动物营养学报    2022, Vol. 34 Issue (9): 5942-5950    PDF    
哺乳期补饲开食料对牦牛犊牛生长性能和皱胃组织形态与功能发育的影响
周亚楠 , 冯宇哲 , 杨得玉 , 王音 , 李积兰 , 刘书杰 , 崔占鸿     
青海大学农牧学院, 畜牧兽医科学院, 青海省牦牛工程技术研究中心, 青海省高原放牧家畜动物营养与 饲料科学重点实验室, 西宁 810016
摘要: 本试验旨在探究补饲开食料对哺乳期牦牛犊牛生长性能、皱胃组织形态、主要消化酶活性以及营养转运载体基因表达的影响。选取20头健康、体重相近的1月龄牦牛公犊牛, 随机分为2组, 每组各10头, 对照组饲喂代乳粉和苜蓿干草, 试验组在对照组的基础上补饲一定量的开食料, 补饲开食料与苜蓿干草比例为1 ∶ 1。预试期14 d, 正试期120 d。试验结束时每组选取5头牦牛犊牛进行屠宰试验, 并采集皱胃组织及内容物的样品待测。结果表明: 1)试验组牦牛犊牛的干物质采食量、终末体重、平均日增重、体高均极显著高于对照组(P < 0.01);2组牦牛犊牛间初始体重、体斜长、胸围均差异不显著(P>0.05)。2)试验组牦牛犊牛的皱胃黏膜下层和肌层厚度均显著高于对照组(P < 0.05);2组间牦牛犊牛皱胃黏膜上皮、黏膜肌层、浆膜层厚度均差异不显著(P>0.05)。3)试验组牦牛犊牛皱胃葡萄糖苷酶、纤维素酶活性均极显著高于对照组(P < 0.01);试验组皱胃淀粉酶活性显著高于对照组(P < 0.05);皱胃胃蛋白酶和脂肪酶活性2组间差异均不显著(P>0.05), 但试验组略高于对照组。4)试验组牦牛犊牛皱胃的葡萄糖转运蛋白1(GLUT1)、小肽转运蛋白1(PepT1)基因相对表达量均显著高于对照组(P < 0.05), 且皱胃的脂肪酸转运蛋白4(FATP4)基因相对表达量极显著高于对照组(P < 0.01)。综上所述, 哺乳期补饲开食料有利于牦牛犊牛的生长性能发挥, 正向调控皱胃形态与功能发育, 进而提高其对营养物质的消化利用率。
关键词: 补饲开食料    牦牛犊牛    生长性能    皱胃    消化酶    营养转运载体    
Effects of Starter Feeding on Growth Performance and Morphological and Functional Development of Abomasum of Yak Calves during Lactation Period
ZHOU Yanan , FENG Yuzhe , YANG Deyu , WANG Yin , LI Jilan , LIU Shujie , CUI Zhanhong     
Qinghai Plateau Grazing Animal Nutrition and Feed Science Key Laboratory, Qinghai Yak Engineering Technology Research Center, College of Animal Husbandry and Veterinary Sciences, College of Agriculture and Animal Husbandry, Qinghai University, Xi'ning 810016, China
Abstract: The aim of this experiment was to investigate the effects of starter feeding on growth performance, abomasum tissue morphology, major digestive enzymes and gene expression of nutrient transfer carriers of lactating yak calves. Twenty healthy 1-month-old male yak calves with similar body weight were randomly divided into 2 groups with 10 calves in each group. The control group was fed milk replacer and alfalfa hay, and the experimental group was supplemented with a certain amount of starter on the basis of the control group, and the ratio of supplementary feed to alfalfa hay was 1 ∶ 1. The test period was 14 days for the pre-feeding and 120 days for the trial. At the end of the test, five yak calves were selected from each group for slaughter test and samples of abomasum and stomach contents were collected for testing. The results showed as follow: 1) dry matter intake, final weight, average daily weight gain and body height of yak calves in the test group were significantly higher than those in the control group (P < 0.01); the initial weight, body length, heart girth of yak calves in the two groups were not significantly different (P>0.05). 2) The thickness of submucous layer and muscular layer of yak calves in the test group were slightly higher than those in the control group (P < 0.05); the thickness of mucosal epithelium, mucosal muscle layer and plasma membrane layer between the two groups were not significant (P>0.05). 3) The enzymatic activities of glucosidase and cellulase in the abomasum of yak calves in the test group were significantly higher than those in the control group (P < 0.01); the activity of amylase in the abomasum of yak calves in the test group was significantly higher than that in the control group (P < 0.05); the difference between the two groups was not significant for the enzymatic activities of pepsin and lipase in abomasum (P>0.05), but was slightly higher in the test group than in the control group. 4) The relative expression levels of glucose transporter protein 1 (GLUT1) and small peptide transporter protein 1 (PepT1) genes in the abomasum of yak calves were significantly higher in the test group than in the control group (P < 0.05), and the relative expression level of fatty acid transporter protein 4 (FATP4) was significantly higher than that in the control group (P < 0.01). In conclusion, the supplemental starter feeding during lactation period is beneficial to the growth performance of yak calves and positively regulates the morphology and functional development of the abomasum, which in turn improves the digestive utilization of nutrients of lactating yak calves.
Key words: supplemental starter feeding    yak calves    growth performance    abomasum    digestive enzymes    nutrient transfer carrier    

