动物营养学报    2018, Vol. 30 Issue (8): 3043-3054    PDF    
补喂瘤胃保护性色氨酸对绵羊血浆色氨酸及部分相关代谢物含量的影响
王根, 赵芳, 高超, 赵国栋, 李晓斌, 马晨, 杨开伦     
新疆农业大学动物科学学院, 新疆肉乳用草食动物营养重点实验室, 乌鲁木齐 830052
摘要: 本试验旨在探究饲粮中添加瘤胃保护性色氨酸(RPTrp)对绵羊血浆色氨酸(Trp)及相关代谢物含量的影响。试验选取年龄(3.0±0.5)岁、平均体重(53.49±2.41)kg、健康的萨福克绵羊15只,随机分为3组,每组5只,分别为对照组和试验Ⅰ、Ⅱ组,精料饲喂量为10 g/(kg BW·d),玉米青贮为1.8 kg/d,混合干草自由采食,在此基础上,试验Ⅰ、Ⅱ组绵羊分别添喂150 mg/(kg BW·d)Trp和333 mg/(kg BW·d)RPTrp,进行25 d的饲养试验。结果表明:1)上午和下午饲喂后2 h,试验Ⅰ组血浆总色氨酸(T-Trp)、游离色氨酸(F-Trp)含量极显著高于对照组(P < 0.01),血浆犬尿氨酸(Kyn)含量显著高于对照组(P < 0.05);上午饲喂后6 h,试验Ⅱ组血浆T-Trp、F-Trp含量显著高于对照组和试验Ⅰ组(P < 0.05);下午饲喂后4 h,试验组血浆F-Trp含量显著高于对照组(P < 0.05)。2)上午饲喂后10 h、下午饲喂后8 h,试验Ⅱ组血浆5-羟色胺(5-HT)含量显著高于对照组(P < 0.05);上午饲喂后6、8 h,试验组血浆褪黑素(ML)含量极显著高于对照组(P < 0.01),试验组间无显著性差异(P > 0.05),下午饲喂后4、8 h,试验Ⅱ组显著高于对照组(P < 0.05)。3)下午饲喂后2 h,试验组血浆游离脂肪酸(FFA)含量极显著低于对照组(P < 0.01);各时间点各组间血浆白蛋白(ALB)含量无显著差异(P > 0.05)。4)与对照组相比,试验组可以极显著提高血浆谷胱甘肽过氧化物酶(GSH-Px)活性(P < 0.05),并极显著降低血浆丙二醛(MDA)含量(P < 0.01),试验Ⅱ组还可极显著提高血浆总抗氧化能力(T-AOC)(P < 0.01)。因此,补喂Trp可使绵羊采食后血浆T-Trp、F-Trp和Kyn含量迅速升高,而补喂RPTrp时上述作用则较平缓。补喂Trp、RPTrp对绵羊血浆ALB、FFA、5-HT含量影响较小,仅有个别时间点作用显著。补喂Trp、RPTrp使绵羊白天血浆中ML含量升高,补喂Trp对夜间绵羊血浆中ML含量没有显著影响,补喂RPTrp可使绵羊夜间血浆ML含量维持在相对较高的水平上。补喂Trp、RPTrp可提高绵羊血浆抗氧化能力。
关键词: 绵羊     瘤胃保护性色氨酸     游离色氨酸     犬尿氨酸     5-羟色胺     褪黑素    
Effects of Rumen Protected Tryptophan Supplementation on Plasma Contents of Tryptophan and Related Metabolites of Sheep
WANG Gen, ZHAO Fang, GAO Chao, ZHAO Guodong, LI Xiaobin, MA Chen, YANG Kailun     
Xinjiang Key Laboratory of Meat & Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
Abstract: This study aimed to investigate the effects of rumen protected tryptophan supplementation on plasma contents of tryptophan and related metabolites of sheep. Fifteen healthy Suffolk sheep aged (3.0±0.5) years with average body weight of (53.49±2.41) kg were randomly divided into 3 groups (5 sheep in each group), which were control group, trail group Ⅰ and trial group Ⅱ. All sheep were fed 10 g/(kg BW·d) concentrate, 1.8 kg/d corn silage, and allowed free choice continuous access to mixed hay. Animals of trail group Ⅰ and trial group Ⅱ were supplemented with 150 mg/(kg BW·d) tryptophan, 333 mg/(kg BW·d) rumen protected tryptophan, respectively. The feeding trial lasted for 25 d. The results showed as follows:1)at 2 hours after feeding in the morning and the afternoon, compared with control group, the contents of plasma total tryptophan and free tryptophan in trial group Ⅰ were significantly increased (P < 0.01), and the content of plasma kynurenine was significantly increased (P < 0.05); at 6 hours after feeding in the morning, the content of plasma total tryptophan and free tryptophan in trial group Ⅱ were significantly higher than those in control group and trial group Ⅰ (P < 0.05); at 4 hours after feeding in the afternoon, the content of plasma free tryptophan in trial groups was significantly higher than that in control group (P < 0.05). 2) At 10 hours after feeding in the morning and 8 hours after feeding in the afternoon, the content of plasma 5-hydroxytryptamine in trial group Ⅱ was significantly higher than that in control group (P < 0.05); at 6 and 8 hours after feeding in the morning, the content of plasma melatonin in trial groups were significantly higher than that in control group (P < 0.01), and there was no significant difference between trial groups (P > 0.05); at 4 and 8 hours after feeding in the afternoon, the content of plasma melatonin in trial group Ⅱ was significantly higher than that in control group (P < 0.05). 3)At 2 hours after feeding in the afternoon, the content of plasma free fatty acids in trial groups was significantly lower than that in control group (P < 0.01); there were no significant differences in plasma albumin content among groups at different time points (P > 0.05). 4) Compared with control group, trial groups had significantly higher glutathione peroxidase (GSH-Px) activity and significantly lower malonaldehyde (MDA) content in plasma (P < 0.01), and trial group Ⅱ had significantly higher total antioxidant capacity in plasma (P < 0.01). Therefore, the supplementation of tryptophan can rapidly increase the contents of total tryptophan, free tryptophan and kynurenine in plasma of sheep after feeding, while the above effects of rumen protected tryptophan are more moderate. The supplementations of tryptophan and rumen protected tryptophan have tiny effects on the contents of plasma albumin, free fatty acids and 5-hydroxytryptamine, and significant differences only appears at a few time points. The supplementations of tryptophan and rumen protected tryptophan can increase the content of plasma melatonin during daytime, that of tryptophan has no significant effect on the content of plasma melatonin during nighttime, while that of rumen protected tryptophan can maintain the content of plasma melatonin at a high level during nighttime. Plasma antioxidant capacity is improved by the supplementations of tryptophan and rumen protected tryptophan.
Key words: sheep     rumen protected tryptophan     free tryptophan     kynurenine     5-hydroxytryptamine     melatonin    

