2. 湖南农业大学生物科学技术学院, 湖南省猪场废弃物无害化处理与资源化利用工程研究中心, 长沙 410128;
3. 双胞胎(集团)股份有限公司, 漳州双胞胎饲料有限公司, 南昌 341000
2. Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
3. Zhangzhou Twins Group Feed Co., Ltd., Twins Group Co., Ltd., Nanchang 341000, China
在现代养猪生产模式中,氧化应激、肠道屏障受损及免疫力低等因素易导致猪生长缓慢、饲料利用率低及腹泻等问题,严重影响养猪企业的经济效益。尽管抗生素添加能够改善上述问题,但长期滥用抗生素将不可避免地造成抗生素残留、细菌耐药性等问题。抗生素作为饲料添加剂将逐渐被限制或者禁止,益生菌作为潜在的抗生素替代品具有广阔的应用前景。乳酸菌(Lactobacillus)作为益生菌的一种,是一类革兰氏阳性的厌氧或者兼性厌氧微生物,主要通过发酵过程产生乳酸,通过改善肠道微生物平衡、增强抗氧化防御系统、调节肠道黏膜免疫、保持肠道屏障功能等发挥功能性作用,但其实际应用效果并不明显。本文综述了乳酸菌在胃肠道内生存的耐受性、生物学功能及其对哺乳仔猪、断奶仔猪和母猪的影响,并总结了引起其应用效果不稳定的可能因素。
1 乳酸菌在胃肠道内生存的耐受性益生菌到达肠道之前需在胃酸存活4 h或更长时间。因此,酸和胆汁盐的耐受性是选择益生菌菌株的重要标准之一。耐酸性是由乳酸菌维持细胞内pH[1]、保存细胞膜功能[2]或诱导应激反应蛋白[3]等决定的;胆汁盐耐受性是由胆汁酸/盐的主动外排、胆汁盐水解[4]和细胞膜的改变等因素决定的[5]。研究表明,干酪乳杆菌(L. casei)诱导参与碳水化合物代谢的蛋白质表达,通过提供能量以抵抗酸应激[6]。从仔猪肠道分离的植物乳杆菌(L. plantarum)ZlP001接种到含有0.1%、0.3%及0.5%胆汁酸的培养基,其耐受性依次为85.3%、61.4%及9.4%,并且该菌株对模拟胃液和肠液具有耐受性[7]。因此,通过体外筛选具有耐受胃肠道生存的菌株,有利于其在动物肠道内生长繁殖。
2 乳酸菌的生物学功能 2.1 维持肠道微生态平衡致病菌能否黏附在上皮细胞刷状缘上是决定能否感染宿主的关键。研究表明,乳酸菌在人克隆结肠腺癌细胞(Caco-2)细胞系中达到80%的黏附性[8]。肠道内的副干酪乳杆菌(L. paracasei)BGSJ2-8产生的胞外多糖能黏附肠上皮细胞,并降低大肠杆菌与Caco-2结合[9];L. plantarum与金黄色葡萄球菌共同培养时,对后者的生长有87%的抑制作用[10]。乳酸菌黏附性是其定植动物肠道内生长繁殖的前提,而其黏附性取决于菌体自身结构、分泌物以及宿主细胞表面的相应受体。发酵乳杆菌(L. fermentum)3872的胶原结合蛋白与肠道上皮细胞上Ⅰ型胶原蛋白结合,并且确定是一种黏附素参与结合[11]。乳酸菌黏附定植于肠道,可能是通过菌体表面的脂磷壁酸、肽聚糖及胞外多糖等黏附素与肠黏膜上特定模式识别受体结合[12],而这种结合有利于缓解肠道蠕动对其产生的排除作用。
肠道微生物间相互竞争肠道上皮细胞刷状缘上的附着点,高黏附性的有益菌能阻止致病菌对上皮细胞的黏附和侵入。德氏乳杆菌(L. delbrueckii)、鼠李糖乳杆菌(L. rhamnosus)GG和L. fermentum I5007等均能够通过排斥、竞争或者置换作用抑制大肠杆菌、沙门氏菌、念球菌等致病菌在宿主肠道内黏附定植[13-15]。研究发现,L. rhamnosus GG通过降低念珠菌黏附在黏膜的附着力和消耗葡萄糖来缓解其对上皮损伤[15],表明乳酸菌能够优先利用肠道中营养资源和争夺黏附位点形成一层生物屏障,导致致病菌饿死和无法定植被排出体外。研究发现,乳酸菌代谢产生的细菌素抑制革兰氏阳性菌生长繁殖[16];约氏乳杆菌(L. johnsonii)NCC533在体内代谢产生过氧化氢,有效抑制沙门氏菌的生长繁殖[17];罗伊氏乳杆菌(L. reuteri)I5007是通过在肠道代谢产生乳酸来改变肠道pH,阻碍致病菌的定植[18]。以上研究表明乳酸菌能抑制致病菌生长繁殖。因此,乳酸菌在肠道内大量的定植和繁殖,并通过自身代谢产物影响一些致病微生物在肠道内的定植,从而维持肠道微生态平衡。
2.2 抗氧化防御作用正常情况下,动物体内自由基产生或清除处于一种动态平衡状态。一旦这种平衡被打破会造成自由基在体内大量蓄积,过量的自由基破坏组织中DNA、脂质等生物大分子,造成氧化应激损伤。目前,大多研究学者认为乳酸菌抗氧化作用模式主要包括清除自由基、螯合金属离子、具有还原能力、抑制脂质氧化和提高抗氧化酶活性等。体外研究表明,L. plantarum ZLP001具有清除超氧自由基以及羟基自由基的能力[19];L. fementum ME-3可通过减少金属离子和脂质过氧化来提高整体抗氧化水平[20];L. plantarum C88饲喂由D-半乳糖诱导氧化应激的小鼠,可提高肝脏及血清中超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)的活性和总抗氧化能力(T-AOC),降低肝脏中丙二醛(MDA)含量[21]。因此,饲粮中添加乳酸菌可维持动物体内自由基动态平衡,缓解氧化应激的损伤。