牦牛是青藏高原地区的优势反刍家畜品种,是该地区重要的生产和生活资料来源之一[1]。犊牛期是幼龄牦牛生长发育的关键节点,对成年后牦牛的生产表现至关重要[2]。但是牦牛放牧条件下环境恶劣、牧草质量低下,母牛的能量摄入不足,哺乳量明显降低,加之犊牛对牧草消化能力不足,犊牛营养摄入缺乏问题十分突出,不利于其早期生长发育,从而导致犊牛发育缓慢[3]。犊牛出生后,在哺乳条件下各营养物质水平都能达到犊牛所需时,到犊牛断奶,犊牛各组织器官能够快速发育完善[4-5];而营养缺乏时,会造成牦牛犊牛发育不良,生长缓慢,严重时会形成僵牛,延长牦牛的生长周期[6]。因此,犊牛出生后初乳和过渡期开食料的采食量是犊牛培育计划中的2个重要环节[2]。研究表明,出生前几周仅饲喂牛奶或代乳粉的犊牛会阻碍瘤胃的发育,不利于犊牛断奶和利用谷物及粗饲料[7]。大量研究表明,适时采食一定量精饲料相较于牛奶和干草更加能促进犊牛的生长发育[8-10]。目前,本团队王音等[11]关于哺乳期补饲开食料对牦牛犊牛瘤胃发育已做研究,而关于补饲开食料对哺乳期牦牛犊牛皱胃形态与功能发育的研究鲜见报道。因此,本研究在前期研究的基础上,以牦牛犊牛为对象,研究补饲开食料对牦牛犊牛生长性能和皱胃形态与功能的影响,以及对皱胃组织的葡萄糖转运蛋白1(GLUT1)、脂肪酸转运蛋白4(FATP4)、小肽转运蛋白1(PepT1)基因的调控作用,从分子水平探究哺乳期补饲开食料对牦牛犊牛营养物质吸收的影响,预期结果能为哺乳期牦牛犊牛营养调控技术研究提供理论依据和重要参考。

1 材料与方法 1.1 试验时间与地方

试验时间为2020年7月至2020年11月。牦牛犊牛饲养试验在青海省海北州海晏县高原现代生态畜牧业科技试验示范园管委会完成。样品测定在青海省牦牛工程技术研究中心实验室完成。

1.2 试验设计与饲粮

选取20头健康、体重相近的1月龄公牦牛犊牛,随机分为2组,每组10头。对照组饲喂代乳粉+苜蓿干草,试验组饲喂代乳粉+苜蓿干草+开食料。对照组和试验组代乳粉饲喂量相同,总的干物质采食量保持一致,代乳粉、开食料均来自北京标准动物营养研究中心,苜蓿干草购自甘肃省张掖市。代乳粉和开食料组成参见本课题组已发表文献[12],营养水平见表 1

表 1 试验饲粮营养水平(干物质基础) Table 1 Nutrient levels of test diets (DM basis) 
1.3 饲养管理

牦牛犊牛(公)单栏饲养,代乳粉早、中、晚饲喂3次,饲喂时间分别为08:30、12:30、16:30,沸水冷却至42 ℃,代乳粉和温水按1 ∶ 5比例配制,灌入奶瓶,牦牛犊牛主动吮吸;将试验组开食料和苜蓿干草干物质比例调整为1 ∶ 1,开食料和苜蓿干草分开进行饲喂,且每天对剩料进行称量、记录试验,饲养管理具体方法参见本课题组已发表文献[12]。预试期14 d,正试期120 d。

