2. 青岛农业大学动物科技学院, 青岛 266109
2. College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
繁殖期母体新陈代谢增强,对能量和氧的需求增加,容易产生过多自由基,导致机体氧化系统与抗氧化系统失衡,引发氧化应激[1]。研究发现,妊娠期的氧化应激会导致母体胎盘血管功能紊乱,引发胎盘血流减少,造成胎儿生长受限[2-3]。硒是动物饲料常用的抗氧化剂。硒可通过胎盘和乳汁传递给后代,因此繁殖期母畜硒的摄入不仅影响其自身繁殖性能,还影响后代的生长发育。外源硒主要分为无机硒和有机硒,有机硒的效果往往优于无机硒。Hu等[4]研究发现,与无机硒相比,妊娠后期母猪饲粮中添加有机硒可提高初生仔猪窝重及断奶体重。Zhan等[5]报道,妊娠期和泌乳期母猪饲粮中添加硒代蛋氨酸可显著提高仔猪从出生到断奶的平均日增重。目前国内外关于繁殖期水貂硒营养的报道较少。NRC(1982)[6]推荐水貂饲粮硒添加水平为0.1 mg/kg。张婷等[7]饲喂育成期水貂干粉饲料,发现同时添加0.2 mg/kg硒和200 mg/kg维生素E具有促生长作用。水貂饲粮中往往含有高比例的鱼类及禽类副产品,因含有较高水平的不饱和脂肪酸,容易发生氧化。前人研究发现,长期饲喂水貂氧化的脂肪,会导致其采食量下降,生长性能降低[8]。因此,本试验以繁殖期雌性水貂为研究对象,探讨不同硒源对其繁殖性能及后代生长性能的影响,为繁殖期水貂合理应用硒源,提高生产水平提供依据。
1 材料与方法 1.1 试验材料亚硒酸钠(纯度为44.7%)、酵母硒(硒浓度为2 000 mg/kg)、硒代蛋氨酸(纯度为99%)均为市售。基础饲粮为鲜饲料,由吉林省某农业公司配制。水貂选自农业部长白山野生生物资源重点野外科学观测实验站。
1.2 试验方法 1.2.1 试验设计与饲养管理选取80只配种期初产母貂,随机分成4组,每组20个重复,每个重复1只。对照组(CN组)饲喂基础饲粮(硒含量0.18 mg/kg),试验组分别在基础饲粮中添加0.2 mg/kg(以硒计)亚硒酸钠(SS组)、酵母硒(SY组)和硒代蛋氨酸(Se-Met组)。试验期130 d。基础饲粮以黄花鱼、鸡杂、鸡骨架、膨化玉米等为主要原料,同时添加由矿物质、维生素等组成的营养性添加剂制成,基础饲粮组成及营养水平分别见表 1和表 2。
![]() |
表 1 基础饲粮组成 Table 1 Composition of the basal diet (as fed basis) |
![]() |
表 2 基础饲粮营养水平 Table 2 Nutrient levels of the basal diet |
试验开始后每天饲喂2次,早上饲喂总量的40%,下午饲喂总量的60%,共300 g,并根据采食情况适当调整。于2018年3月3日开始对水貂实施人工放对配种,采用“1+1+8”周期复配方式(即第1天初配、第2天连配、第9天复配的配种方式)。由专人记录各组水貂配种、产仔及仔貂生长等数据。
1.2.2 样品采集选择产仔日期接近的母貂及其后代,分别于2018年5月20日和2018年6月10日进行采血。每组选取8只母貂,断指采血4 mL于促凝管中,静置待血清析出后4 500 r/min、4 ℃离心10 min,收集血清,置于-80 ℃冰箱中保存。从采血的8只母貂的后代中挑选2只雄性仔貂,断指采血2 mL于促凝管中,血清析出方法及保存方式同母貂。
1.2.3 测定指标及方法饲粮粗蛋白质含量采用全自动凯氏定氮仪(FOSS,美国)进行测定,方法参照GB/T 6432—2018;粗脂肪含量采用脂肪提取仪(BUCHI,瑞士)进行测定,方法参照GB/T 6433—2006;钙含量采用乙二胺四乙酸(EDTA)络合滴定法进行测定,方法参照GB/T 6436—2018;磷含量采用钒钼酸铵比色法测定,方法参照GB/T 6437—2018;硒含量采用原子荧光光度计(AFS-9130,北京)进行测定,方法参照李明远[9]。