哺乳动物体内褪黑素(melatonin, ML)是主要由松果体和肠黏膜合成和分泌的一种吲哚类激素,广泛分布在很多器官、组织和细胞中[1-2]。研究显示,ML可促进绵羊卵母细胞成熟[3]、维持精子功能[4]、促进胚胎发育[5]和提高机体的抗氧化能力[6],因此适当提高绵羊体内ML含量可能对其生殖和抗氧化性能具有重要的意义。色氨酸(tryptophan, Trp)作为动物体内一种重要的功能性氨基酸同时也是ML合成的前体物质,在体内经羟化、脱羧、乙酰化和甲基化形成ML。Huenther等[7]证实在鼠和鸡饲粮中添加或腹腔注射150~300 mg/(kg BW·d) Trp后1 h血浆ML含量显著增加,且存在剂量效应;由于反刍动物瘤胃内栖居大量的微生物,Trp易被降解为吲哚、吲哚乙酸、粪臭素等物质,故直接饲喂反刍动物不能达到理想目的,而瘤胃保护性色氨酸(rumen protected tryptophan, RPTrp)可以有效降低其在瘤胃中的降解。研究表明,辽宁绒山羊添喂6 g/(只·d) RPTrp(Trp含量为33%),第30、60、90天血浆Trp含量显著提高[8]。本课题组在前期奶牛试验中也发现,添喂RPTrp可提高血浆Trp含量及夜间血浆ML含量[9]。早期研究表明,腹腔注射500 mg/(kg BW·d) Trp,绵羊血浆ML含量并未增加[10]。为进一步证实能否通过提高绵羊肠道Trp吸收量来调节机体ML含量,本试验选择绵羊为试验动物模型,通过在饲粮中添加一定量的Trp、RPTrp,测定绵羊血浆中Trp及5-羟色胺(5-hydroxytryptamine, 5-HT)、犬尿氨酸(kynurenine, Kyn)、ML等主要代谢物含量的变化,为通过饲粮中添加Trp或RPTrp来调节绵羊机体内ML的含量提供科学依据。

1 材料与方法 1.1 试验时间与地点

本试验于2017年6月至2017年7月在新疆惠康畜牧生物科技有限公司羊场进行,自然光照条件。采样当天日出时间为06:37、日落时间为21:54,昼长15.27 h。