1.4 样品采集

饲养试验结束时,牦牛犊牛前1天16:00之后断食断水,于清晨屠宰,取皱胃内容物于5 mL冻存管中,立即置入液氮罐中保存,用于皱胃消化酶活性以及功能发育基因表达的测定。在皱胃胃体部取组织块约2 cm×2 cm,固定于4%的多聚甲醛溶液,连续换液,直至多聚甲醛溶液澄清透明,用于后续组织形态学观察。

1.5 测定指标与方法 1.5.1 生长性能

分别在试验初期和试验末期称重,测量体高、体斜长、管围、胸围,具体测量方法参考郭文杰[12],计算平均日增重(ADG),公式如下:

1.5.2 皱胃组织形态发育

将固定于4%多聚甲醛中的样品取出,采用苏木精-伊红(HE)染色法制备组织切片[11],制备组织切片的顺序为:石蜡切片脱蜡至水,苏木精和伊红分别染细胞核、细胞质,不同浓度的酒精脱水封片,利用电子显微镜对皱胃进行组织形态学观察。

1.5.3 消化酶活性

测定皱胃内容物中主要消化酶(纤维素酶、淀粉酶、胃蛋白酶、葡萄糖苷酶、脂肪酶)活性。测定之前称取0.5 g皱胃内容物,质量体积比为1 ∶ 9(g/mL),加入磷酸盐缓冲液(PBS)(pH 7.4),将其研磨并匀浆充分,低温离心10 min,仔细收集上清液。分装多份,其中1份单独放置,用于试剂盒检测,其余放置低温冷冻备用。消化酶活性使用酶标仪测定,试剂盒购于江苏酶标科技有限公司,试验流程严格按照说明书进行操作。

1.5.4 营养转运载体基因表达

采用实时荧光定量PCR测定皱胃组织中的GLUT1、PepT1、FATP4基因相对表达量。按照RNA提取试剂盒(Servicebio)说明书进行操作,将皱胃组织中研磨充分,用于提取总RNA,使用Nanodrop 2000仪器检测RNA浓度及纯度用于后续试验。其中,判断皱胃组织的RNA是否降解采用的是1%琼脂糖凝胶电泳法。采用TaKaRa反转录试剂盒进行cDNA合成时应保证试验于冰上进行,使其处于低温环境。总反应体系为20 μL,其中5×Reaction Buffer为4 μL、Oligo (dT)18 Primer (100 μmol/L)为0.5 μL、Random Hexamer primer (100 μmol/L)为0.5 μL、Servicebio® RT Enzyme Mix为1 μL、Total RNA为1 μL,最后RNase free water添加至20 μL。所用仪器为荧光定量PCR仪(Stepone plus,ABI)。采用三步法测定,第1步:预变性,95 ℃,10 min;第2步:首先95 ℃,15 s条件下变性,其次60 ℃,30 s条件下退火/延伸;第3步:生成熔解曲线,60 ℃→95 ℃,每升温0.3 ℃,采集1次荧光信号。引物设计根据NCBI中查找到的GLUT1、PepT1、FATP4基因序列,由武汉赛维尔生物科技有限公司合成。实时荧光定量PCR引物序列见表 2,以磷酸甘油醛脱氢酶(GAPDH)为内参基因,采用2-△△Ct法计算目的基因相对表达量。

表 2 实时荧光定量PCR引物序列 Table 2 Primer sequence used for RT-qPCR
1.6 数据统计分析

试验数据先经Excel 2016初步处理后,采用SPSS 20.0软件的one-way ANOVA程序进行单因素方差分析,Duncan氏法进行多重比较,以P < 0.05表示差异显著,P < 0.01表示差异极显著。

2 结果与分析 2.1 哺乳期补饲开食料对牦牛犊牛生长性能的影响

表 3可知,对照组和试验组牦牛犊牛初始体重、体斜长、胸围均差异不显著(P>0.05);试验组干物质采食量、终末体重、平均日增重、体高均极显著高于对照组(P < 0.01)。

表 3 哺乳期补饲开食料对牦牛犊牛干物质采食量、体重、体尺的影响 Table 3 Effects of starter feeding on dry matter intake and body weight, body size of yak calves during lactation period
2.2 哺乳期补饲开食料对牦牛犊牛皱胃组织形态发育的影响

