2. 湖南畜禽安全生产协同创新中心, 长沙 410128
2. Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
母乳是哺乳仔猪获取营养的唯一来源,母猪乳房的发育状况是影响母猪泌乳性能的关键因素。初产母猪泌乳性能的高低受其乳腺组织发育完善程度的影响,是决定母猪头胎生产性能及其后利用年限的主要因素[1-4],通过准确测量分娩前乳房形态,为科学评估母猪哺乳期生产表现及进行母猪的高效育种和精准营养提供参考。早期评价乳房发育的状况主要通过对母猪屠宰解剖实现,但样本有限、操作繁琐、成本高昂,难以在生产中推广应用[5-6]。新的研究表明,母猪乳房的外在形态特征与乳腺组织总DNA量、RNA量具有显著相关性,可作为评价母猪乳腺发育状况的重要依据,在生产中具有较好的应用价值[7-10]。母猪体况与其泌乳力之间的联系始终是研究者关注的热点,但有关母猪体况对乳房发育的影响及其在哺乳期母猪泌乳性能预测方面的作用,则始终是研究的薄弱环节。因此,本试验以初产母猪为试验对象,分析其乳房外在形态指标与体况、仔猪增重及存活率等指标的相关性,旨在为生猪养殖环节中母猪乳房发育的评定提供参考。
1 材料与方法 1.1 试验材料与试验动物试验器材:软胶带、皮卷尺、游标卡尺、背膘仪、电子称。
试验动物:初产母猪、仔猪(21日龄断奶)。
1.2 试验设计与饲养管理本试验于2018年5月至2018年7月在湖南省益阳市南县大北农众仁旺种猪科技有限公司进行。选取体况正常[体重为(190±10) kg,不拱背]、健康(无明显皮肤问题与肢蹄病)及预产期相近的长×大(LY)二元初产母猪26头,于妊娠(109±2) d对所选母猪的乳房形态进行测量,并记录哺乳期母猪每窝仔猪的初生窝重(第1次调窝后)与断奶窝重(期间死猪重量记录用来数据矫正)、母猪分娩背膘厚及断奶背膘厚。试验饲粮由大北农长沙分公司设计并提供,其组成及营养水平见表 1。采用德国WEDA公司的4PXA饲喂系统,饲养管理及免疫程序均按猪场管理流程进行。
![]() |
表 1 试验饲粮组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of experimental diets (DM basis) |
在母猪妊娠(109±2) d 08:00至10:00对母猪乳房形态指标进行测量,测量和命名方法参照Farmer等[7],具体指标包括:有效乳头数(effective nipple number,ENN)、单侧乳头间距(dist-teat,DT)、总单侧乳头间距(total length of the udder,TL)、对乳头间距(dist-pair,DP)、乳头基部与乳房腹中线的距离(ventral midline section,MID)、乳头基部与乳房外侧和腹部的交界处的距离(dist-exterior,EXT)。
1.3.2 母猪体况和生产性能记录母猪的产仔数、产活仔数、死胎数、仔猪初生窝重、21日龄仔猪窝重,并计算断奶窝增重。在母猪分娩和断奶当天,用超声波背膘仪测定母猪左侧P2点背膘厚度,并计算哺乳期背膘损失。本试验共选用母猪26头,表 2以“平均值±标准差”描述本试验中所测得母猪乳房形态指标和繁殖性能的概况。
![]() |
表 2 母猪乳房形态指标和繁殖性能 Table 2 Sows breast morphology indexes and reproductive performance |
数据利用Excel 2017进行初步统计,采用SPSS 21.0软件进行偏相关性分析,0.05≤P<0.10为差异有显著趋势,P<0.05为差异显著,P<0.01为差异极显著。
2 结果与分析 2.1 乳房形态与繁殖性能相关分析由表 3可知,初产母猪的乳头基部与乳房腹中线的距离(右)(MID-R)与断奶活仔数和存活率之间均呈极显著负相关(P<0.01);初产母猪的窝增重与DP呈正相关趋势(0.05≤P<0.10)。
![]() |
表 3 乳房形态与繁殖性能相关分析 Table 3 Correlation analysis of breast morphology and reproductive performance |
由表 4可知,初产母猪的分娩背膘厚与DT呈显著负相关(P<0.05);初产母猪的断奶背膘厚与DP、乳头基部与乳房外侧和腹部的交界处的距离(右)(EXT-R)呈显著负相关(P<0.05),与乳头基部与乳房外侧和腹部的交界处的距离(左)(EXT-L)呈负相关趋势(0.05≤P<0.10),与总左侧乳头间距(TL-L)呈正相关趋势(0.05≤P<0.10);其背膘损失与MID-R呈显著正相关(P<0.05),与EXT-L呈正相关趋势(0.05≤P<0.10)。
![]() |
表 4 乳房形态与母猪体况相关分析 Table 4 Correlation analysis between breast morphology and sows body condition |