1.2 试验动物

选择年龄(3.0±0.5)岁、平均体重(53.49±2.41) kg、健康的萨福克绵羊15只。

1.3 试验设计

将15只萨福克绵羊按体重随机分为3组,每组5只,分别为对照组和试验Ⅰ、Ⅱ组。所有试验羊只饲喂同一营养水平粉状精料(购自新疆天康畜牧生物技术股份有限公司),饲喂量为10 g/(kg BW·d),玉米青贮饲喂量为1.8 kg/d,自由采食混合干草(苜蓿:麦秸=1 : 1)和饮水。在此基础上,试验Ⅰ组补喂150 mg/(kg BW·d) Trp(L-Trp形式,购自印度尼西亚希杰公司),试验Ⅱ组补喂333 mg/(kg BW·d) RPTrp(L-RPTrp形式,购自北京亚禾营养高新技术有限公司,Trp含量≥45%,过瘤胃率≥85%),2个试验组羊只每天的Trp摄入量相等,Trp的补喂量参考Itabashi等[11]的研究结果。试验饲粮组成及营养水平见表 1

表 1 试验饲粮组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of experimental diets (DM basis)
1.4 饲养管理

试验羊只单栏位饲养,每天每只羊的Trp、RPTrp、精料和玉米青贮平均分成2份,分别于08:00、20:00饲喂。为保证补喂的Trp或RPTrp采食完全,将Trp或RPTrp与50 g精料混匀后饲喂,待绵羊采食完毕后再投喂剩余精料、玉米青贮,自由采食混合干草,自由饮水。根据试验羊场的饲养管理规定,定期打扫圈舍。绵羊干物质采食量见表 2

表 2 绵羊干物质采食量 Table 2 Dry matter intake of sheep
1.5 样品的采集与处理

于饲养试验结束后的第1天采集血样,采样时间点分别为上午和下午饲喂前(07:30、19:30,分别定为上午和下午饲喂后0 h),上午和下午饲喂后2、4、6、8、10 h,通过颈静脉采集血液至肝素钠抗凝采血管中,3 500 r/min离心15 min制备血浆,用移液枪小心吸取一部分血浆至1.5 mL Eppendorf管中,标记后-20 ℃中冷冻保存。另一部分血浆转移至Amicon® Ultra-4超滤离心管(购自默克密理博公司,超滤膜的截留分子质量为10 ku),4 000 r/min离心20 min,收集超滤管底部透明液体至1.5 mL Eppendorf管中,-20 ℃冰箱中冷冻保存。夜间为防止光线对绵羊松果体的影响,采用弱光手电筒照明并用一层薄黑布包住灯头,减弱亮度,避免直接照射绵羊眼睛。

1.6 指标的测定

血浆用于测定总色氨酸(total tryptophan, T-Trp)、Kyn、白蛋白(albumin, ALB)、游离脂肪酸(free fatty acids, FFA)、5-HT、ML含量;上午饲喂后0 h时采集的血浆测定总抗氧化能力(T-AOC)、谷胱甘肽过氧化物酶(GSH-Px)活性、超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量;超滤管制备的血浆用于测定游离色氨酸(free tryptophan, F-Trp)含量。

利用高效液相色谱法测定血浆T-Trp、Kyn含量[12],血浆F-Trp含量测定参考谢占武等[13]的比色法进行。血浆ALB、FFA含量,上午饲喂后0 h时血浆T-AOC,GSH-Px、SOD活性,MDA含量送至南京建成生物工程研究所采用比色法检测。血浆5-HT、ML含量由北京华英生物技术研究所采用酶联免疫吸附试验法测定。

1.7 数据处理

用Excel 2010进行试验数据整理,SPSS 19.0统计软件进行单因素方差分析,并用Duncan氏法进行多重比较,试验结果均以平均值±标准差(mean±SD)表示,以P<0.05和P<0.01分别为差异显著和极显著的标准。

2 结果与分析 2.1 补喂Trp、RPTrp后绵羊血浆T-Trp含量的变化

表 3可知,上午饲喂后,对照组绵羊血浆T-Trp含量在0~6 h呈现出下降后又上升的变化趋势,6~10 h变化幅度较小,维持在30.61~32.95 μmol/L的范围内;试验Ⅰ组在0~2 h快速升高,2 h时极显著高于对照组(P<0.01),2~4 h快速降低,4~10 h变化趋势与对照组相似,2组间差异不显著(P>0.05);试验Ⅱ组血浆T-Trp含量与对照组相比均有所提高,变化趋势相似,且在6 h时显著高于对照组(P<0.05)。下午饲喂后,对照组和试验组血浆T-Trp含量变化趋势与上午饲喂后相似。总体而言,与对照组相比,补喂Trp可短时迅速提高绵羊血浆T-Trp含量,而补喂RPTrp可持续小幅度提高血浆T-Trp含量。

表 3 补喂Trp、RPTrp对绵羊血浆T-Trp含量的影响 Table 3 Effects of Trp and RPTrp supplementations on plasma T-Trp content of sheep (n=5)
2.2 补喂Trp、RPTrp后绵羊血浆F-Trp含量的变化