采用还原型谷胱甘肽(GSH)消耗法测定血清谷胱甘肽过氧化物酶(GSH-Px)活性,采用黄嘌呤氧化法测定血清总超氧化物歧化酶(T-SOD)活性,采用硫代巴比妥酸法测定血清丙二醛(MDA)含量,试剂盒均购自南京建成生物工程研究所。血清活性氧(ROS)、甲状腺素(T4)、三碘甲腺原氨酸(T3)、生长激素(GH)和胰岛素样生长因子-1(IGF-1)含量采用微孔板分光光度计(Biotek,美国)进行测定,试剂盒购自上海双赢生物科技有限公司。
1.3 数据统计试验数据采用Excel 2003进行初步整理,采用SAS 8.0软件中GLM程序进行统计分析,多重比较采用Duncan氏法。结果以平均值±标准差表示,P < 0.01为差异极显著,P < 0.05为差异显著,P>0.05为差异不显著。
2 结果 2.1 不同硒源对水貂繁殖性能及其后代生长性能的影响由表 3可知,Se-Met组和SY组仔貂21日龄体重显著高于CN组(P<0.05),但与SS组差异不显著(P>0.05);Se-Met组和SY组仔貂42日龄体重显著高于CN组和SS组(P<0.05)。各组之间母貂窝产仔数及仔貂初生窝重、初生体重、7日龄体重、35日龄体重无显著差异(P>0.05)。
![]() |
表 3 不同硒源对水貂繁殖性能及其后代生长性能的影响 Table 3 Effects of different selenium sources on reproductive performance of minks and growth performance of their offspring |
由表 4可知,SY组母貂血清GSH-Px活性显著高于CN组和SS组(P<0.05),但与Se-Met组差异不显著(P>0.05);Se-Met组母貂血清ROS含量极显著低于CN组和SS组(P<0.01),但与SY组差异不显著(P>0.05)。各组之间母貂血清T-SOD活性及硒、MDA含量无显著差异(P>0.05)。
![]() |
表 4 不同硒源对泌乳期水貂血清硒含量及抗氧化指标的影响 Table 4 Effects of different selenium sources on serum Se content and antioxidant indexes of minks during lactation period |
由表 5可知,SY组和Se-Met组仔貂血清硒含量显著高于CN组和SS组(P<0.05);SY组和Se-Met组仔貂血清GSH-Px活性显著高于CN组(P<0.05),但与SS组差异不显著(P>0.05)。各组之间仔貂血清T-SOD活性及MDA、ROS含量无显著差异(P>0.05)。
![]() |
表 5 不同硒源对断奶水貂血清硒及抗氧化指标的影响 Table 5 Effects of different selenium sources on serum Se and antioxidant indexes of weaned minks |
由表 6可知,各组之间仔貂血清T3、T4、GH和IGF-1含量差异不显著(P>0.05)。
![]() |
表 6 不同硒源对断奶水貂血清激素含量的影响 Table 6 Effects of different selenium sources on serum hormone contents of weaned minks |
动物的繁殖性能主要受遗传因素决定,但也受营养因素调控。硒作为抗氧化剂,能保护卵母细胞、着床前的胚胎以及卵巢组织免受氧化应激的损伤,进而改善雌性动物繁殖性能[10-11]。有关不同硒源对畜禽繁殖性能影响的报道众多,但结论不一。本研究结果显示,各组母貂窝产仔数以及仔貂初生窝重、初生体重差异不显著,说明不同硒源对母貂繁殖性能无显著影响,这与Ma等[12]在猪和Gunter等[13]在牛上的研究结果一致。这可能与动物种类和胎次有关。在医学上的研究表明,相较于高胎次母亲,初产母亲机体氧化应激水平低而脐带血和血浆抗氧化能力高[14]。本试验研究对象均为初产水貂,基础饲粮中含有的硒和维生素E作为抗氧化剂可能满足了母貂维持体内氧化-抗氧化体系动态平衡的需要。