2.3 肠道屏障功能与免疫力肠道微生物的建立对动物肠道免疫系统至关重要。外源乳酸菌对维持肠道结构和屏障的完整性有积极影响。据报道,以L. reuteri D8作为外源因素对肠道干细胞有生物学影响,L. reuteri D8通过激活芳香烃受体,进而诱导固有层淋巴细胞分泌白细胞介素(interleukin,IL)-22,随后激活信号传导与转录活化因子3的磷酸化以加速肠道干细胞再生,并恢复肿瘤坏死因子(tumor necrosis factor alpha,TNF)-α损失的肠道上皮结构[22]。上调肠道闭合小环蛋白-1(ZO-1)、闭锁蛋白(occludin)和闭合蛋白(claudins)的mRNA表达,稳定紧密连接蛋白的结构和分布,改善肠道屏障功能[23]。也有研究表明,乳酸菌进入肠道后,可能是通过影响其他微生物区系或介导代谢产物及自身产生的免疫促进剂来调节肠道免疫[24-26]。L. rhamnosus引起IL-10的合成,进而抑制TNF-α、干扰素(interferon,IFN)-γ等致炎因子的分泌来调节免疫功能[24];唾液乳杆菌(L. salivarius)LA307缓解小鼠结肠炎症,而瑞士乳杆菌(L. helveticus)PI5维护肠道上皮屏障[26]。此外,L. reuteri和一群促进耐受性的免疫细胞的产生之间存在关联。将L. reuteri移植到无菌小鼠的体内时,食物中添加色氨酸含量对小鼠产生免疫细胞有着积极影响[27],意味着某些氨基酸和肠道微生物并不是独立存在的。目前某些氨基酸与肠道菌群的相互作用这一领域正备受研究者们关注,正在为肠道黏膜免疫机制以及干预策略提供全新的线索和思路。
3 乳酸菌在母猪和仔猪生产中的应用 3.1 乳酸菌在哺乳仔猪生产中的应用新出生仔猪肠道基本是无菌状态,出生24 h内,肠道内定植双歧杆菌、乳酸杆菌、大肠杆菌、肠球菌等细菌,细菌的丰富度和多样性与日龄呈正相关。因此,早期干预仔猪肠道微生物的建立对其肠道健康至关重要。研究表明,外源L. fermentum在仔猪早期生活中,提高十二指肠和空肠的绒毛高度与隐窝深度,并提高空肠中ZO-1和occludin的mRNA表达,维护肠道形态和肠黏膜通透性,改善肠道屏障功能,有效缓解产肠毒素大肠杆菌应激诱导的新生仔猪腹泻[28]。Liu等[13]发现,试验的第14天,在仔猪中观察到结肠梭菌属数量减少,空肠中绒毛高度增加,结肠中丁酸盐和脂肪酸浓度增加,回肠中IL-1β的mRNA表达降低。用L. fermentum I5007饲喂仔猪后,其血液中CD4+T细胞亚群比例和回肠INF-γ含量增加,并降低了腹泻率[29]。Zhang等[30]报道,L. salivarius能够显著上调哺乳仔猪的β防御素-2的分泌,增强肠道化学屏障功能。由于幼龄仔猪消化和免疫系统尚未发育成熟,仔猪肠道缺乏足够的酸来帮助消化食物以及容易受到致病菌感染引起腹泻。乳酸菌促进哺乳仔猪新陈代谢和营养物质吸收,并改善肠道健康[31]。研究表明,哺乳仔猪口服L. case,提高了仔猪胃、十二指肠和结肠中蛋白酶活性以及血浆中免疫球蛋白A(IgA)含量[32]。因此,外源乳酸菌能有效增强哺乳仔猪胃肠道功能,可能是通过诱导微生物群落的最佳组成,改善肠道屏障功能,提高免疫力,预防病原体感染。
3.2 乳酸菌在断奶仔猪生产中的应用近年来,乳酸菌在改善断奶仔猪生长性能和肠道健康方面受到广泛关注。在断奶应激状态下,仔猪通常会出现采食量减少、肠道消化酶活性降低和腹泻等情况,其主要因素是肠道微生态平衡被破坏[33]。张董燕等[34]发现,以0.75%猪源罗伊氏乳酸杆菌作为仔猪饲料添加剂,平均日增重提高了20.07%,料重比降低了14.90%。Wang等[35]也表明,饲粮中添加1×109 CFU/d的L. plantarum ZJ316,平均日增重提高了20.45%,饲料转化率提高了21.07%。也有报道指出外源乳酸菌对仔猪生长性能无显著影响[36]。已知乳酸菌具有菌株特异性,可能会影响细菌和宿主的相互作用。这种菌株对于宿主来说是非内源性,在肠道内存活数量低,不能形成优势菌群,难起到益生作用。研究表明,乳酸菌可替代仔猪的抗生素[37],L. fermentum I5007通过提高与能量代谢、脂质代谢、蛋白质合成、免疫反应有关的蛋白质水平来缓解断奶应激综合征[38]。用不同菌株的乳酸菌饲喂断奶仔猪后,其血清中免疫球蛋白M(IgM)和IFN-γ含量增加[39];空肠和回肠黏膜分泌型免疫球蛋白A(sIgA)分泌量增加[40];并促进了IgA分泌,降低了回肠IL-8分泌,缓解了沙门氏菌感染而导致的炎症[41];上调了ZO-1、occludin和claudins的mRNA表达[23],稳定紧密连接蛋白的结构和分布,减少肠道黏膜通透性,改善肠道健康。此外,断奶应激与氧化应激相关,氧化应激被认为是影响肠道健康和功能的主要因素之一。研究表明,L. plantarum ZLP001提高断奶仔猪血清中SOD、GSH-Px和过氧化氢酶(CAT)活性,降低血清中MDA含量[19],改善抗氧化功能。因此,饲粮中添加乳酸菌能够改善断奶仔猪生长性能、免疫力和抗氧化等功能,缓解了断奶应激。