表 4可知,上午饲喂后,对照组血浆F-Trp含量在0~8 h变化较小,维持在7.39~7.98 μmol/L,8~10 h至下午饲喂后0 h从7.56 μmol/L持续升高至9.26 μmol/L;试验Ⅰ组血浆F-Trp含量在上午饲喂后2 h时极显著高于对照组和试验Ⅱ组(P<0.01),对照组和试验Ⅱ组间差异不显著(P>0.05);试验Ⅱ组在上午饲喂后2~6 h持续缓慢升高,在上午饲喂后6 h显著高于对照组和试验Ⅰ组(P<0.05),对照组和试验Ⅰ组间差异不显著(P>0.05)。下午饲喂后,试验组与上午饲喂后变化趋势基本一致;对照组血浆F-Trp含量在下午0~10 h呈先下降后升高的趋势,在下午饲喂后4 h显著低于试验组(P<0.05),试验组间差异不显著(P>0.05)。

表 4 补喂Trp、RPTrp对绵羊血浆F-Trp含量的影响 Table 4 Effects of Trp and RPTrp supplementations on plasma F-Trp content of sheep (n=5)
2.3 补喂Trp、RPTrp后绵羊血浆ALB含量的变化

表 5可知,上午饲喂后,对照组绵羊血浆ALB含量呈先升高后降低的变化趋势,试验组与对照组变化趋势相似,但血浆ALB含量峰值出现延迟,试验Ⅰ、Ⅱ组分别出现在上午饲喂后4和6 h;上午饲喂后各组间差异均不显著(P>0.05)。下午饲喂后,对照组和试验组绵羊血浆ALB含量变化趋势基本一致,均出现2个峰值,分别在下午饲喂后4和10 h,各组间差异也不显著(P>0.05)。

表 5 补喂Trp、RPTrp对绵羊血浆ALB含量的影响 Table 5 Effects of Trp and RPTrp supplementations on plasma ALB content of sheep (n=5)
2.4 补喂Trp、RPTrp后绵羊血浆FFA含量的变化

表 6可知,上午饲喂后,各组绵羊血浆FFA含量呈先降低后升高的变化趋势;试验组在4 h至下午饲喂后0 h均低于对照组,但差异不显著(P>0.05)。下午饲喂后,各组血浆FFA含量变化趋势与上午饲喂后相似,但试验组在下午饲喂后0~2 h降低较快,下午饲喂后2 h时极显著低于对照组(P<0.01);其余时间点,各组间差异均不显著(P>0.05)。

表 6 补喂Trp、RPTrp对绵羊血浆FFA含量的影响 Table 6 Effects of Trp and RPTrp supplementations on plasma FFA content of sheep (n=5)
2.5 补喂Trp、RPTrp后绵羊血浆Kyn含量的变化

表 7可知,上午饲喂后,对照组和试验Ⅱ组绵羊血浆Kyn含量变化幅度均较小,分别维持在3.19~3.79 μmol/L和3.56~4.35 μmol/L,各时间点试验Ⅱ组均高于对照组,但差异不显著(P>0.05);试验Ⅰ组血浆Kyn含量在0~2 h快速升高,2 h时显著高于对照组和试验Ⅱ组(P<0.05)。下午饲喂后,对照组和试验Ⅱ组绵羊血浆Kyn含量在2~8 h持续小幅升高,2组间差异不显著(P>0.05);试验Ⅰ组的变化趋势与上午饲喂后相似,在2 h时显著高于对照组和试验Ⅱ组(P<0.05)。

表 7 补喂Trp、RPTrp对绵羊血浆Kyn含量的影响 Table 7 Effects of Trp and RPTrp supplementations on plasma Kyn content of sheep (n=5)
2.6 补喂Trp、RPTrp后绵羊血浆5-HT含量的变化

表 8可知,上午饲喂后,各组绵羊血浆5-HT含量均出现先降低后升高再降低的变化趋势,均在8 h时达到峰值;10 h时,试验Ⅱ组显著高于对照组(P<0.05),试验Ⅰ组与对照组和试验Ⅱ组间差异均不显著(P>0.05);下午饲喂后,0~6 h时,各组血浆5-HT含量缓慢升高,而在6~10 h升高较快,8 h时,试验Ⅱ组显著高于对照组和试验Ⅰ组(P<0.05),而对照组和试验Ⅰ组间差异不显著(P>0.05)。

表 8 补喂Trp、RPTrp对绵羊血浆5-HT含量的影响 Table 8 Effects of Trp and RPTrp supplementations on plasma 5-HT content of sheep (n=5)
2.7 补喂Trp、RPTrp后绵羊血浆ML含量的变化

表 9可知,上午饲喂后,试验组血浆ML含量在2~8 h呈持续增加趋势,其中在6、8 h时,试验组均极显著高于对照组(P<0.01),试验组间差异不显著(P>0.05);对照组增加幅度较小。下午饲喂后,2~10 h时,试验Ⅱ组血浆ML含量变化幅度最小,维持在87.19~98.34 pg/mL,在各采样点均高于对照组和试验Ⅰ组,其中在4、8 h时显著高于对照组(P<0.05),试验Ⅰ组与对照组间差异不显著(P>0.05)。