硒可通过胎盘和乳汁传递给后代,因此沉积到胚胎组织器官中的硒可通过影响后代的代谢来调节其生长发育。Hu等[4]研究表明,在妊娠后期和哺乳期母猪饲粮中补充硒代蛋氨酸可提高初乳和常乳中硒含量,进而提高仔猪断奶体重。本研究结果表明,母貂饲粮中添加酵母硒或硒代蛋氨酸均可显著提高仔貂21和42日龄体重。水貂出生至21日龄以母乳为食,21日龄以后逐渐采食母貂饲粮。在奶牛上的研究显示,补充有机硒可提高乳汁产量[15]。刘可园等[16]报道,硒可提高蓝狐对饲粮中营养物质的消化率。据此推测,饲粮中添加酵母硒或硒代蛋氨酸可能通过促进母貂泌乳和仔貂对饲粮中营养物质的消化吸收而提高21~42日龄仔貂生长性能。具体原因还需通过试验进一步验证。
3.2 不同硒源对泌乳期水貂血清硒及抗氧化指标的影响研究发现,不同硒源在动物肠道内吸收方式不同。亚硒酸钠等无机硒主要以被动扩散形式在小肠内被吸收,而酵母硒等有机硒可通过与蛋氨酸吸收类似的途径被主动吸收[17]。相比于无机硒,有机硒中大部分硒可进入肝脏中参与硒蛋白的合成,增加机体内总硒的贮存量,进而发挥其较强的抗氧化作用。Yoon等[18]研究发现,饲粮中添加酵母硒可提高妊娠期母猪血清硒含量。Payne等[19]在肉鸡上的研究结果显示,与亚硒酸钠相比,饲粮中添加酵母硒可显著提高血浆硒含量。本研究结果表明,饲粮中添加不同硒源对母貂血清硒含量无显著影响,但与CN组相比,SY组和Se-Met组母貂血清硒含量分别提高了13.04%和17.39%,这与朱翱翔等[20]在育成期湖羊上的报道一致。有研究认为,组织和血液中的硒可互相转换,保证血液硒含量处于一种稳态平衡。本试验中,CN组母貂可能通过动用组织中沉积的硒来维持一定的血液硒含量,进而导致各组母貂血清硒含量差异不显著。GSH-Px是机体抗氧化系统中最重要的硒蛋白,可催化还原内源性过氧化氢和羟自由基,从而减少血液中脂质过氧化物及自由基含量。石磊等[21]在妊娠母羊上的研究表明,饲粮中添加酵母硒可显著提高血液GSH-Px活性。Warken等[22]给围产期奶牛肌肉注射亚硒酸钠后发现,其血清ROS含量显著下降。本试验结果发现,与CN组相比,饲粮中添加酵母硒可显著提高母貂血清GSH-Px活性,而添加硒代蛋氨酸可极显著降低血清ROS含量。这一结果说明,饲粮中添加酵母硒或硒代蛋氨酸有利于提高泌乳期母貂机体抗氧化能力。
3.3 不同硒源对断奶期水貂血清硒及抗氧化指标的影响母畜乳汁及饲粮中硒含量影响其后代硒的摄入与沉积,进而影响机体抗氧化能力。Gunter等[13]在妊娠母牛上的研究发现,与亚硒酸钠相比,饲粮中添加硒酵母可显著提高犊牛出生时全血硒含量。在本试验中,与CN组和SS组相比,饲粮中添加硒代蛋氨酸或酵母硒均可显著提高断奶仔貂血清硒含量,这与Yoon等[18]在仔猪上的研究结果一致。这可能是由于不同硒源经母体转运到后代的效率不同导致的。在仔猪上的研究表明,有机硒通过胎盘转运给胎儿的效率比无机硒高,且有机硒通过乳腺转运给后代的效率比无机硒高,因此胎儿及初生后代机体贮存的硒含量也高[23-24]。硒是GSH-Px活性中心的重要组成部分,体内硒含量的高低决定了GSH-Px的活性,进而影响机体抗氧化能力。高建忠等[25]研究了不同硒源对仔猪机体抗氧化能力的影响,结果发现饲粮中添加硒可以显著提高仔猪血液GSH-Px活性,而添加有机硒较添加无机硒效果更明显。Mahan等[26]报道,仔猪饲粮中添加富硒酵母较亚硒酸钠可以显著提高血清GSH-Px活性。本研究结果与前人报道基本一致,说明饲粮中添加酵母硒或硒代蛋氨酸可显著提高断奶仔貂血清GSH-Px活性,进而有利于提高机体抗氧化能力。