3.3 乳酸菌在母猪生产中的应用肠道菌群结构变化参与宿主代谢的调控,包括氧化应激和炎性反应。研究表明,高产母猪妊娠后期和泌乳期出现DNA氧化损伤和血液中抗氧化物质含量减少等情况[42]。任红立等[43]研究发现,饲粮中添加乳酸菌与酵母菌的复合菌显著提高了母猪血浆中总胆固醇、甘油三酯、高密度脂蛋白胆固醇的含量,降低了血浆中MDA含量,并提高了仔猪出生窝重,改善了母猪繁殖性能、血浆脂质代谢和抗氧化能力。母猪妊娠后期肠道微生物会发生不同程度的紊乱,而肠道微生物的紊乱可能会使肠腔中活性氧产生增多,后者对结肠上皮细胞的DNA造成损伤。而有些肠道共生菌如某些种类的乳酸菌具有抗氧化作用,能够抑制活性氧的产生。L. paracasei Fn032、L. rhamnosus GG等都能够抑制结肠食糜发酵过程中氧自由基的产生并能够抑制大肠杆菌的生长[44]。已知新生仔猪的高死亡率通常与由大肠埃希氏菌、沙门氏菌、轮状病毒和冠状病毒感染引起的腹泻有关。而仔猪对抗感染的免疫力主要是通过初乳的免疫球蛋白和细胞因子来建立。细胞因子已被证明对肠道黏膜发挥局部作用,并穿透循环系统,影响仔猪胃肠道共生微生物的定植[45]。研究表明,饲喂益生菌影响母猪肠道菌群[46],影响初乳的组成[47]。Wang等[48]报道,妊娠期母猪饲粮中添加乳酸菌显著增加仔猪出生、断奶窝重及血清免疫球蛋白G(IgG)含量,改善仔猪肠道微生物的多样性[49]。因此,母猪妊娠后期饲粮中添加乳酸菌类益生菌缓解自身代谢紊乱,可能通过改变母猪妊娠期肠道菌群与初乳的组成而影响新生仔猪的被动免疫与肠道菌群组成结构,促进仔猪肠道健康。
4 小结综上所述,外源乳酸菌在母猪和仔猪生产中的功能及应用主要通过以下2个途径:1)改变母猪妊娠期肠道菌群与初乳的组成而影响新生仔猪的被动免疫与肠道菌群组成结构,促进仔猪肠道健康;提高断奶仔猪抗氧化和肠道屏障与免疫,缓解断奶应激;2)缓解母猪妊娠期的氧化应激和炎性反应。乳酸菌等益生菌在实际应用效果并不理想,其主要原因有以下几点:1)乳酸菌的生产技术条件要求极高,难以培养,所以市场上基本没有实用型的饲用乳酸菌产品供应。2)在实际储存过程中,自然损失和失活率非常高。同时,在颗粒饲料生产过程中,无包埋保护处理的乳酸菌在经过80 ℃以上处理后基本损失殆尽。3)应用效果同使用的菌株的数量密切相关,在肠道内数量低不能形成优势菌群,难起到益生作用。乳酸菌等益生菌用于特定养殖动物所需要的菌群数量尚无统一的规定。因此,饲用乳酸菌添加剂好坏的关键在于乳酸菌的有效含量、是否包埋、耐热、耐存储、耐制粒等,以及通过体外筛选具有耐受胃肠道生存的菌株,只要有考虑到以上因素,才能更好地发挥其应用效果。此外,将活的乳酸菌应用于饲料中,其潜在的致病性、抗药基因转移的可能性及繁殖和变异的不可控制性都是需要注意的。
[1] |
WU C D, HE G Q, ZHANG J. Physiological and proteomic analysis of Lactobacillus casei in response to acid adaptation[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(10): 1533-1540. |
[2] |
WU C D, ZHANG J, WANG M, et al. Lactobacillus casei combats acid stress by maintaining cell membrane functionality[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(7): 1031-1039. |
[3] |
HAMON E, HORVATOVICH P, MARCHIONI E, et al. Investigation of potential markers of acid resistance in Lactobacillus plantarum by comparative proteomics[J]. Journal of Applied Microbiology, 2014, 116(1): 134-144. DOI:10.1111/jam.2013.116.issue-1 |
[4] |
DE BOEVER P, WOUTERS R, VERSCHAEVE L, et al. Protective effect of the bile salt hydrolase-active Lactobacillus reuteri against bile salt cytotoxicity[J]. Applied Microbiology and Biotechnology, 2000, 53(6): 709-714. DOI:10.1007/s002530000330 |
[5] |
BURNS P, REINHEIMER J, VINDEROLA G. Impact of bile salt adaptation of Lactobacillus delbrueckii subsp. Lactis 200 on its interaction capacity with the gut[J]. Research in Microbiology, 2011, 162(8): 782-790. DOI:10.1016/j.resmic.2011.07.005 |
[6] |
WU R N, ZHANG W Y, SUN T S, et al. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress[J]. International Journal of Food Microbiology, 2011, 147(3): 181-187. DOI:10.1016/j.ijfoodmicro.2011.04.003 |
[7] |