表 9 补喂Trp、RPTrp对绵羊血浆ML含量的影响 Table 9 Effects of Trp and RPTrp supplementations on plasma ML content of sheep (n=5)
2.8 补喂Trp、RPTrp后绵羊血浆抗氧化能力的变化

表 10可知,试验组血浆GSH-Px活性极显著高于对照组(P<0.01),而MDA含量极显著低于对照组(P<0.01);试验Ⅱ组血浆T-AOC极显著高于对照组和试验Ⅰ组(P<0.01)。

表 10 补喂Trp、RPTrp对绵羊血浆抗氧化能力的影响 Table 10 Effects of Trp and RPTrp supplementations on plasma antioxidant capacity of sheep (n=5)
3 讨论 3.1 补喂Trp、RPTrp后绵羊血浆T-Trp、F-Trp、FFA和ALB含量的变化

本试验显示,上午和下午补喂Trp或RPTrp后,与对照组相比,试验Ⅰ组绵羊血浆T-Trp、F-Trp含量在2 h(10:00、22:00)时极显著升高。研究表明,给羊瘤胃灌胃一定量放射性同位素[14C]标记吲哚环的Trp,10 min后即可在肝门静脉血浆检测到Trp,且在3 h内有25%~70%会被吸收进入肝门静脉[14]。试验Ⅰ组血浆T-Trp和F-Trp含量在饲喂后0~2 h快速升高,可能与部分溶于瘤胃液的Trp随瘤胃的蠕动快速过瘤胃有关,也可能与本试验中先将Trp与50 g精料混匀后饲喂有关。试验Ⅱ组绵羊血浆T-Trp含量在饲喂后6 h(14:00)时显著升高,F-Trp含量在饲喂后6(14:00)和4 h(00:00)时也显著升高。Kollmann等[15]给奶牛添喂500 g/(d·头)RPTrp(Trp含量为25%)后,白天和夜间血浆T-Trp含量均显著提高;补喂6 g/(只·d) RPTrp(Trp含量为33%)可显著提高辽宁绒山羊血浆T-Trp含量[8];以上研究均与本试验结果基本一致。本试验中,试验Ⅰ组血浆T-Trp含量在饲喂后2~4 h(10:00—12:00、22:00—24:00)低于对照组,而试验Ⅱ组变化幅度较小且高于对照组说明RPTrp有效避免在瘤胃中的降解[16]。下午饲喂后,试验Ⅱ组血浆T-Trp含量高于对照组,但差异不显著,与Kollmann等[15]研究结果不一致,这可能与绵羊采食时间和饲粮的组成有关。

本试验中,各组绵羊血浆FFA含量在白天和夜间均呈先降低后升高的变化趋势,这是由于FFA在反刍动物消化道的吸收部位主要在空肠后3/4处,而在瘤胃内吸收较慢。此外,研究表明,烟酸作为Trp代谢的主要产物之一,是一种抗脂类分解的物质[17]。奶牛饲喂12 g/(头·d)的烟酸,血浆FFA含量显著降低[18]。本试验中,试验组血浆FFA含量降低可能与血浆烟酸含量升高有关。研究表明,血浆ALB分子性质稳定、几乎不含Trp残基[19],消除半衰期较长,为12.7~18.2 d[20],合成和降解机制复杂、尚未完全清楚[21]。有学者认为,血浆ALB含量主要受血浆胶体渗透压的调节[22]。本试验结果显示,各组间血浆ALB含量无显著性差异,说明补喂Trp或RPTrp对绵羊血浆ALB含量无显著性影响。

3.2 补喂Trp、RPTrp后绵羊血浆Kyn含量的变化

本试验中,补喂Trp或RPTrp后,绵羊血浆Kyn含量与T-Trp和F-Trp变化趋势相似。这与成年健康男子口服Trp后血浆Kyn含量增加的研究结果一致[23]。哺乳动物体内Trp约95%经Kyn途径代谢,主要由肝脏色氨酸-2,3双加氧酶(tryptophan-2,3-dioxygenase, TDO)催化形成Kyn[24]。研究表明,大鼠腹腔注射100 mg/(kg BW·d) Trp后3 h,血浆F-Trp含量显著增加,且肝脏中TDO活性显著提高[25]。此外,饲粮中添加Trp后,仔猪肝TDO含量有增加的趋势[26]。本试验结果可能与绵羊肝脏TDO活性升高或含量增加有关。