图 1为补饲开食料哺乳期牦牛犊牛的皱胃冷冻切片。由表 4可知,对照组和试验组黏膜上皮、黏膜肌层、浆膜层厚度均差异不显著(P>0.05);试验组黏膜下层、肌层厚度显著高于对照组(P < 0.05)。

a: 对照组control group;b:试验组test group;c:试验组test group;A:黏膜上皮mucosal epithelium;B:黏膜肌层mucosal muscle layer;C:黏膜下层submucous layer;D:肌层muscular layer;E:浆膜层plasma membrane layer。 图 1 哺乳期补饲开食料牦牛犊牛的皱胃冷冻切片 Fig. 1 Frozen section of wrinkled stomach of yak calves during lactation period supplemented with starter feeding (400×)
表 4 哺乳期补饲开食料对牦牛犊牛皱胃组织形态发育的影响 Table 4 Effects of starter feeding on abomasum histomorphology development of yak calves during lactation period 
2.3 哺乳期补饲开食料对牦牛犊牛皱胃主要消化酶活性的影响

表 5可知,试验组牦牛犊牛皱胃葡萄糖苷酶、纤维素酶活性极显著高于对照组(P < 0.01);试验组皱胃内淀粉酶活性显著高于对照组(P < 0.05);皱胃胃蛋白酶、脂肪酶活性2组间差异均不显著(P>0.05),但试验组略高于对照组。

表 5 哺乳期补饲开食料对牦牛犊牛皱胃主要消化酶活性的影响 Table 5 Effects of starter feeding on major digestive enzymes of yak calves during lactation period 
2.4 哺乳期补饲开食料对牦牛犊牛皱胃组织营养转运载体基因表达的影响

表 6可知,试验组皱胃的GLUT1、PepT1基因相对表达量显著高于对照组(P < 0.05);试验组皱胃的FATP4基因相对表达量极显著高于对照组(P < 0.01)。

表 6 哺乳期补饲开食料对牦牛犊牛皱胃组织营养转运载体基因表达的影响 Table 6 Effects of starter feeding on gene expression of nutrient transport carrier of abomasum of yak calves during lactation period
3 讨论 3.1 哺乳期补饲开食料对牦牛犊牛生长性能的影响

哺乳期牦牛犊牛的复胃发育和功能还未健全,对粗纤维饲粮的消化功能极有限,在哺乳期补饲开食料可以促进牦牛犊牛快速发育。早期精料补饲很多优势,例如瘤胃发育和饲料利用率的提高[13-14],促进断奶时犊牛体重和胴体重增加,肌肉更加发达[15];王琦[16]研究发现,给哺乳期羔羊补饲精料,羔羊的增重效果较好。本研究中,试验组平均日增重极显著高于对照组,说明早期补饲开食料能有效改善哺乳期牦牛犊牛营养采食状况,提高犊牛生长性能和发育质量,这与Suárez等[17]研究结果一致。开食料为高精料,仅饲喂开食料将导致犊牛瘤胃酸中毒,国外研究者认为,在开食料基础上增加粗饲料供给才能提高犊牛的生长、体增重和健康状况[17-19],故合理的营养供给能加速断奶前犊牛的瘤胃发育,降低饲粮消耗,提高生长速率、断奶重和健康水平[20-26]。本研究以哺乳期牦牛犊牛为对象,在饲喂代乳粉和苜蓿草的基础上继续补饲优质的饲料(开食料),开食料主要为牦牛犊牛提供精料,形状为颗粒饲料,即通过固体饲料早期适量饲喂促进了牦牛犊牛生长性能发挥,实现了犊牛饲粮的营养合理组合搭配利用,对挖掘哺乳期牦牛犊牛的生长性能产生了积极调控作用。

3.2 哺乳期补饲开食料对牦牛犊牛皱胃组织形态发育的影响

皱胃是典型的管状器官[27],是反刍动物的腺胃,又被称为真胃[28]。反刍动物皱胃运动与单胃相似但也有所不同,虽受迷走神经支配,但将其切断后,仍可发生推进性运动,在条件反射和非条件反射的作用下引起胃部运动,刚出生犊牛的消化运动功能主要依靠皱胃[28],而液体饲料可直接由食管沟到达皱胃,对于哺乳期反刍动物而言,前期由犊牛摄入的营养物质其消化吸收主要依赖于皱胃组织[29]。在本试验中,哺乳期牦牛犊牛在补饲开食料后,黏膜下层、肌层发育明显优于未补饲开食料牦牛犊牛,且黏膜上皮、黏膜肌层、浆膜层发育略好。饲喂足量的精料,皱胃肌层较为发达,皱胃黏膜肌层发育则不明显;王斯琴塔娜[30]研究结果表明,饲喂高质量饲粮皱胃肌层的发育要远远好于低质量饲粮。同时,赵玮[31]研究也发现,山羊饲喂含有高质量易消化的饲粮皱胃发育更好,这一结果与本试验结果一致。由此可见,哺乳期补饲开食料有利于牦牛犊牛皱胃发育,促进皱胃的蠕动,从而影响牦牛犊牛对营养物质的消化吸收,促进其生长发育。