WANG J, JI H F, ZHANG D Y, et al. Assessment of probiotic properties of Lactobacillus plantarum ZLP001 isolated from gastrointestinal tract of weaning pigs[J]. African Journal of Biotechnology, 2011, 10(54): 11303-11308. DOI:10.5897/AJB |
[8] |
ARCHER A C, KURREY N K, HALAMI P M. In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp.[J]. Journal of Applied Microbiology, 2018, 125(1): 243-256. DOI:10.1111/jam.2018.125.issue-1 |
[9] |
ŽIVKOVIĆ M, MILJKOVIĆ M S, RUAS-MADIEDO P, et al. EPS-SJ exopolisaccharide produced by the strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 is involved in adhesion to epithelial intestinal cells and decrease on E. coli association to Caco-2 cells[J]. Frontiers in Microbiology, 2016, 7: 286. |
[10] |
KOS B, SUSKOVIĆ J, VUKOVIĆ S, et al. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92[J]. Journal of Applied Microbiology, 2003, 94(6): 981-987. DOI:10.1046/j.1365-2672.2003.01915.x |
[11] |
LEHRI B, SEDDON A M, KARLYSHEV A V. Lactobacillus fermentum 3872 as a potential tool for combatting Campylobacter jejuni infections[J]. Virulence, 2017, 8(8): 1753-1760. DOI:10.1080/21505594.2017.1362533 |
[12] |
DEEPIKA G, CHARALAMPOPOULOS D. Surface and adhesion properties of lactobacilli[J]. Advances in Applied Microbiology, 2010, 70: 127-152. DOI:10.1016/S0065-2164(10)70004-6 |
[13] |
LIU H, ZHANG J, ZHANG S H, et al. Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets[J]. Journal of Agricultural & Food Chemistry, 2014, 62(4): 860-866. |
[14] |
DO CARMO M S, NORONHA F M, ARRUDA M O, et al. Lactobacillus fermentum ATCC 23271 displays in vitro inhibitory activities against Candida spp[J]. Frontiers in Microbiology, 2016, 7: 1722. |
[15] |
MAILÄNDER-SÁNCHEZ D, BRAUNSDORF C, GRUMAZ C, et al. Antifungal defense of probiotic Lactobacillus rhamnosus GG is mediated by blocking adhesion and nutrient depletion[J]. PLoS One, 2017, 12(10): e0184438. DOI:10.1371/journal.pone.0184438 |
[16] |
EIJSINK V G H, AXELSSON L, DIEP D B, et al. Production of class Ⅱ bacteriocins by lactic acid bacteria; an example of biological warfare and communication[J]. Antonie Van Leeuwenhoek, 2002, 81(1/2/3/4): 639-654. |
[17] |
PRIDMORE R D, PITTET A C, PRAPLAN F C, et al. Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity[J]. FEMS Microbiology Letters, 2008, 283(2): 210-215. DOI:10.1111/fml.2008.283.issue-2 |
[18] |