母乳是保障哺乳仔猪生长发育和存活的重要因素,其产量与乳腺发育呈正相关关系[11-12]。Nielsen等[13]和Kim等[14]研究报道,母猪带仔数和仔猪断奶均重与其乳腺发育状况呈正相关关系,即哺乳期间良好的乳腺发育(乳腺重量和DNA、RNA含量较高)可促进哺乳仔猪健康生长。Farmer等[7]发现,乳房外部形态指标与乳腺实质重量相关性较高,初产母猪乳房组织发育主要发生在妊娠中后期,即妊娠70 d以后至分娩,主要包括乳房组织增重、乳腺组织学变化和DNA积累[2-3, 15-17]。其中,母猪乳房上皮细胞分化相关的细胞器增多和腺泡内分泌物的大量积累在妊娠90~105 d完成[3, 18]。妊娠109 d前后,母猪乳腺发育已经基本完成,乳房形态特征稳定[17],此时测得的数据与分娩时母猪的乳腺发育状态已十分接近。Balzani等[9]证实,母猪乳房随着乳腺发育逐渐增大,乳腺发育状况与其饱满度呈正相关,这与本试验中DP与仔猪窝增重的正相关趋势是吻合的,表明母猪泌乳力与乳房饱满程度呈正相关关系。值得注意的是,本试验中MID与断奶仔猪数、存活率存在显著负相关关系。MID作为描述乳头至母猪体腹中线的距离的指标,当MID过高时,仔猪存活率下降,其原因可能是对乳之间的距离高度增加,不利于新生仔猪从上侧乳头汲取初乳,乳头利用率下降,从而导致其从母乳获取抗体及营养物质减少。因此,DP和MID均可作为母猪乳腺发育状况的评定指标,在一定程度上反映母猪的带仔能力。
3.2 乳房形态与母猪体况相关分析母猪体况与其泌乳力之间的联系始终是研究者关注的热点,但乳房形态与体况之间的联系却涉及不多,略显薄弱。Farmer等[19]报道,母猪膘情过肥或过瘦都会降低乳腺的发育程度。Head等[20]研究表明,与偏瘦母猪相比,过肥母猪乳腺组织发育更慢且产仔后泌乳量更低,在妊娠末期,肥母猪乳腺组织中DNA含量仅为瘦母猪的25%,而乳泡细胞数仅为其的50%。张万明[21]报道,尽管过肥母猪和偏瘦母猪的乳腺组织重量相似,但过肥母猪在妊娠第112天的乳腺DNA含量相对偏瘦母猪显著降低。本试验数据构建了母猪在分娩及断奶时背膘厚度与乳腺外在形态指标的潜在联系。母猪分娩背膘厚与DT呈显著正相关,与上述试验结果存在一定差距。其原因可能是,本试验条件下,妊娠后期母猪体况控制较好。断奶背膘厚则与DP、EXT-R呈显著负相关,与EXT-L具有负相关趋势,与TL具有正相关趋势。其原因可能是乳腺发育状况良好,泌乳力随之增强,导致其断奶背膘损失较多。然而,受限于样本量的缘故,关于乳腺外在形态指标参数及乳腺形态与母猪体况水平之间的关系还有待进一步研究。
4 结论由此可见,初产母猪乳房形态与其泌乳性能和体况密切相关,但准确度随评估指标不同存在一定差异。首先,妊娠末期DP与乳腺发育程度高度相关,可作为预测哺乳期泌乳力大小的重要指标,对有效评估初产母猪生产性能具有良好参考价值。其次,体况水平对初产母猪泌乳性能影响明显,其背膘厚度可视作乳房外在形态和乳腺发育调控的重要指标。
[1] |
张德才, 高峰. 母猪的泌乳力及其影响因素[J]. 养殖技术顾问, 2007(10): 6. DOI:10.3969/j.issn.1673-1921.2007.10.005 |
[2] |
SØRENSEN M T, SEJRSEN K, PURUP S. Mammary gland development in gilts[J]. Livestock Production Science, 2002, 75(2): 143-148. DOI:10.1016/S0301-6226(01)00310-4 |
[3] |
KENSINGER R S, COLLIER R J, BAZER F W, et al. Nucleic acid, metabolic and histological changes in gilt mammary tissue during pregnancy and lactogenesis[J]. Journal of Animal Science, 1982, 54(6): 1297-1308. DOI:10.2527/jas1982.5461297x |
[4] |
HURLEY W L. Mammary gland growth in the lactating sow[J]. Livestock Production Science, 2001, 70(1/2): 149-157. |
[5] |
FARMER C. Review:mammary development in swine:effects of hormonal status, nutrition and management[J]. Canadian Journal of Animal Science, 2013, 93(1): 1-7. DOI:10.4141/cjas2012-066 |
[6] |
FARMER C, PETITCLERC D, SORENSEN M T, et al. Impacts of dietary protein level and feed restriction during prepuberty on mammogenesis in gilts[J]. Journal of Animal Science, 2004, 82(8): 2343-2351. DOI:10.2527/2004.8282343x |
[7] |
FARMER C, FORTIN É, MÉTHOT S. In vivo measures of mammary development in gestating gilts[J]. Journal of Animal Science, 2017, 95(12): 5358-5364. DOI:10.2527/jas2017.1768 |
[8] |
BALZANI A, CORDELL H J, SUTCLIFFE E, et al. Sources of variation in udder morphology of sows[J]. Journal of Animal Science, 2016, 94(1): 394-400. DOI:10.2527/jas.2015-9451 |
