阿拉伯木聚糖(arabinoxylan,AX)具有高黏度、高持水性等特征。从20世纪80年代起,小麦AX逐步引起世界范围内的广泛关注。动物营养研究者发现小麦中的非淀粉多糖(non-starch polysaccharides,NSP)的主要成分是AX,其含量与小麦的代谢能值呈负相关,是小麦饲粮中主要的抗营养因子,从而开展了广泛地降低其抗营养作用的研究。而食品研究者发现小麦AX可作为食品的增稠剂、稳定剂,对面团和面包品质有重要的影响。人类营养学家更是发现小麦AX有许多重要的生理活性,如降低血清胆固醇水平、调节血糖水平[1]、益生作用[2]、抗氧化[3, 4]、免疫调节[5]和抗肿瘤[6]等。在小麦育种界,AX已成为除蛋白质和淀粉之外最受关注的一种小麦组分。AX在小麦中的含量并不高,但作为一种次要组分能够在农业育种、谷物化学、食品加工、膳食营养中备受重视,与其独特的结构、性质有直接关系。全国每年有2 000万t小麦麸皮资源可供利用,其中蕴藏着400多万t的AX,小麦活性多糖的开发将为小麦麸皮的增值转化提供科学依据。本文重点介绍国内外近年来有关AX及其水解产物,特别是阿拉伯木聚寡糖(arabinoxylan oligosaccharide,AXOS)益生功能的研究进展。
AX是构成植物细胞壁的主要成分,广泛存在于小麦等谷物的种皮中,AX的基本结构中包括由β-D-吡喃木糖残基经β-1,4-糖苷键连接而成的木聚糖主链和α-L-呋喃阿拉伯糖基(arabinose,Ara)侧链,β-D-吡喃木糖残基可在C2或/和C3位被α-L-呋喃阿拉伯糖基单取代或者双取代。
AX主要由阿拉伯糖(arabinose,Ara)和木糖(xylose,Xyl)等五碳糖组成,因此过去习惯称其为戊聚糖。小麦中含有50~80 g/kg DM的戊聚糖[7],是植物中继纤维素之后含量较多的第二大生物多聚体[8]。
在畜牧业生产中,能量饲料占全价饲料组成的60%~70%。在玉米价格较高或供应困难时,在动物生产中往往用小麦替代玉米。与玉米相比,小麦中含有较高的AX,可增加胃肠道食糜黏性,增加消化液的分泌,降低消化酶的活性,增加肠道内微生物数量[9, 10],影响胃肠道形态结构和蛋白质的内源性分泌,干扰营养物质的消化和重吸收,并最终影响畜禽的生长速度和健康水平[11, 12, 13, 14]。AX对幼龄畜禽的影响更为严重,其是影响小麦应用于畜牧业生产的主要限制因素。在饲粮中添加木聚糖酶则可消除这种抗营养作用,小麦饲粮中添加木聚糖酶能显著提高动物的生长性能、免疫功能和体内激素水平[15, 16]。
研究发现,AX及其水解产物AXOS均具有益生活性。近年来,小麦AX对肠道微生态的调节作用受到世界范围内的广泛关注,爱尔兰、比利时、美国、德国、澳大利亚等国均已大量开展提纯小麦AX/AXOS对人类益生功能的研究,一些公司已开发出小麦AX的商业产品。
小麦AX可以促进动物和人肠道双歧杆菌、乳酸杆菌、真细菌等益生菌的生长[17, 18],抑制类杆菌(Bacteroides spp.)和梭菌类(Clostridium spp.)的生长[18],提高益生指数,刺激肠道微生物分泌木聚糖酶和阿魏酸酯酶[19],促进肠道丁酸[17]和乳酸[20]等短链脂肪酸(short-chain fatty acid,SCFA)的生成。此外,以商品猪作为人类营养的研究模型,发现饲粮中添加高水平(12.9%)的小麦AX可提高盲肠SCFA含量,降低肠道中有害蛋白质分解产物(p-甲酚与苯酚)的含量,缓解结肠细胞DNA损伤,提高结肠中段普雷沃菌属(Prevotella spp.)和梭菌Ⅳ(Clostridial cluster Ⅳ)的含量[21]。
小麦AXOS的益生功能与AX类似,并且效果更强,研究报道更多。体外发酵法证实,人源结肠微生物仅可利用一少部分的AX,但可利用绝大部分的AXOS[22]。小麦AXOS可被一些双歧杆菌、乳酸杆菌和类杆菌利用,不能被大肠杆菌、梭状芽孢杆菌利用[23, 24]。小麦AXOS可提高人肠道双歧杆菌[25, 26]、乳酸杆菌、类杆菌属-普氏菌属(Bacteroides-Prevotella)、梭菌属球菌-直肠真杆菌(Clostridium coccoides-Eubacterium rectale)[27]等益生菌的生长,降低盲肠大肠杆菌、金黄色葡萄球菌和链球菌的数量[28],改变人体的碳水化合物和蛋白质代谢,降低生物标记氨的经尿排出量,增加经粪的排出量[29],减少肠道中有害蛋白质分解产物(p-甲酚与苯酚)的含量[25, 26, 27],提高胃肠健康指数。AXOS可降低攻毒肉鸡盲肠肠炎沙门氏菌群数量及其造成的脾脏转位[30]。
AXOS能刺激微生物,尤其是双歧杆菌的增殖[31, 32],促进木聚糖酶、木糖苷酶等降解酶的分泌[33],暗示AXOS作为益生元可能更具优势。
AX和AXOS的功能活性与其分子质量大小、分子结构,尤其是与分子聚合度(avDP)以及侧链取代程度(avDAS)密切相关[21]。随着分子质量的降低,小麦AX促进双歧杆菌和乳酸杆菌增殖的活性也随之增强[17];对5种不同avDP以及avDAS的AXOS比较发现,较高聚合度(avDP为29)的AXOS可以抵达结肠末端,而较低聚合度(avDP为8)的AXOS则主要在结肠近端发酵[27]。分子聚合度较低(avDP为3)的AXOS可促进肠道双歧杆菌的生长和乙酸、丁酸的产生,但对肠道SCFA的总含量没有影响;分子聚合度较高(avDP为61)的AXOS可降低肠道SCFA含量,但不具有促进双歧杆菌生长的作用[20]。