HOU C L, LIU H, ZHANG J, et al. Intestinal microbiota succession and immunomodulatory consequences after introduction of Lactobacillus reuteri I5007 in neonatal piglets[J]. PLoS One, 2015, 10(3): e0119505. DOI:10.1371/journal.pone.0119505 |
[19] |
WANG J, JI H F, WANG S X, et al. Lactobacillus plantarum ZLP001:in vitro assessment of antioxidant capacity and effect on growth performance and antioxidant status in weaning piglets[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(8): 1153-1158. DOI:10.5713/ajas.2012.12079 |
[20] |
TRUUSALU K, NAABER P, KULLISAAR T, et al. The influence of antibacterial and antioxidative probiotic lactobacilli on gut mucosa in a mouse model of Salmonella infection[J]. Microbial Ecology in Health and Disease, 2004, 16(4): 180-187. DOI:10.1080/08910600410021783 |
[21] |
LI S Y, ZHAO Y J, ZHANG L, et al. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods[J]. Food Chemistry, 2012, 135(3): 1914-1919. DOI:10.1016/j.foodchem.2012.06.048 |
[22] |
HOU Q H, YE L L, LIU H F, et al. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22[J]. Cell Death & Differentiation, 2018. DOI:10.1038/s41418-018-0070-2 |
[23] |
WU Y P, ZHU C, CHEN Z, et al. Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells[J]. Veterinary Immunology and Immunopathology, 2016, 172: 55-63. DOI:10.1016/j.vetimm.2016.03.005 |
[24] |
SCHULTZ M, LINDE H J, LEHN N, et al. Immunomodulatory consequences of oral administration of Lactobacillus rhamnosus strain GG in healthy volunteers[J]. Journal of Dairy Research, 2003, 70(2): 165-173. DOI:10.1017/S0022029903006034 |
[25] |
CHI H B, LI Y. Study on the antibacterial properties and immune regulation of Lactobacillus reuteri in vitro[J]. China Dairy Industry, 2015, 43(12): 4-7. |
[26] |
ALARD J, PEUCELLE V, BOUTILLIER D, et al. New probiotic strains for inflammatory bowel disease management identified by combining in vitro and in vivo approaches[J]. Beneficial Microbes, 2018, 9(2): 317-331. DOI:10.3920/BM2017.0097 |
[27] |
CERVANTES-BARRAGAN L, CHAI J N, TIANERO M D, et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells[J]. Science, 2017, 357(6353): 806-810. DOI:10.1126/science.aah5825 |
[28] |
YANG K M, JIANG Z Y, ZHENG C T, et al. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88[J]. Journal of Animal Science, 2014, 92(4): 1496-1503. DOI:10.2527/jas.2013-6619 |