3.3 哺乳期补饲开食料对牦牛犊牛皱胃主要消化酶活性的影响

皱胃分为贲门腺部、胃底腺部、幽门腺部3个部分,胃底腺胃液pH相较于瘤胃酸性更强,为2.1~4.0;幽门腺呈碱性或者中性[30],胃腺由4部分细胞构成,与前胃明显不同,造成了它的特殊性,主细胞、壁细胞和颈黏液细胞以及少量的内分泌细胞都有其各自的功能[32]。通过一系列胃部运动,皱胃分泌各种消化酶,其中包括盐酸、淀粉酶、葡萄糖苷酶、胃蛋白酶、纤维素酶、脂肪酶,而未经过前胃消化的物质,可被葡萄糖苷酶、纤维素酶消化;盐酸破坏来自瘤胃的微生物,胃脂肪酶可以分解脂类物质[33];胃蛋白酶可以通过分解微生物蛋白从而产生氨基酸,直接供犊牛吸收。饲粮中加入精料可以提高胃蛋白酶和脂肪酶的活性[34];Taniguchi等[35]研究表明,增加开食料摄入量,提高皱胃和小肠对淀粉的消化量,从而进一步促进淀粉酶分泌;Ash[36]发现前胃未消化的物质可刺激皱胃分泌消化酶,对于哺乳期牦牛犊牛,前胃发育不完全,主要由皱胃与小肠分泌的消化酶来消化营养物质[37]。本试验补饲开食料后哺乳期牦牛犊牛皱胃葡萄糖苷酶、纤维素酶活性显著升高,表明补饲开食料有助于提高牦牛犊牛皱胃消化酶的分泌和营养物质的消化吸收能力。补饲开食料后牦牛犊牛皱胃内淀粉酶活性提高,与Taniguchi等[35]研究结果相似;试验组皱胃内胃蛋白酶、脂肪酶活性略高于对照组,也与前人研究结果一致。

3.4 哺乳期补饲开食料对牦牛犊牛皱胃营养转运载体基因表达的影响

皱胃可消化的营养物质包含葡萄糖、脂质、蛋白质等,GLUT1是反刍动物促进葡萄糖吸收的主要转运蛋白,可以促进对葡萄糖的摄入[38];FATP4是机体调控吸收脂肪酸的主要因子,能够促进机体对脂肪的吸收;PepT1参与小肽的跨膜运转,可直接促进动物对蛋白质的消化吸收[39]。本试验发现,在补饲开食料的情况下,哺乳期牦牛犊牛皱胃GLUT1、PepT1基因相对表达量显著增加,且皱胃FATP4基因相对表达量极显著升高,这与潘巧[40]、占今舜等[41]研究结果基本一致,说明补饲精料更有利于牦牛犊牛对葡萄糖、脂肪、蛋白质的消化吸收,但国内外对于牦牛犊牛皱胃营养转运载体的研究极少,其更深的影响机理亟需进一步探究。