AX结构中的阿魏酰基团对于AX的许多功能性质有着重要影响。AX和AXOS的抗氧化功能与其分子组成中共价联结的阿魏酸有关[3]。而在碱性的提取条件下,阿魏酰基团很容易被水解下来而影响小麦AX功能的发挥。
近年来,国际上对小麦AX的益生功能进行了大量的研究,这为动物营养学家提供了一些新的视角。虽然动物营养学家针对小麦AX对动物生长性能、胃肠道结构与功能方面已经开展了一定程度的研究,但大多研究是在小麦饲粮水平上进行的,利用分离提纯的小麦AX开展的系统研究较少,且总体仍属于黑箱研究,许多深层次的重要问题仍未能解决,更无法解释小麦饲粮中添加木聚糖酶改善动物的生长性能、免疫功能的机理。因此,借鉴近年来小麦AX,特别是AXOS益生功能的研究,有必要针对性地开展提纯小麦AX/AXOS对畜禽生物学功能的分子构效研究,弥补国内外在小麦AX/AXOS益生功能研究上的空白,为多糖益生功能的研究提供试验证据,对开发新的生物活性多糖具有重要意义。
[1] | LU Z X,WALKER K Z,MUIR J G,et al.Arabinoxylan fibre improves metabolic control in people with type Ⅱ diabetes[J]. European Journal of Clinical Nutrition,2004,58(4):621-628. (![]() |
[2] | BROEKAERT W F,COURTIN C M,ERBEKE K,et al.Prebiotic and other health-related effects of cereal-derived arabinoxylans,arabinoxylanoligosaccharides,and xylooligosaccharides[J]. Critical Reviews in Food Science and Nutrition,2011,51(2):178-194. (![]() |
[3] | OU S Y,JACKSON G M,JIAO X,et al.Protection against oxidative stress in diabetic rats by wheat bran feruloyl oligosaccharides[J]. Journal of Agricultural and Food Chemistry,2007,55(8):3191-3195. (![]() |
[4] | HOLVOET P,JENNY N S,SCHREINER P J,et al.The relationship between oxidized LDL and other cardiovascular risk factors and subclinical CVD in different ethnic groups:the multi-ethnic study of atherosclerosis (MESA)[J]. Atherosclerosis,2007,194(1):245-252. (![]() |
[5] | ZHOU S M,LIU X Z,GUO Y,et al.Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanase-aided extraction[J]. Carbohydrate Polymers,2010,81(4):784-789. (![]() |
[6] | CAO L,LIU X Z,QIAN T X,et al.Antitumor and immunomodulatory activity of arabinoxylans:a major constituent of wheat bran[J]. International Iournal of Biological Macromolecules,2011,48(1):160-164. (![]() |
[7] | ANNISON G.Relationship between the levels of soluble nonstarch polysaccharides and the apparent metabolizable energy of wheats assayed in broiler chickens[J]. Journal of Agricultural and Food Chemistry,1991,39(7):1252-1256. (![]() |
[8] | GATENHOLM P,TENKANEN M.Hemicelluloses:science and technology[M]. Oxford:Oxford University Press,2004:15-16. (![]() |
[9] | 王金全.小麦非淀粉多糖的抗营养机理及木聚糖酶在肉仔鸡小麦日粮中的应用研究[D]. 博士学位论文.北京:中国农业科学院,2004:41-52. (![]() |
[10] | CHOCT M,HUGHES R J,WANG J,et al.Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens[J]. British Poultry Science,1996,37(3):609-621. (![]() |