3.4 不同硒源对断奶水貂血清激素含量的影响硒对甲状腺激素的调控作用主要是通过硒酶表现出来的。研究表明,脱碘酶Ⅰ结构中含有硒酶,而脱碘酶Ⅰ可催化T4脱碘转变为生物学活性强的T3[27]。T3是调节戊核磷酸循环酶因素之一,不仅能调节脂肪酸代谢和蛋白质合成,还能调控胰岛素和GH的mRNA表达。硒缺乏会导致脱碘酶活性降低,减少T3的生成量,降低机体GH和IGF-1含量,使动物生长发育受阻。李星[28]研究表明,母猪妊娠后期和泌乳期饲粮中添加有机硒比添加无机硒提高了断奶仔猪血清T3含量,降低了血清T4含量。石磊[29]研究结果表明,给围术期羊补充适量硒可以提高血清GH含量。然而在本试验中,饲粮中添加不同硒源对断奶仔貂血清T3、T4、GH及IGF-1含量均无显著影响。
4 结论饲粮中添加不同硒源对母貂繁殖性能无显著影响;与亚硒酸钠相比,饲粮中添加酵母硒或硒代蛋氨酸可提高母貂及其后代抗氧化能力,促进21~42日龄仔貂生长。
[1] |
LUO W L, LUO Z, XU X, et al. The effect of maternal diet with fish oil on oxidative stress and inflammatory response in sow and new-born piglets[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 6765803. |
[2] |
MIN J, PARK B, KIM Y J, et al. Effect of oxidative stress on birth sizes: consideration of window from mid pregnancy to delivery[J]. Placenta, 2009, 30(5): 418-423. DOI:10.1016/j.placenta.2009.02.007 |
[3] |
KIM Y J, HONG Y C, LEE K H, et al. Oxidative stress in pregnant women and birth weight reduction[J]. Reproductive Toxicology, 2005, 19(4): 487-492. DOI:10.1016/j.reprotox.2004.10.007 |
[4] |
HU H J, WANG M, ZHAN X A, et al. Effect of different selenium sources on productive performance, serum and milk Se concentrations, and antioxidant status of sows[J]. Biological Trace Element Research, 2011, 142(3): 471-480. DOI:10.1007/s12011-010-8803-1 |
[5] |
ZHAN X A, QIE Y Z, WANG M, et al. Selenomethionine: an effective selenium source for sow to improve Se distribution, antioxidant status, and growth performance of pig offspring[J]. Biological Trace Element Research, 2011, 142(3): 481-491. DOI:10.1007/s12011-010-8817-8 |
[6] |
NRC. Nutrient requirements of mink and foxes[M]. 2nd ed. Washington, D.C.: The National Academies Press, 1982: 9-38.