4 结论

综上所述,哺乳期补饲开食料有利于牦牛犊牛的生长性能发挥,正向调控其皱胃形态与功能发育,进而提高对营养物质的消化利用率。

参考文献
[1]
罗惦. 青藏高原牦牛冷暖季体况变化及其与牧草营养状况关系[D]. 硕士学位论文. 兰州: 兰州大学, 2016.
LUO D. Yaks' body condition and nutritious compositions of herbage in different seasons in Qinghai-Tibet plateau[D]. Master's Thesis. Lanzhou: Lanzhou University, 2016. (in Chinese)
[2]
崔占鸿. 牦牛犊牛培育方式对生长和消化道发育的影响[D]. 博士学位论文. 杨凌: 西北农林科技大学, 2020.
CUI Z H. Effects of rearing patterns on growth and digstive tract development in yak calves[D]. Ph. D. Thesis. Yangling: Northwest A&F University, 2020. (in Chinese)
[3]
晁文菊. 补饲对围产期牦牛生产性能及其犊牦牛生长发育的影响[D]. 硕士学位论文. 西宁: 青海大学, 2009.
CHAO W J. Effects of feed supplement on production performance of perinatal yak and growth and development of calves[D]. Master's Thesis. Xining: Qinghai University, 2009. (in Chinese)
[4]
DRACKLEY J K. Calf nutrition from birth to breeding[J]. The Veterinary Clinics of North America Food Animal Practice, 2008, 24(1): 55-86. DOI:10.1016/j.cvfa.2008.01.001
[5]
李墨林, 付太银, 周磊, 等. 牛初乳质量及犊牛饲喂初乳的管理技术[J]. 中国畜牧业, 2016(13): 62-64.
LI M L, FU T Y, ZHOU L, et al. Colostrum quality and management techniques for feeding colostrum to calves[J]. China Animal Industry, 2016(13): 62-64 (in Chinese). DOI:10.3969/j.issn.2095-2473.2016.13.021
[6]
刘利勇. 僵牛的产生与防治[J]. 山东畜牧兽医, 2019, 40(7): 40-41.
LIU L Y. The production and prevention of calves with grow the relation[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2019, 40(7): 40-41 (in Chinese). DOI:10.3969/j.issn.1007-1733.2019.07.019
[7]
梁辛, 韦升菊, 邹彩霞, 等. 饲喂水牛奶及代乳粉对水牛犊牛营养代谢及生长性能的影响[J]. 畜牧与兽医, 2015, 47(9): 15-19.
LIANG X, WEI S J, ZOU C X, et al. Effects of feeding water buffalo milk and milk replacer on nutrient metabolic and growth performance of water Buffalo calves[J]. Animal Husbandry & Veterinary Medicine, 2015, 47(9): 15-19 (in Chinese).
[8]
高宝山. 代乳粉与开食料对犊牛生长发育影响的研究[D]. 硕士学位论文. 北京: 中国农业科学院, 2013.
GAO B S. The effect of milk replacer and starter on growth and develpment in calves[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[9]
MISRA A K, SINGH D. Rearing of calf.A scientific approach[J]. Indian Dairyman, 2012, 64: 526-529.
[10]
云强. 蛋白水平及Lys/Met对断奶犊牛生长、消化代谢及瘤胃发育的影响[D]. 硕士学位论文. 北京: 中国农业科学院, 2010.
YUN Q. Effects of protein level and Lys/Met on performance, nutrient digestibility and rumen development for weaned calves[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese)
[11]
王音, 郭文杰, 郝文君, 等. 哺乳期补饲开食料对牦牛犊牛生长性能、瘤胃发育和微生物区系的影响[J]. 动物营养学报, 2022, 34(5): 3066-3076.
WANG Y, GUO W J, HAO W J, et al. Effects of supplementary starter feed on growth performance, rumen development and microbiome of yak calves during lactation[J]. Chinese Journal of Animal Nutrition, 2022, 34(5): 3066-3076 (in Chinese). DOI:10.3969/j.issn.1006-267x.2022.05.035
[12]
郭文杰, 刘书杰, 冯宇哲, 等. 哺乳期补饲开食料对牦牛犊牛生长性能、腹泻频率和发病频率的影响[J]. 动物营养学报, 2022, 34(1): 422-431.
GUO W J, LIU S J, FENG Y Z, et al. Effects starter feed on growth performance, diarrhea frequency and incidence frequency of yak calves during lactation[J]. Chinese Journal of Animal Nutrition, 2022, 34(1): 422-431 (in Chinese). DOI:10.3969/j.issn.1006-267x.2022.01.040
[13]
MORAND-FEHR P. Growth in: production[M]. London: Academic press, 1981: 253-258.
[14]
LAWRENCE T L J, FOWLER V R. Growth of farm animals[M]. 2nd ed. Oxfordshire: CBAI, 2002: 330.
[15]
JOHNSON D D, MCGOWAN C H. Diet/management effects on carcass attributes and meat quality of young goats[J]. Small Ruminant Research, 1998, 28(1): 93-98. DOI:10.1016/S0921-4488(97)00071-0
[16]
