谢率(AME/GE)、氮校正能量表观代谢率(AMEn/GE)及CP代谢率均无显著的互作效应(P>0.05);饲喂不同CP水平饲粮的肉鸡对饲粮的DMD、AME、AMEn、AME/GE、AMEn/GE及CP代谢率均无显著影响(P>0.05)。在21~28日龄,饲喂19.29% CP饲粮的肉鸡的DMD、AME/GE、AMEn/GE和CP代谢率均显著地高于饲喂22.57% CP饲粮的肉鸡(P < 0.05),而AME、AMEn与饲喂22.57% CP饲粮的肉鸡无显著差异(P>0.05)。在35~42日龄,饲喂17.49% CP饲粮的肉鸡的DMD、AMEn/GE均显著地高于饲喂20.65% CP饲粮的肉鸡(P < 0.05),而AME、AMEn、AME/GE和CP代谢率与饲喂20.65% CP饲粮的肉鸡无显著差异(P>0.05)。

表 5 饲喂不同CP水平饲粮的肉鸡对饲粮能量和蛋白质代谢的差异 Table 5 Difference in energy and protein metabolism of broilers fed diets with different crude protein levels
3 讨论 3.1 饲粮CP水平对肉鸡生长性能的影响

肉鸡生长性能受能量、CP摄入量的共同影响[21],其中饲粮的摄入量主要由AME决定[6]。然而,Parr等[22]和Musigwa等[23]的研究结果表明,肉鸡采食量的多少取决于对净能(NE)的需求而非ME,而ME和CP水平是NE预测方程的重要因素[24]。由此可见,肉鸡的采食量除了受AME影响外,也受到了CP水平的影响。Latshaw[25]研究表明,体增重与AME摄入量呈正相关。Musigwa等[23]报道,饲喂HP饲粮的肉鸡单位体增重所需的AME摄入量低于饲喂LP饲粮的肉鸡。本研究中,8~21日龄饲喂LP饲粮的肉鸡的ADG较饲喂HP饲粮的肉鸡显著升高,ADMCPi无显著差异,但ADAMEi显著升高。这表明8~21日龄肉鸡体增重差异来源于AME摄入量的不同,由于饲喂HP饲粮时采食量降低,故缩小了CP摄入量的差异,由此导致了ADMCPi对体重无显著影响。22~35日龄饲喂LP饲粮的肉鸡的ADAMEi比饲喂HP饲粮的肉鸡显著增加了5.18%,但ADMCPi却显著减少了12.20%。这种AME摄入量的增加与CP摄入量的减少导致了饲喂LP饲粮肉鸡的ADG与饲喂HP饲粮肉鸡的ADG相近。

3.2 饲粮CP水平对肉鸡胃肠道消化酶活性及排泄物中可消化养分的影响

消化酶的活性是反映家禽消化能力的关键指标[21, 26-27]。肉鸡胃肠道中胃蛋白酶、胰蛋白酶、糜蛋白酶和淀粉酶贡献了主要的水解能力。Zhao等[27]报道了HP饲粮提高了肉鸭空肠液中淀粉酶、胰蛋白酶和糜蛋白酶的活性。这表明家禽体内消化酶对饲粮CP水平具有一定的适应性。Imondi等[28]报道了当饲粮CP水平低于30%时,饲粮CP水平影响鸡胰腺蛋白酶活性。上述结果表明,饲粮CP水平对消化酶活性影响较大。Yu等[29]报道了同一日龄但体重不同的肉鸡消化道的胰蛋白酶和淀粉酶活性均无显著差异。本研究中,饲喂HP饲粮的肉鸡在21日龄时空肠液、回肠液的淀粉酶和糜蛋白酶活性较高,但肉鸡体重偏低;饲喂HP饲粮的肉鸡在35日龄时回肠液淀粉酶活性较高,消化液中其他消化酶活性无显著差异,而其ADG与饲喂LP饲粮的肉鸡无显著差异。这表明肉鸡饲喂不同CP水平饲粮时,消化酶活性会存在差异,但与体增重并无明显的相关性。