[29] |
WANG A N, YU H F, GAO X, et al. Influence of Lactobacillus fermentum I5007 on the intestinal and systemic immune responses of healthy and E.coli challenged piglets[J]. Antonie Van Leeuwenhoek, 2009, 96(1): 89-98. DOI:10.1007/s10482-009-9339-2 |
[30] |
ZHANG J H, DENG J, LI Y F, et al. The effect of Lactobacillus on the expression of porcine β-defensin-2 in the digestive tract of piglets[J]. Livestock Science, 2011, 138(1/2/3): 259-265. |
[31] |
YANG J J, QIAN K, WANG C L, et al. Roles of probiotic lactobacilli inclusion in helping piglets establish healthy intestinal inter-environment for pathogen defense[J]. Probiotics and Antimicrobial Proteins, 2017, 10(2): 243-250. |
[32] |
LIU C Q, ZHU Q, CHANG J, et al. Effects of Lactobacillus casei and Enterococcus faecalis on growth performance, immune function and gut microbiota of suckling piglets[J]. Archives of Animal Nutrition, 2017, 71(2): 120-133. DOI:10.1080/1745039X.2017.1283824 |
[33] |
ISAACSON R, KIM H B. The intestinal microbiome of the pig[J]. Animal Health Research Reviews, 2012, 13(1): 100-109. DOI:10.1017/S1466252312000084 |
[34] |
张董燕, 季海峰, 王晶, 等. 猪源罗伊氏乳酸杆菌对断奶仔猪生长性能和血清指标的影响[J]. 动物营养学报, 2011, 23(9): 1553-1559. DOI:10.3969/j.issn.1006-267x.2011.09.014 |
[35] |
SUO C, YIN Y, WANG X N, et al. Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality[J]. BMC Veterinary Research, 2012, 8: 89. DOI:10.1186/1746-6148-8-89 |
[36] |
柴建民, 魏荣贵, 刘希峰, 等. 植物乳杆菌和非淀粉多糖复合酶对断奶仔猪生长性能、粪便微生物菌群及血清指标的影响[J]. 动物营养学报, 2016, 28(6): 1859-1866. DOI:10.3969/j.issn.1006-267x.2016.06.029 |
[37] |
CANIBE N, JENSEN B B. Fermented and nonfermented liquid feed to growing pigs:effect on aspects of gastrointestinal ecology and growth performance[J]. Journal of Animal Science, 2003, 81: 2019-2031. DOI:10.2527/2003.8182019x |
[38] |
WANG X Q, YANG F, LIU C, et al. Dietary supplementation with the probiotic Lactobacillus fermentum I5007 and the antibiotic aureomycin differentially affects the small intestinal proteomes of weanling piglets[J]. The Journal of Nutrition, 2012, 142(1): 7-13. DOI:10.3945/jn.111.147074 |
[39] |
何颖, 孙志勇, 韦明宇, 等.NS复合乳酸菌制剂对断奶仔猪体液免疫和细胞免疫的影响[C]//中国微生物学会第十三届微生物学教学和科研及成果产业化研讨会论文集.南宁: 中国微生物学会, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7644982
|
[40] |