[11] | HE Y H,LU W Q,LI D F,et al.Effects of soluble and insoluble non-starch polysaccharides isolated from wheat bran on endogenous amino acid loss at the terminal ileum of growing rats[J]. Journal of Animal and Veterinary Advances,2006,5(2):143-149. (![]() |
[12] | HE Y H,LU W Q,PIAO X S,et al.Endogenous amino acid loss at the terminal ileum of rats fed water-extractable or alkali-extractable soluble non-starch polysaccharides obtained from wheat bran when fed with and without xylanase[J]. Journal of Animal and Veterinary Advances,2006,5(8):629-635. (![]() |
[13] | 贺永惠,王清华,苗志国,等.小麦非淀粉多糖与木聚酶对大鼠小肠形态结构的影响[J]. 河南科技学院学报:自然科学版,2010,38(2):56-59. (![]() |
[14] | 贺永惠,王清华,苗志国,等.小麦可溶性非淀粉多糖对大鼠肠道形态与功能的影响[J]. 饲料工业,2010,31(17):13-15. (![]() |
[15] | 高峰,周光宏,韩正康.小麦基础日粮添加酶制剂对肉仔鸡生产性能和血液某些指标的影响[J]. 南京农业大学学报,2000,23(4):71-75. (![]() |
[16] | 高峰,江芸,周光宏,等.小麦基础日粮添加酶制剂对断奶仔猪生长、代谢和血液IL-2水平的影响[J]. 南京农业大学学报,2002,25(1):57-60. (![]() |
[17] | HUGHES S A,SHEWRY P R,LI L,et al.In vitro fermentation by human fecal microflora of wheat arabinoxylans[J]. Journal of Agricultural and Food Chemistry,2007,55(11):4589-4595. (![]() |
[18] | VARDAKOU M,NUENO P C,GASSON M,et al.In vitro three-stage continuous fermentation of wheat arabinoxylan fractions and induction of hydrolase activity by the gut microflora[J]. International Journal of Biological Macromolecules,2007,41(5):584-589. (![]() |
[19] | VARDAKOU M,PALOP C N,CHRISTAKOPOULOS P,et al.Evaluation of the prebiotic properties of wheat arabinoxylan fractions and induction of hydrolase activity in gut microflora[J]. International Journal of Food Microbiology,2008,123(1/2):166-170. (![]() |
[20] | VAN CRAEYVELD V,SWENNEN K,DORNEZ E,et al.Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats[J]. The Journal of Nutrition,2008,138(12):2348-2355. (![]() |
[21] | BELOBRAJDIC D P,BIRD A R,CONLON M A,et al.An arabinoxylan-rich fraction from wheat enhances caecal fermentation and protects colonocyte DNA against diet-induced damage in pigs[J]. British Journal of Nutrition, 2012,107(9):1274-1282. (![]() |
[22] | POLLET A,VAN CRAEYVELD V,VAN DE WIELE T,et al.In vitro fermentation of arabinoxylan oligosaccharides and low molecular mass arabinoxylans with different structural properties from wheat (Triticum aestivum L.) bran and psyllium (Plantago ovata Forsk) seed husk[J]. Journal of Agricultural and Food Chemistry, 2012,60(4):946-954. (![]() |