排泄物是未被机体利用而排出体外的废弃物。排泄物的可消化养分越高,代表饲粮可被消化但却没有被消化的成分越高,因此,排泄物中可消化养分升高反映了机体消化能力变弱。根据仿生消化的原理,以仿生消化系统测定的EHGE与ME高度正相关[20, 30],故同一饲粮经肉鸡消化代谢后排泄物EHGE越高则说明肉鸡的消化能力越低。本研究中,采食HP饲粮的肉鸡排泄物的EHGE显著高于采食LP饲粮的肉鸡,则表明HP饲粮相对于LP饲粮不易被消化;然而,饲喂HP饲粮的肉鸡21~28日龄排泄物的EHGE与饲喂LP饲粮的肉鸡无显著差异,综上表明,饲喂HP饲粮的肉鸡消化能力可能更强,这与胃肠道消化酶活性的高低相一致。而饲喂HP饲粮的肉鸡35~42日龄排泄物的EHGE与饲喂LP饲粮的肉鸡的差异与饲粮类型有关,这表明在生长后期采食2种CP水平饲粮的肉鸡在消化能力也呈现了差异。

3.3 饲喂不同CP水平饲粮的肉鸡对饲粮能量和蛋白质代谢的影响

饲粮养分的代谢率是衡量肉鸡消化能力的重要指标,它受到饲粮营养水平、肉鸡不同批次及生长阶段等因素的影响[5, 31]。不少学者报道饲粮CP水平的提高会降低肉鸡对饲粮的CP代谢率[21, 32]。Musigwa等[23]报道了不同CP水平饲粮的ME和ME/GE并无显著差异,但LP饲粮组的CP代谢率显著提高。Chrystal等[6]报道,等能条件下,降低饲粮CP水平不会影响AME和AMEn,但ME/GE显著升高,氮的保留率显著升高。然而,在上述研究中,饲粮在组成上有差异,这无法通过比较同一饲粮能量、CP代谢率来表征肉鸡消化能力的差异。本研究中,饲喂不同CP水平饲粮的肉鸡对同一饲粮在能量和CP的代谢上无显著差异,这表明虽然饲粮CP水平影响了肉鸡消化液中部分消化酶的活性,但对生物学法测定的饲粮AME及CP代谢率无显著影响。这一现象也表明肉鸡内源消化酶的分泌量相对于摄入的饲粮底物可能是过量的。类似的现象在生长猪中同样存在,Corring[33]认为动物消化道内的消化酶大大超过了其水解饲粮底物的需要量。然而,仿生消化法检测到的饲喂HP饲粮的肉鸡在21~28日龄相对于饲喂LP饲粮的肉鸡对同一饲粮的排泄物含有更少的可消化养分,从而推断出其具有更强的消化能力。这可能是仿生消化法测定EHGE的精度大大高于生物学法测定AME的精度,从而可以灵敏性地检测到较高消化酶活性导致了更高的消化率。同日龄肉鸡体重的差异并未影响到饲粮能量与CP代谢率的差异,这主要是由于单位体重的饲粮摄入量接近导致饲粮相对于体内消化液的总量也相对接近,从而表现养分的消化主要受消化酶活性水平的影响。