王琦. 不同营养水平下哺乳期羔羊补饲效果研究[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2004.
WANG Q. Study on effect of nursing lamb supplement feed experimentation in different nutrition[D]. Master's Thesis. Yangling: Northwest A and F University, 2004. (in Chinese)
[17]
SUÁREZ B J, VAN REENEN C G, GERRITS W J J, et al. Effects of supplementing concentrates differing in carbohydrate composition in veal calf diets: Ⅱ.Rumen development1[J]. Journal of Dairy Science, 2006, 89(11): 4376-4386. DOI:10.3168/jds.S0022-0302(06)72484-5
[18]
TERRÉ M, PEDRALS E, DALMAU A, et al. What do preweaned and weaned calves need in the diet: a high fiber content or a forage source?[J]. Journal of Dairy Science, 2013, 96(8): 5217-5225. DOI:10.3168/jds.2012-6304
[19]
CASTELLS L, BACH A, ARAUJO G, et al. Effect of different forage sources on performance and feeding behavior of Holstein calves[J]. Journal of Dairy Science, 2012, 95(1): 286-293. DOI:10.3168/jds.2011-4405
[20]
黄文植, 张晓卫, 夏洪泽, 等. 冷季补饲矿物质盐砖对放牧牦牛犊牛体增重、瘤胃发酵和血清矿物元素含量的影响[J]. 动物营养学报, 2021, 33(11): 6300-6308.
HUANG W Z, ZHANG X W, XIA H Z, et al. Effects of mineral salt brick supplement on body weight gain, rumen fermentation and serum mineral element contents of grazing yak calves in cold season[J]. Chinese Journal of Animal Nutrition, 2021, 33(11): 6300-6308 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.11.030
[21]
王威, 张建勋, 康坤, 等. 冷季补饲精料对牦牛繁殖性能和生长性能的影响[J]. 中国畜牧杂志, 2013, 49(7): 78-80.
WANG W, ZHANG J X, KANG K, et al. Effect of cold season supplemental concentrate feeding on reproductive performance and growth performance of yaks[J]. Chinese Journal of Animal Science, 2013, 49(7): 78-80 (in Chinese). DOI:10.3969/j.issn.0258-7033.2013.07.021
[22]
任良鹏. 犊牛哺乳初期应补饲精料及干草[J]. 贵州畜牧兽医, 2001, 25(5): 24-25.
REN L P. Calves should be supplemented with concentrate and hay at the early stage of lactation[J]. Guizhou Animal Science and Veterinary Medicine, 2001, 25(5): 24-25 (in Chinese).
[23]
王立斌. 在饲喂开食料的基础上补饲苜蓿对犊牛胃肠道发育的影响[D]. 博士学位论文. 北京: 中国农业大学, 2013.
WANG L B. Influence of supplementary feeding of alfalfa on the gastrointestinal tract development of calves feeding on milk and starter[D]. Ph. D. Thesis. Beijing: China Agricultural University, 2013. (in Chinese)
[24]
张双奇. 奶牛公犊瘤胃发育规律的研究[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2009.
ZHANG S Q. Study on the growth rule of the rumen in male calves[D]. Master's Thesis. Yangling: Northwest A&F University, 2009. (in Chinese)
[25]
林立亚. 饲养方式对奶牛公犊生长、肉质及血液生化指标的影响[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2008.
LIN L Y. Effects of rearing conditions on growth, meat quality, biochemical parameters in dairy bull calves[D]. Master's Thesis. Yangling: Northwest A&F University, 2008. (in Chinese)
[26]
BAR-PELED U, ROBINZON B, MALTZ E, et al. Increased weight gain and effects on production parameters of Holstein heifer calves that were allowed to suckle from birth to six weeks of age[J]. Journal of Dairy Science, 1997, 80(10): 2523-2528. DOI:10.3168/jds.S0022-0302(97)76205-2
[27]
SUN D M, LI H W, MAO S Y, et al. Effects of different starch source of starter on small intestinal growth and endogenous GLP-2 secretion in preweaned lambs[J]. Journal of Animal Science, 2018, 96(1): 306-317. DOI:10.1093/jas/skx029
[28]
陈杰. 家畜生理学[M]. 4版. 北京: 中国农业出版社, 2003.
CHEN J. Physiology of domestic animals[M]. 4th ed. Beijing: China Agriculture Press, 2003 (in Chinese).
[29]
周力, 李雪清, 王志有, 等. 不同非纤维性碳水化合物/中性洗涤纤维饲粮对高原型藏羊复胃形态发育的影响[J]. 动物营养学报, 2021, 33(2): 986-998.