|
[7] |
张婷, 杨雅涵, 李仁德, 等. 饲粮添加维生素E和硒对育成期水貂生长性能、营养物质消化率及血清生化指标的影响[J]. 动物营养学报, 2018, 30(10): 4012-4019. ZHANG T, YANG Y H, LI R D, et al. Effects of dietary vitamin E and selenium on growth performance, nutrient digestibility and serum biochemical indices of growing minks (Mustela vison)[J]. Chinese Journal of Animal Nutrition, 2018, 30(10): 4012-4019 (in Chinese). DOI:10.3969/j.issn.1006-267x.2018.10.026 |
[8] |
BØRSTING C F, ENGBERG R M, JAKOBSEN K, et al. Inclusion of oxidized fish oil in mink diets 1.The influence on nutrient digestibility and fatty-acid accumulation in tissues[J]. Journal of Animal Physiology and Animal Nutrition, 1994, 72(1/2/3/4/5): 132-145. |
[9] |
李明远. 微波消解-氢化物原子荧光光谱法测定食品中的微量元素硒[J]. 光谱实验室, 2007, 24(4): 618-621. LI M Y. The determination of microelement selenium in foods by hydride-generation atomic fluorescence spectrometry with microwave digestions[J]. Chinese Journal of Spectroscopy Laboratory, 2007, 24(4): 618-621 (in Chinese). DOI:10.3969/j.issn.1004-8138.2007.04.027 |
[10] |
JANA S K, NARENDRA BABU K, CHATTOPADHYAY R, et al. Upper control limit of reactive oxygen species in follicular fluid beyond which viable embryo formation is not favorable[J]. Reproductive Toxicology, 2010, 29(4): 447-451. DOI:10.1016/j.reprotox.2010.04.002 |
[11] |
DALTO D B, AUDET I, LAPOINTE J, et al. The importance of pyridoxine for the impact of the dietary selenium sources on redox balance, embryo development, and reproductive performance in gilts[J]. Journal of Trace Elements in Medicine and Biology, 2016, 34: 79-89. DOI:10.1016/j.jtemb.2016.01.001 |
[12] |
MA Y L, LINDEMANN M D, PIERCE J L, et al. Effect of inorganic or organic selenium supplementation on reproductive performance and tissue trace mineral concentrations in gravid first-parity gilts, fetuses, and nursing piglets[J]. Journal of Animal Science, 2014, 92(12): 5540-5550. DOI:10.2527/jas.2014-7590 |
[13] |
GUNTER S A, BECK P A, PHILLIPS J K. Effects of supplementary selenium source on the performance and blood measurements in beef cows and their calves[J]. Journal of Animal Science, 2003, 81(4): 856-864. DOI:10.2527/2003.814856x |
[14] |
GOLALIZADEH F, SHOBEIRI F, RANJBAR A, et al. Maternal parity and blood oxidative stress in mother and neonate[J]. Biotechnology and Health Sciences, 2016, 3(1): e34165. |
[15] |
呼显生, 刘玉茹, 尹柏双, 等. 酵母硒对奶牛血液抗氧化能力及泌乳性能的影响[J]. 畜牧与兽医, 2012, 44(12): 54-56. HU X S, LIU Y R, YIN B S, et al. Effects of yeast selenium on blood antioxidant capacity and lactation performance of dairy cows[J]. Animal Husbandry & Veterinary Medicine, 2012, 44(12): 54-56 (in Chinese). |
[16] |
刘可园, 刘晗璐, 王卓, 等. 全收粪法和三氧化二铬法测定蓝狐对不同硒含量日粮的营养物质消化率[J]. 特产研究, 2020, 42(1): 37-42. LIU K Y, LIU H L, WANG Z, et al. Nutrient digestibility in different dietary selenium supplementation by total feces collection and Cr2O3 methods for foxes[J]. Special Wild Economic Animal and Plant Research, 2020, 42(1): 37-42 (in Chinese). |
[17] |
VENDELAND S C, DEAGEN J T, BUTLER J A, et al. Uptake of selenite, selenomethionine and selenate by brush border membrane vesicles isolated from rat small intestine[J]. BioMetals, 1994, 7(4): 305-312. |