4 结论

饲粮CP水平影响了肉鸡ADG和消化液中部分消化酶的活性,但对生物学法测定的饲粮AME及CP代谢率无显著影响。

参考文献
[1]
TANCHAROENRAT P, RAVINDRAN V, ZAEFARIAN F, et al. Influence of age on the apparent metabolisable energy and total tract apparent fat digestibility of different fat sources for broiler chickens[J]. Animal Feed Science and Technology, 2013, 186(3/4): 186-192.
[2]
YANG Z, PIRGOZLIEV V R, ROSE S P, et al. Effect of age on the relationship between metabolizable energy and digestible energy for broiler chickens[J]. Poultry Science, 2020, 99(1): 320-330. DOI:10.3382/ps/pez495
[3]
KHALIL M M, ABDOLLAHI M R, ZAEFARIAN F, et al. Apparent metabolizable energy of cereal grains for broiler chickens is influenced by age[J]. Poultry Science, 2021, 100(9): 101288. DOI:10.1016/j.psj.2021.101288
[4]
OLUKOSI O A, COWIESON A J, ADEOLA O. Age-related influence of a cocktail of xylanase, amylase, and protease or phytase individually or in combination in broilers[J]. Poultry Science, 2007, 86(1): 77-86. DOI:10.1093/ps/86.1.77
[5]
LOPEZ G, LEESON S. Assessment of the nitrogen correction factor in evaluating metabolizable energy of corn and soybean meal in diets for broilers[J]. Poultry Science, 2008, 87(2): 298-306. DOI:10.3382/ps.2007-00276
[6]
CHRYSTAL P V, MOSS A F, KHODDAMI A, et al. Effects of reduced crude protein levels, dietary electrolyte balance, and energy density on the performance of broiler chickens offered maize-based diets with evaluations of starch, protein, and amino acid metabolism[J]. Poultry Science, 2020, 99(3): 1421-1431. DOI:10.1016/j.psj.2019.10.060
[7]
MUSIGWA S, MORGAN N, SWICK R, et al. Optimisation of dietary energy utilisation for poultry-a literature review[J]. World's Poultry Science Journal, 2021, 77(1): 5-27. DOI:10.1080/00439339.2020.1865117
[8]
LAW F L, ZULKIFLI I, SOLEIMANI A F, et al. The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(8): 1291-1300. DOI:10.5713/ajas.17.0581
[9]
KAMRAN Z, SARWAR M, NISA M, et al. Effect of low-protein diets having constant energy-to-protein ratio on performance and carcass characteristics of broiler chickens from one to thirty-five days of age[J]. Poultry Science, 2008, 87(3): 468-474. DOI:10.3382/ps.2007-00180
[10]
LEMME A, HILLER P, KLAHSEN M, et al. Reduction of dietary protein in broiler diets not only reduces N-emissions but is also accompanied by several further benefits[J]. Journal of Applied Poultry Research, 2019, 28(4): 867-880. DOI:10.3382/japr/pfz045
[11]
LAUDADIO V, DAMBROSIO A, NORMANNO G, et al. Effect of reducing dietary protein level on performance responses and some microbiological aspects of broiler chickens under summer environmental conditions[J]. Avian Biology Research, 2012, 5(2): 88-92. DOI:10.3184/175815512X13350180713553
[12]
FISININ V I, VERTIPRAKHOV V G, GROZINA A A, et al. Pancreatic secretion and intestinal digestibility of amino acids in chicken at different dietary protein level and quality[J]. Agricultural Biology, 2017, 52(2): 374-381.
[13]
SWATSON H K, GOUS R, IJI P A, et al. Effect of dietary protein level, amino acid balance and feeding level on growth, gastrointestinal tract, and mucosal structure of the small intestine in broiler chickens[J]. Animal Research, 2002, 51(6): 501-515. DOI:10.1051/animres:2002038
[14]
BOURDILLON A, CARRÉ B, CONAN L, et al. European reference method for the in vivo determination of metabolisable energy with adult cockerels: reproducibility, effect of food intake and comparison with individual laboratory methods[J]. British Poultry Science, 1990, 31(3): 557-565. DOI:10.1080/00071669008417287
[15]
农业农村部畜牧兽医局. 白羽肉鸡饲料原料代谢能和净能测定技术规程[S]. 北京: 农业农村部, 2020.
Animal Husbandry and Veterinary Bureau, Ministry of Agriculture and Rural Affairs of the People's Republic of China. Technical specification for determination of metabolizable energy and net energy of feed ingredients for white feather broilers[S]. Beijing: Ministry of Agriculture and Rural Affairs of the People's Republic of China, 2020. (in Chinese)