3.3 补喂Trp、RPTrp后绵羊血浆5-HT含量的变化

本试验中,上午饲喂后10 h(16:00)和下午饲喂后8 h(04:00),试验Ⅱ组血浆5-HT含量显著高于对照组,而试验Ⅰ组与对照组在白天和夜间差异均不显著。研究表明,5-HT是哺乳动物体内Trp代谢的一个重要产物,血浆中5-HT主要由肠黏膜嗜铬细胞(chromaffin cells, EC)产生和分泌[27],肥大细胞、胰腺β细胞、脂肪细胞和成骨细胞也可分泌少量5-HT[28],色氨酸羟化酶(tryptophan hydroxylase, TPH)是合成5-HT的关键酶。随饲粮Trp含量的增加(0.11%~0.24%),仔猪血清5-HT含量显著提高[29],这与本试验结果一致。但也有学者证实,补喂RPTrp后泌乳奶牛血浆5-HT含量无显著性升高[9],与本试验结果不一致,这可能与泌乳奶牛肠黏膜EC中TPH活性较低或含量较少有关。研究表明,TPH的米氏常数(Km)约为50 μmol/L[30];其活性受底物Trp和辅酶四氢生物蝶呤等多种因素的影响[31];EC内TPH含量较低或辅酶含量不足均抑制5-HT的合成与分泌。

3.4 补喂Trp、RPTrp后绵羊血浆ML含量的变化

本试验中,上午饲喂后6~8 h(14:00—16:00)时,试验组血浆ML含量极显著高于对照组;下午饲喂后,试验Ⅱ组均高于对照组和试验Ⅰ组。研究表明,哺乳动物血浆ML在白天主要来自于肠黏膜嗜EC而夜间主要来自于松果体,存在明显的昼夜节律[32-33]。给(22±3)月龄未妊娠瑞士褐牛添喂500 g/(头·d)RPTrp(Trp含量为25%)后,白天血浆ML含量极显著升高,而夜间显著升高[15],这与本试验结果一致。此外,前人研究表明,猪血浆ML含量最高值出现在上午饲喂后5 h,且与回肠、盲肠和结肠中ML含量呈显著相关性[34]。本试验中,上午饲喂后4~8 h(12:00—16:00),试验组血浆ML含量呈增加趋势,可能与绵羊回肠、盲肠和结肠中ML含量升高有关。本试验未检测绵羊肠道内ML含量,今后可进一步研究血浆ML含量与肠道内ML含量的关系。

本试验中,试验组血浆ML含量最高值均出现在上午饲喂后8 h(16:00),对照组出现在下午饲喂后2 h(22:00),并未表现出明显的昼夜节律。这可能与以下原因有关:其一,哺乳动物血浆ML含量具有明显的季节变化规律,本试验采样当天日出时间为06:36,日落时间为21:53,昼长为15.27 h,长日照条件下,松果体内ML合成关键酶N-乙酰转移酶表达量降低[35],减弱了夜间松果体ML的分泌;其二,绵羊血浆ML含量具有显著的个体差异[36],在夜间其双侧颈静脉ML含量也具有显著的差异[37]

3.5 补喂Trp、RPTrp后绵羊血浆抗氧化能力的变化

本试验中,试验组血浆GSH-Px活性和MDA含量与对照组相比差异均极显著,试验Ⅱ组还可极显著提高血浆T-AOC。研究表明,断奶仔猪饲粮中添加适量Trp可显著提高血清T-AOC和降低MDA含量[26]。饲粮中添喂220 g/(d·头)RPTrp(Trp含量为45%)可使奶牛血浆GSH-Px活性极显著提高,与本试验结果一致[9]。这是由于补喂Trp或RPTrp提高了血浆Trp和ML含量,Trp分子中的氨基可以与氧化剂结合,阻碍氧化反应的发生,降低血浆MDA含量[38]。ML除直接发挥抗氧化作用外还可通过提高抗氧化酶活性发挥作用;此外,ML代谢产物N-乙酰基-N-甲酰基-5-甲氧基-犬脲胺和6-羟基褪黑素均具有更强的抗氧化作用[39]

4 结论

① 补喂Trp使绵羊采食后血浆T-Trp、F-Trp的含量迅速升高,Trp经犬尿酸途经代谢也迅速加快,而补喂RPTrp时上述作用则较平缓。

② 补喂Trp、RPTrp对绵羊血浆ALB、FFA、5-HT含量影响较小,仅有个别时间点作用显著。

③ 补喂Trp、RPTrp使绵羊白天血浆中ML含量升高,补喂Trp对夜间绵羊血浆中ML含量没有显著影响,补喂RPTrp可使绵羊夜间血浆ML含量维持在相对较高的水平上。