[18] |
YOON I, MCMILLAN E. Comparative effects of organic and inorganic selenium on selenium transfer from sows to nursing pigs[J]. Journal of Animal Science, 2006, 84(7): 1729-1733. DOI:10.2527/jas.2005-311 |
[19] |
PAYNE R L, SOUTHERN L L. Comparison of inorganic and organic selenium sources for broilers[J]. Poultry Science, 2005, 84(6): 898-902. DOI:10.1093/ps/84.6.898 |
[20] |
朱翱翔, 王锋, 冯旭, 等. 不同硒源对育成湖羊生长性能、组织硒含量和瘤胃发酵的影响[J]. 南京农业大学学报, 2017, 40(4): 718-724. ZHU A X, WANG F, FENG X, et al. Effects of different dietary selenium supplementation on growth, selenium retention in tissues and rumen fermentation in growing Hu sheep[J]. Journal of Nanjing Agricultural University, 2017, 40(4): 718-724 (in Chinese). |
[21] |
石磊, 赵辉, 姚晓磊, 等. 不同水平酵母硒对黎城大青羊妊娠母羊血液抗氧化能力的影响[J]. 中国草食动物科学, 2013, 33(4): 18-21. SHI L, ZHAO H, YAO X L, et al. Effects of different levels of yeast selenium on blood antioxidant capacity of pregnant ewes of Licheng Daqing sheep[J]. China Herbivore Science, 2013, 33(4): 18-21 (in Chinese). |
[22] |
WARKEN A C, LOPES L S, BOTTARI N B, et al. Mineral supplementation stimulates the immune system and antioxidant responses of dairy cows and reduces somatic cell counts in milk[J]. Anais da Academia Brasileira de Ciencias, 2018, 90(2): 1649-1658. DOI:10.1590/0001-3765201820170524 |
[23] |
FORTIER M E, AUDET I, GIGUÈRE A, et al. Effect of dietary organic and inorganic selenium on antioxidant status, embryo development, and reproductive performance in hyperovulatory first-parity gilts[J]. Journal of Animal Science, 2012, 90(1): 231-240. DOI:10.2527/jas.2010-3340 |
[24] |
ANAN Y, OGRA Y, SOMEKAWA L, et al. Effects of chemical species of selenium on maternal transfer during pregnancy and lactation[J]. Life Sciences, 2009, 84(25/26): 888-893. |
[25] |
高建忠, 黄克和, 秦顺义. 不同硒源对仔猪组织硒沉积和抗氧化能力的影响[J]. 南京农业大学学报, 2006, 29(1): 85-88. GAO J Z, HUANG K H, QIN S Y. Effects of different selenium sources on tissue selenium retention and anti-oxidative activities in weaned piglets[J]. Journal of Nanjing Agricultural University, 2006, 29(1): 85-88 (in Chinese). |
[26] |
MAHAN D C, KIM Y Y. The role of vitamins and minerals in the production of high quality pork-review[J]. Asian-Australasian Journal of Animal Sciences, 1999, 12(2): 287-294. DOI:10.5713/ajas.1999.287 |
[27] |
BERRY M J, BANU L, LARSEN P R. Type Ⅰ iodothyronine deiodinase is a selenocysteine-containing enzyme[J]. Nature, 1991, 349(6308): 438-440. DOI:10.1038/349438a0 |
[28] |
李星. 母种猪补充不同硒源对后代乳猪生长性能的影响及作用机理的探讨[D]. 硕士学位论文. 杭州: 浙江大学, 2009. LI X. Effects of sows supplement different selenium sources on growth performance of nursing pigs and approaching to its mechanism[D]. Master's Thesis. Hangzhou: Zhejiang University, 2009. (in Chinese) |
[29] |
石磊. 硒对羊围术期血清相关微量元素、生长激素及抗氧化酶的影响[D]. 硕士学位论文. 呼和浩特: 内蒙古农业大学, 2009. SHI L. Effect of selenium to serum trace elements, growth hormone and antioxidant enzyme of periperative sheep[D]. Master's Thesis. Hohhot: Inner Mongolia Agricultural University, 2009. (in Chinese) |