[23] | MOURA P,BARATA R,CARVALHERIO F,et al.In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains[J]. LWT-Food Science and Technology,2007,40(6):963-972. (![]() |
[24] | VAN LAERE K M J,HARTEMINK R,BOSVELD M,et al.Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria[J]. Journal of Agricultural and Food Chemistry,2000,48(5):1644-1652. (![]() |
[25] | CLOETENS L,BROEKAERT W F,DLAEDT Y,et al.Tolerance of arabinoxylanoligosaccharides and their prebiotic activity in healthy subjects:a randomized placebo-controlled,cross-over study[J]. British of Journal Nutrition,2010,103(5):703-713. (![]() |
[26] | FRANOIS I E,LESCROAT O,VERAVERBEKE W S,et al.Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers:a double-blind,randomised,placebo-controlled,cross-over trial[J]. British Journal of Nutrition,2012,108(12):2229-2242. (![]() |
[27] | SANCHEZ J I,MRZORATI M,GOOTAERT C,et al.Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the simulator of human intestinal microbial ecosystem[J]. Microbial Biotechnology,2009,2(1):101-113. (![]() |
[28] | YAMADA H,ITOH K,MORISHITA Y,et al.Structure and properties of oligosaccharides from wheat bran[J]. Cereal Foods World,1993,38:490-492. (![]() |
[29] | CLOETENS L,DE PRETER V,SWENNEN K,et al.Dose-response effect of arabinoxylo-oligosaccharides on gastrointestinal motility and on colonic bacterial metabolism in healthy volunteers[J]. Journal of the American College of Nutrition,2008,27(4):512-518. (![]() |
[30] | EECKHAUT V,VAN IMMERSEEL F,DEWULF J,et al.Arabinoxylo-oligosaccharides from wheat bran inhibit salmonella colonization in broiler chickens[J]. Poultry Science,2008,87(11):2329-2334. (![]() |
[31] | PASTELL H,WESTERMANN P,MEYER A S,et al.In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota[J]. Journal of Agricultural Food Chemistry,2009,57(18):8598-8606. (![]() |
[32] | LAGAERT S,POLLET A,DELCOUR J A.Substrate specificity of three recombinant α-L-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides[J]. Biochemical Biophysical Research Communication,2010,402(4):644-650. (![]() |
[33] | GROOTAERT C,VAN DEN ABBEELE P,MARZORATI M,et al.Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem[J]. FEMS Microbiology Ecology,2009,69(2):231-242. (![]() |