ZHOU L, LI X Q, WANG Z Y, et al. Effects of diets with different ratios of non-fibrous carbohydrate to neutral detergent fiber on morphological development of compound stomach of plateau type tibetan sheep[J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 986-998 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.02.039
[30]
王斯琴塔娜. 探讨粗饲料品质对犊牛消化道组织形态及内脏器官发育的影[D]. 硕士学位论文. 呼和浩特: 内蒙古农业大学, 2007.
WANG S Q T N. The effects of forage quality on morphology of gastrointestinal tract and visceral tissues growth in Holstein calves[D]. Master's Thesis. Hohhot: Inner Mongolia Agricultural University, 2007. (in Chinese)
[31]
赵玮. 舍饲羊皱胃组织形态学研究[D]. 硕士学位论文. 呼和浩特: 内蒙古农业大学, 2010.
ZHAO W. Studies on morphology of sheep's abomasum in the condition of house feeding[D]. Master's Thesis. Hohhot: Inner Mongolia Agricultural University, 2010. (in Chinese)
[32]
德尔曼, 布朗. 兽医组织学[M]. 秦鹏春, 聂其灼, 译. 2版. 北京: 中国农业出版社, 1989: 203-205.
DELLMANN H D, BROWN E M. Textbook of Veterinary Histology[M]. QIN P C, NIE Q Z, translated by. 2nd ed. Beijing: China Agriculture Press, 1989: 203-205. (in Chinese)
[33]
周玉香, 卢德勋, 孙海洲. 犊牛胃肠道生长发育以及促进其早期生长发育的措施[J]. 黑龙江畜牧兽医, 2005(9): 18-20.
ZHOU Y X, LU D X, SUN H Z. Gastrointestinal growth and development of calves and measures to promote their early growth and development[J]. Heilongjiang Journal of Animal Science and Veterinary, 2005(9): 18-20 (in Chinese). DOI:10.3969/j.issn.1004-7034.2005.09.010
[34]
韩铖星, 张成新, 李勇, 等. 湖羊羔羊早期断奶前后胃肠道发育、酶活性及发酵参数的变化研究[J]. 中国畜牧兽医, 2021, 48(12): 4442-4450.
HAN C X, ZHANG C X, LI Y, et al. Study on variations of gastrointestinal development, enzyme activity and fermentation parameters of Hu lambs pre- and post-early weaning[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(12): 4442-4450 (in Chinese).
[35]
TANIGUCHI K, HUNTINGTON G B, GLENN B P. Net nutrient flux by visceral tissues of beef steers given abomasal and ruminal infusions of casein and starch[J]. Journal of Animal Science, 1995, 73(1): 236-249. DOI:10.2527/1995.731236x
[36]
ASH R W. Abomasal secretion and emptying in suckled calves[J]. The Journal of Physiology, 1964, 172(3): 425-438. DOI:10.1113/jphysiol.1964.sp007430
[37]
王桂秋. 营养水平对羔羊物质消化的影响及羔羊早期断奶时间的研究[D]. 硕士学位论文. 北京: 中国农业科学院, 2005.
WANG G Q. Study on nutrition utilization of lambs when fed milk replacers of different nutrition levels and early-weaned time of lambs[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2005. (in Chinese)
[38]
PLAISIER C, COK A, SCOTT J, et al. Effects of cinnamaldehyde on the glucose transport activity of GLUT1[J]. Biochimie, 2011, 93(2): 339-344. DOI:10.1016/j.biochi.2010.10.006
[39]
FEI Y J, SUGAWARA M, LIU J C, et al. cDNA structure, genomic organization, and promoter analysis of the mouse intestinal peptide transporter PEPT1[J]. Biochimica et Biophysica Acta, 2000, 1492(1): 145-154. DOI:10.1016/S0167-4781(00)00101-9
[40]
潘巧. 日粮精粗比对奶山羊肝脏糖异生的影响及其机理研究[D]. 硕士学位论文. 南京: 南京农业大学, 2012.
PAN Q. Effects of diet with different concentrate roughage ratio on hepatic gluconeogenesis in dairy goats and its mechanism[D]Master's Thesis. Nanjing: Nanjiang Agricultural University, 2012. (in Chinese)
[41]
占今舜, 杨宏波, 詹康, 等. 饲粮精粗比对犊牛组织中基因GLUT1和FATP4及PepT1 mRNA表达的影响[J]. 湖南农业大学学报(自然科学版), 2015, 41(5): 513-517.
ZHAN J S, YANG H B, ZHAN K, et al. Effects of concentrate to forage ratio on gene expression of GLUT1, FATP4 and PepT1 mRNA in different tissues of calf[J]. Journal of Hunan Agricultural University (Natural Sciences), 2015, 41(5): 513-517 (in Chinese).