ZHANG L, XU Y Q, LIU H Y, et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea:effects on diarrhoea incidence, faecal microflora and immune responses[J]. Veterinary Microbiology, 2010, 141(1/2): 142-148. |
[41] |
JIAO Y, ZHU Y H, YANG G Y, et al. Anti-inflammatory capacity of Lactobacillus rhamnosus GG in monophasic variant Salmonella infected piglets is correlated with impeding NLRP6-mediated host inflammatory responses[J]. Veterinary Microbiology, 2017, 210: 91-100. DOI:10.1016/j.vetmic.2017.08.008 |
[42] |
BERCHIERI-RONCHI C B, KIM S W, ZHAO Y, et al. Oxidative stress status of highly prolific sows during gestation and lactation[J]. Animal, 2011, 5(11): 1774-1779. DOI:10.1017/S1751731111000772 |
[43] |
任红立, 汪晶晶, 金三俊, 等. 妊娠后期饲粮中添加乳酸菌与酵母菌的复合菌对母猪繁殖性能、血浆脂质代谢和抗氧化能力的影响[J]. 动物营养学报, 2018, 30(4): 1457-1464. DOI:10.3969/j.issn.1006-267x.2018.04.029 |
[44] |
TAN C Q, WEI H K, SUN H Q, et al. Effects of supplementing sow diets during two gestations with konjac flour and Saccharomyces boulardii on constipation in peripartal period, lactation feed intake and piglet performance[J]. Animal Feed Science and Technology, 2015, 210: 254-262. DOI:10.1016/j.anifeedsci.2015.10.013 |
[45] |
HANSON L, STRÖMBÄCK L, ERLING V, et al. The immunological role of breast feeding[J]. Pediatric Allergy and Immunology:Official Publication of the European Society of Pediatric Allergy and Immunology, 2010, 12(Suppl.14): 15-19. |
[46] |
YANG F J, HOU C L, ZENG X F, et al. The use of lactic acid bacteria as a probiotic in swine diets[J]. Pathogens, 2015, 4(1): 34-45. DOI:10.3390/pathogens4010034 |
[47] |
LASKOWSKA E, JAROSZ Ł, GRADZKI Z. Effect of multi-microbial probiotic formulation bokashi on pro-and anti-inflammatory cytokines profile in the serum, colostrum and milk of sows, and in a culture of polymorphonuclear cells isolated from colostrum[J]. Probiotics and Antimicrobial Proteins, 2018, 1-13. DOI:10.1007/s12602-017-9380-9 |
[48] |
WANG J, JI H F, HOU C L, et al. Effects of Lactobacillus johnsonii XS4 supplementation on reproductive performance, gut environment, and blood biochemical and immunological index in lactating sows[J]. Livestock Science, 2014, 164: 96-101. DOI:10.1016/j.livsci.2014.03.008 |
[49] |
VELJOVIĆ K, DINIĆ M, LUKIĆ J, et al. Promotion of early gut colonization by probiotic intervention on microbiota diversity in pregnant sows[J]. Frontiers in Microbiology, 2017, 8: 2028. DOI:10.3389/fmicb.2017.02028 |