[16]
ANSON M L. The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin[J]. Journal of General Physiology, 1938, 22(1): 79-89. DOI:10.1085/jgp.22.1.79
[17]
DAHLQVIST A. A method for the determination of amylase in intestinal content[J]. Scandinavian Journal of Clinical and Laboratory Investigation, 1962, 14(2): 145-151. DOI:10.3109/00365516209079686
[18]
BERGMEYER H U. Methods of enzymatic analysis[M]. Weinheim: Academic Press, 1974: 1006-1012.
[19]
BERGMEYER H U. Methods of enzymatic analysis[M]. Weinheim: Academic Press, 1974: 1013-1024.
[20]
ZHAO F, REN L Q, MI B M, et al. Developing a computer-controlled simulated digestion system to predict the concentration of metabolizable energy of feedstuffs for rooster[J]. Journal of Animal Science, 2014, 92(4): 1537-1547. DOI:10.2527/jas.2013-6636
[21]
曹赞, 高振华, 陈广信, 等. 代谢能和粗蛋白水平对22~42日龄科宝肉鸡生产性能、养分表观代谢率及肠道消化酶活性的影响[J]. 中国兽医学报, 2016, 36(5): 839-846.
CAO Z, GAO Z H, CHEN G X, et al. Effects of energy and crude protein levels on production performance, nutrient apparent metabolic rate and the intestinal digestive enzymes in 22-42 day-old cobb broilers[J]. Chinese Journal of Veterinary Science, 2016, 36(5): 839-846 (in Chinese).
[22]
PARR J F, SUMMERS J D. The effect of minimizing amino acid excesses in broiler diets[J]. Poultry Science, 1991, 70(7): 1540-1549. DOI:10.3382/ps.0701540
[23]
MUSIGWA S, MORGAN N, SWICK R A, et al. Energy dynamics, nitrogen balance, and performance in broilers fed high- and reduced-CP diets[J]. Journal of Applied Poultry Research, 2020, 29(4): 830-841. DOI:10.1016/j.japr.2020.08.001
[24]
CERRATE S, EKMAY R, ENGLAND J A, et al. Predicting nutrient digestibility and energy value for broilers[J]. Poultry Science, 2019, 98(9): 3994-4007. DOI:10.3382/ps/pez142
[25]
LATSHAW J D. Daily energy intake of broiler chickens is altered by proximate nutrient content and form of the diet[J]. Poultry Science, 2008, 87(1): 89-95. DOI:10.3382/ps.2007-00173
[26]
王远孝, 卢永胜, 张莉莉, 等. 日粮不同蛋能比对黄羽黄鸡脂肪沉积和肠道酶活性影响[J]. 中国畜牧杂志, 2010, 46(5): 34-39.
WANG Y X, LU Y S, ZHANG L L, et al. Effect of dietary crude protein to metabolizable energy ratios on fat deposition and intestinal digestive enzyme activity of Chinese yellow broilers[J]. Chinese Journal of Animal Science, 2010, 46(5): 34-39 (in Chinese).
[27]
ZHAO F, HOU S S, ZHANG H F, et al. Effects of dietary metabolizable energy and crude protein content on the activities of digestive enzymes in jejunal fluid of Peking ducks[J]. Poultry Science, 2007, 86(8): 1690-1695. DOI:10.1093/ps/86.8.1690
[28]
IMONDI A R, BIRD F H. Effects of dietary protein level on growth and proteolytic activity of the avian pancreas[J]. The Journal of Nutrition, 1967, 91(4): 421-428. DOI:10.1093/jn/91.4.421
[29]
YU J, WANG Z Y, YANG H M, et al. Effects of cottonseed meal on growth performance, small intestinal morphology, digestive enzyme activities, and serum biochemical parameters of geese[J]. Poultry Science, 2019, 98(5): 2066-2071. DOI:10.3382/ps/pey553
[30]
YU Y, ZHAO F, CHEN J, et al. Sensitivity of in vitro digestible energy determined with computer-controlled simulated digestion system and its accuracy to predict dietary metabolizable energy for roosters[J]. Poultry Science, 2021, 100(1): 206-214. DOI:10.1016/j.psj.2020.09.070
[31]
高权利, 赵西莲, 徐正平, 等. 不同日粮组成对肉仔鸡养分表观代谢率的影响[J]. 动物科学与动物医学, 2003, 20(2): 55-56.
GAO Q L, ZHAO X L, XU Z P, et al. Effects of different dietary composition on nutrient apparent metabolizability of broilers[J]. Animal Science and Veterinary Medicine, 2003, 20(2): 55-56 (in Chinese).
[32]
JACKSON S, SUMMERS J D, LEESON S. Effect of dietary protein and energy on broiler carcass composition and efficiency of nutrient utilization[J]. Poultry Science, 1982, 61(11): 2224-2231.
[33]
CORRING T. Enzyme digestion in the proximal digestive tract of the pig: a review[J]. Livestock Production Science, 1982, 9(5): 581-590.