④ 补喂Trp、RPTrp可提高绵羊血浆抗氧化能力。

参考文献
[1]
SANCHEZ-HIDALGO M, DE LA LASTRA C A, CARRASCOSA-SALMORAL M P, et al. Age-related changes in melatonin synthesis in rat extrapineal tissues[J]. Experimental Gerontology, 2009, 44(5): 328-334. DOI:10.1016/j.exger.2009.02.002
[2]
KVETNOY I M. Extrapineal melatonin:location and role within diffuse neuroendocrine system[J]. The Histochemical Journal, 1999, 31(1): 1-12.
[3]
田秀芝. 褪黑素和CNP对绵羊卵母细胞体外成熟的影响及过表达AANAT的研究[D]. 博士学位论文. 北京: 中国农业大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10019-1017157043.htm
[4]
JANG H Y, KIM Y H, KIM B W, et al. Ameliorative effects of melatonin against hydrogen peroxide-induced oxidative stress on boar sperm characteristics and subsequent in vitro embryo development[J]. Reproduction in Domestic Animals, 2010, 45(6): 943-950. DOI:10.1111/j.1439-0531.2009.01466.x
[5]
ABECIA J A, FORCADA F, ZÚÑIGA O. The effect of melatonin on the secretion of progesterone in sheep and on the development of ovine embryos in vitro[J]. Veterinary Research Communications, 2002, 26(2): 151-158. DOI:10.1023/A:1014099719034
[6]
REITER R J, MAYO J C, TAN D X, et al. Melatonin as an antioxidant:under promises but over delivers[J]. Journal of Pineal Research, 2016, 61(3): 253-278. DOI:10.1111/jpi.12360
[7]
HUETHER G, POEGGELER B, REIMER A, et al. Effect of tryptophan administration on circulating melatonin levels in chicks and rats:evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract[J]. Life Sciences, 1992, 51(12): 945-953. DOI:10.1016/0024-3205(92)90402-B
[8]
MA H, CHENG J, ZHU X, et al. Effects of rumen-protected tryptophan on performance, nutrient utilization and plasma tryptophan in cashmeregoats[J]. African Journal of Biotechnology, 2011, 10(30): 5806-5811.
[9]
陈俊宏, 赵芳, 魏凯敏, 等. 添喂色氨酸、过瘤胃色氨酸对奶牛泌乳性能、血浆指标和乳中褪黑素含量的影响[J]. 动物营养学报, 2017, 29(11): 3921-3931. DOI:10.3969/j.issn.1006-267x.2017.11.012
[10]
NAMBOODIRI M A A, SUGDEN D, KLEIN D C, et al. 5-hydroxytryptophan elevates serum melatonin[J]. Science, 983, 221(4611): 659-661.
[11]
ITABASHI H, MATSUMOTO M, KOBAYASHI T. Effects of rumen-bypass tryptophan and ethanol treatment of soybean on digestibility, nitrogen retention, urinary allantoin excretion and plasma free amino acids in goats[J]. Indian Pediatrics, 1976, 13(5): 333-338.
[12]
ZHANG X Q, HE Y, DING M. Simultaneous determination of tryptophan and kynurenine in plasma samples of children patients with Kawasaki disease by high-performance liquid chromatography with programmed wavelength ultraviolet detection[J]. Journal of Chromatography B, 2009, 877(16/17): 1678-1682.
[13]
谢占武, 邓上奇, 刘瑞凝, 等. 健康牛、羊血清及牛奶中游离色氨酸的微量测定[J]. 中国畜禽传染病, 1991(6): 27-30.
[14]
CANDLISH E, STANGER N E, DEVLIN T J, et al. Tryptophan absorption and metabolism in sheep[J]. Canadian Journal of Animal Science, 1970, 50(2): 337-344. DOI:10.4141/cjas70-050
[15]
KOLLMANN M T, LOCHER M, HIRCHE F, et al. Effects of tryptophan supplementation on plasma tryptophan and related hormone levels in heifers and dairy cows[J]. Domestic animal Endocrinology, 2008, 34(1): 14-24. DOI:10.1016/j.domaniend.2006.09.005
[16]
YOKOYAMA M T, CARLSON J R. Dissimilation of tryptophan and related indolic compounds by ruminal microorganisms in vitro[J]. Applied Microbiology, 1974, 27(3): 540-548.
[17]
PESCARA J B, PIRES J A A, GRUMMER R R. Antilipolytic and lipolytic effects of administering free or ruminally protected nicotinic acid to feed-restricted Holstein cows[J]. Journal of Dairy Science, 2010, 93(11): 5385-5396. DOI:10.3168/jds.2010-3402
[18]
YUAN K, SHAVER R D, BERTICS S J, et al. Effect of rumen-protected niacin on lipid metabolism, oxidative stress, and performance of transition dairy cows[J]. Journal of Dairy Science, 2012, 95(5): 2673-2679. DOI:10.3168/jds.2011-5096
[19]
SPECTOR A A. Fatty acid binding to plasma albumin[J]. Journal of Lipid Research, 1975, 16(3): 165-179.
[20]