[9] |
BALZANI A, CORDELL H J, SUTCLIFFE E, et al. Heritability of udder morphology and colostrum quality traits in swine[J]. Journal of Animal Science, 2016, 94(9): 3636-3644. DOI:10.2527/jas.2016-0458 |
[10] |
BALZANI A, CORDELL H J, EDWARDS S A. Development of a methodology to describe udder conformation in sows[J]. Animal, 2016, 10(3): 432-439. DOI:10.1017/S1751731115002347 |
[11] |
NOBLE M S, RODRIGUEZ-ZAS S, COOK J B, et al. Lactational performance of first-parity transgenic gilts expressing bovine alpha-lactalbumin in their milk[J]. Journal of Animal Science, 2002, 80(4): 1090-1096. DOI:10.2527/2002.8041090x |
[12] |
王丁, LINDEMANN M D, 曾志凯, 等. 母猪的乳腺发育及其影响因素[J]. 中国畜牧杂志, 2017, 53(2): 3-9. |
[13] |
NIELSEN O L, PEDERSEN A R, SØRENSEN M T. Relationships between piglet growth rate and mammary gland size of the sow[J]. Livestock Production Science, 2001, 67(3): 273-279. DOI:10.1016/S0301-6226(00)00197-4 |
[14] |
KIM S W, HURLEY W L, HANT I K, et al. Growth of nursing pigs related to the characteristics of nursed mammary glands[J]. Journal of Animal Science, 2000, 78(5): 1313-1318. DOI:10.2527/2000.7851313x |
[15] |
HACKER R R, HILL D L. Nucleic acid content of mammary glands of virgin and pregnant gilts[J]. Journal of Dairy Science, 1972, 55(9): 1295-1299. DOI:10.3168/jds.S0022-0302(72)85664-9 |
[16] |
KING R H, PETTIGREW J E, MCNAMARA J P, et al. The effect of exogenous prolactin on lactation performance of first-litter sows given protein-deficient diets during the first pregnancy[J]. Animal Reproduction Science, 1996, 41(1): 37-50. DOI:10.1016/0378-4320(95)01438-1 |
[17] |
JI F, HURLEY W L, KIM S W. Characterization of mammary gland development in pregnant gilts[J]. Journal of Animal Science, 2006, 84(3): 579-587. DOI:10.2527/2006.843579x |
[18] |
KENSINGER R S, COLLIER R J, BAZER F W. Ultrastructural changes in porcine mammary tissue during lactogenesis[J]. Journal of Anatomy, 1986, 145: 49-59. |
[19] |
FARMER C, HURLEY W L.Mammary development[M]//FARMER C.The gestating and lactating sow.The Netherlands: Wageningen Academic Publishers, 2015: 73-94.
|
[20] |
HEAD R H, WILLIAMS I H.Potential milk production in gilts[M]//HENNESSY D P, CRANWELL P D.Manipulating pig production.Werribee: Australasian Pig Science Association.1995, 5: 134.
|
[21] |
张万明. 影响母猪乳腺发育的因素研究[J]. 四川畜牧兽医, 2015(4): 40-42. DOI:10.3969/j.issn.1001-8964.2015.04.028 |