QUINLAN G J, MARTIN G S, EVANS T W. Albumin:biochemical properties and therapeutic potential[J]. Hepatology, 2005, 41(6): 1211-1219. DOI:10.1002/(ISSN)1527-3350
[21]
LEVITT D G, LEVITT M D. Human serum albumin homeostasis:a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements[J]. International Journal of General Medicine, 2016, 9: 229-255. DOI:10.2147/IJGM
[22]
NICHOLSON J P, WOLMARANS M R, PARK G R. The role of albumin in critical illness[J]. British Journal of Anaesthesia, 2000, 85(4): 599-610. DOI:10.1093/bja/85.4.599
[23]
MØLLER S E. Pharmacokinetics of tryptophan, renal handling of kynurenine and the effect of nicotinamide on its appearance in plasma and urine following L-tryptophan loading of healthy subjects[J]. European Journal of Clinical Pharmacology, 1981, 21(2): 137-142. DOI:10.1007/BF00637514
[24]
O'MAHONY S M, CLARKE G, BORRE Y E, et al. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis[J]. Behavioural Brain Research, 2015, 277: 32-48. DOI:10.1016/j.bbr.2014.07.027
[25]
BADAWY A A B, SMITH M J H. Changes in liver tryptophan and tryptophan pyrrolase activity after administration of salicylate and tryptophan to the rat[J]. Biochemical Pharmacology, 1972, 21(1): 97-101. DOI:10.1016/0006-2952(72)90254-7
[26]
江敏. 色氨酸对肠道抗氧化能力和氨基酸转运载体的影响[D]. 硕士学位论文. 南昌: 南昌大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10403-1015631171.htm
[27]
BERTACCINI G. Tissue 5-hydroxytryptamine and urinary 5-hydroxyindoleacetic acid after partial or total removal of the gastro-intestinal tract in the rat[J]. The Journal of Physiology, 1960, 153(2): 239-249. DOI:10.1113/jphysiol.1960.sp006532
[28]
SPOHN S N, MAWE G M. Non-conventional features of peripheral serotonin signalling-the gut and beyond[J]. Nature Reviews Gastroenterology & Hepatology, 2017, 14(7): 412-420.
[29]
苏有健. 在低蛋白日粮中添加色氨酸对仔猪生产性能和下丘脑5-羟色胺水平的影响[D]. 博士学位论文. 北京: 中国农业大学, 2004. http://cdmd.cnki.com.cn/article/cdmd-10019-2005062204.htm
[30]
LEATHWOOD P D. Tryptophan availability and serotonin synthesis[J]. Proceedings of the Nutrition Society, 1987, 46(1): 143-156. DOI:10.1079/PNS19870018
[31]
HASEGAWA H, NAKAMURA K. Tryptophan hydroxylase and serotonin synthesis regulation[J]. Handbook of Behavioral Neuroscience, 2010, 21: 183-202. DOI:10.1016/S1569-7339(10)70078-3
[32]
BUBENIK G A, PANG S F, COCKSHUT J R, et al. Circadian variation of portal, arterial and venous blood levels of melatonin in pigs and its relationship to food intake and sleep[J]. Journal of Pineal Research, 2000, 28(1): 9-15. DOI:10.1111/jpi.2000.28.issue-1
[33]
ZEMDEGS I Z, MCMILLEN I C, WALKER W, et al. Diurnal rhythms in plasma melatonin concentrations in the fetal sheep and pregnant ewe during late gestation[J]. Endocrinology, 1988, 123(1): 284-289. DOI:10.1210/endo-123-1-284
[34]
BUBENIK G A, PANG S F, HACKER R R, et al. Melatonin concentrations in serum and tissues of porcine gastrointestinal tract and their relationship to the intake and passage of food[J]. Journal of Pineal Research, 1996, 21(4): 251-256. DOI:10.1111/jpi.1996.21.issue-4
[35]
KIRSZ K, SZCZESNA M, ZIEBA D A. Role of AA-NAT and TPH1 in the ghrelin-dependent regulation of melatonin secretion in sheep during different seasons:an in vitro study[J]. Preprints, 2017. DOI:10.20944/preprints201702.0101.v1
[36]
GÍMEZ BRUNET A, GÍMEZ B A, MALPAUX B, et al. Genetic variability in melatonin secretion originates in the number of pinealocytes in sheep[J]. Journal of Endocrinology, 2002, 72(2): 397-404.
[37]
ZARAZAGA L A, TODINI L, CHEMINEAU P, et al. Nocturnal melatonin concentrations vary dramatically between the two jugular veins in most individual sheep maintained under mimicked or natural photoperiod[J]. Research in Veterinary Science, 2010, 88(2): 233-238. DOI:10.1016/j.rvsc.2009.07.012
[38]
李华伟, 祝倩, 吴灵英, 等. 色氨酸的生理功能及其在畜禽饲粮中的应用[J]. 动物营养学报, 2016, 28(3): 659-664.
[39]
REITER R J, TAN D X, FUNTES-BROTO L. Melatonin:a multitasking molecule[J]. Progress in Brain Research, 2010, 181: 127-151. DOI:10.1016/S0079-6123(08)81008-4