胆固醇是一种环戊烷多氢菲的衍生物,溶解性与脂肪类似,以游离和胆固醇脂的形式存在,主要通过肝脏合成,其次是食物摄取[1];肠道转运时间与胆固醇吸收呈负相关,转运时间越慢,吸收率越高[2]。肝脏通过控制胆固醇生物合成与产生脂蛋白并结合胆固醇转运、摄取及转化为胆汁酸排泄等方式,维持机体胆固醇稳态[3-4]。
microRNA(miRNA)是内源性的、非编码蛋白质、分子量小的RNA(18~25个核苷酸),进化上具有高度保守性,几乎存在于所有生物体内的各种组织中[5]。miRNA分为蛋白质编码的内含子型miRNA和非蛋白质编码的miRNA,非蛋白编码的miRNA一般位于编码基因的外围,占绝大多数;也有一部分miRNA成簇地排列在染色体上,且可协同表达[6]。miRNA可以调节参与同一细胞途径或生理过程的多个mRNA的表达,同一个mRNA也可以被多个miRNA调控。miRNA可通过抑制胆固醇合成、转运与分解相关基因表达与翻译,并参与不同组织之间协同调控,且可稳定地在血液中被运输[7]。
1 miRNA调控mRNA机制miRNA通过特异性互补结合mRNA序列的3′非翻译区(3′ untranslated regions, 3′UTR),抑制靶mRNA转录和翻译[8],甚至降解靶mRNA[9]。miRNA调控mRNA具体机制如下:miRNA通过RNA聚合酶Ⅱ被转录成一个具有几千个碱基对的双链茎环结构原代miRNA(primary miRNA, pri-miRNA),pri-miRNA进一步被Drosha-DGCR8复合酶处理形成(precursor RNA, pre-miRNA;60~70个核苷酸)[10]。exportin 5蛋白可识别pre-miRNA,将pre-miRNA从细胞核运输到细胞质中,pre-miRNA被核酸内切酶Dicer切割成18~25个核苷酸的双链miRNA,双链miRNA随后在DGCR8蛋白的激活下被打开,其中的一条链随即被降解,为过客链(passenger strand),另一条成熟的miRNA链为引导链(guide strand)。DGCR8蛋白与成熟的miRNA结合到RNA诱导的沉默复合物(RNA induced silencing complex,RISCs)中,RISCs含有裂解mRNA的降解酶[11]。miRNA通过3种方式调控靶基因:1)若靶基因的3′UTR靶序列区与miRNA精确互补,则mRNA转录被抑制;2)若靶基因靶序列区与miRNA为不完全互补,则mRNA翻译被抑制;3)以上2种方式同时对靶基因抑制[12-13]。
2 miRNA调控胆固醇合成代谢哺乳动物细胞存在3种固醇调节元件结合蛋白(sterol regulatory element binding protein, SREBP)的亚型,分别为SREBP1a、SREBP1c及SREBP2。SREBP1c受胰岛素、氧化甾醇和磷脂酰胆碱的调节,优先促进脂肪酸、磷脂和三酰甘油合成相关基因的转录;SREBP2和SREBP1a则调节细胞内胆固醇稳态[14]。SREBP由1个与膜定位调节域相连的氨基末端转录因子域组成,并由2个紧密相连的膜疏水螺旋将前体SREBP以发夹的方式排列在内质网和核膜上,这2个螺旋由1个31-氨基酸亲水环分开,该亲水环伸入内质网的内腔;SREBP氨基末端片段包含基本螺旋环螺旋亮氨酸拉链结构和转录激活域,并与其裂解活化蛋白(SREBP cleavage-activating protein, Scap)形成复合物[1]。正常情况下,SREBP蛋白以非活性形式与Scap结合于内质网中,Scap是一种内质网结合的细胞质蛋白,作为监测细胞固醇水平的传感器[15]。当SREBP被激活,可释放其N端并进入核内,与固醇调节元件结合并调控下游基因[16]。SREBP2是胆固醇生物合成和摄取的主要调节因子,其蛋白控制刺激细胞胆固醇摄取和合成程序。SREBP2的前体穿插于细胞内质网膜内外,其氨基端和羧基端的功能结构域暴露于细胞质中,当SREBP1c基因被敲除,会导致SREBP2表达和蛋白表达增加,说明SREBP1c反向调节SREBP2的表达[14]。miRNA-185对SREBP2转录调控迅速,当miRNA-185被过度表达,SREBP2的表达也迅速减弱[17]。当细胞胆固醇含量较高的情况下,miRNA-185可抑制SREBP2基因的表达,使胆固醇从头合成相关基因表达降低,低密度脂蛋白受体(low density lipoprotein receptor,LDLR)蛋白和低密度脂蛋白(low density lipoprotein LDL)摄取减少;同时,miRNA-185可被SREBP1c转录激活,负调控SREBP2的表达,且miRNA-4644和miRNA-4306被认为与miRNA-185具有相同的3′UTR序列[18]。
Vickers等[19]发现,miRNA-223可直接靶向并抑制2个胆固醇生物合成基因——3-羟基-3-甲基戊二酰辅酶A合成酶1(3-hydroxy-3-methylglutaryl coenzyme A synthase 1, HMGCS1)和甾醇C4甲基氧化酶(sterol-C4-methyl oxidase-like, SC4MOL)表达。SC4MOL基因的功能缺失会导致胆固醇生物合成的丧失,降低胆固醇合成效率[20]。胆固醇合成的第1步是由HMGCS1介导,该基因编码3-羟基-3-甲基戊二酰辅酶A(3-hydroxy-3-methylglutaryl coenzyme A, HMG-CoA),将乙酰辅酶A转化为HMG-CoA[21]。3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase, HMGCR)是肝脏胆固醇合成过程中的限速酶,通过催化HMG-CoA转化为甲羟戊酸,控制胆固醇合成[22]。HMGCR的C端(起催化作用)位于细胞质内,8个穿膜区上的N端将该酶结合于胞内的内质网上。当肝细胞胆固醇含量较高时,SREBP2可激活促进细胞中胆固醇外排;当细胞中胆固醇含量较低时,SREBP2前体从内质网转移到高尔基体,在高尔基体中,SREBP2前体被加工成成熟的核形式,启动HMG-CoA与HMGCR的转录,提高肝细胞对胆固醇合成及摄取[14]。HMGCR除了直接调控胆固醇合成外,该基因表达量与细胞内胆固醇含量变化存在反馈调节[22]。Sun等[23]以非酒精性脂肪肝细胞模型进行体外试验,通过荧光素酶分析发现,HMGCR是miRNA-21的直接靶点,miRNA-21对HMGCR转录降解且阻碍其蛋白质翻译,导致胆固醇合成量降低。Selitsky等[24]在人肝癌细胞中证实,miRNA-21和miRNA-27均可显著抑制人肝癌细胞对胆固醇合成,分别抑制了约30%和70%;且miRNA-27通过靶向调节HMGCR的基因转录来抑制胆固醇合成,并认为miRNA-27可能在HMGCR内,甚至在其开放阅读框内。
3 miRNA调控胆固醇转运代谢脂蛋白在肝脏中合成,经卵磷脂胆固醇酰基转移酶催化,并形成胆固醇酯的方式运载胆固醇,主要为高密度脂蛋白(high density lipoprotein, HDL)、LDL、极低密度脂蛋白(very low lipoprotein, VLDL)。HDL可与胆固醇结合为高密度脂蛋白胆固醇(high density lipoprotein cholesterol, HDL-C),并从肝脏以外组织转运到肝脏进行再循环,或以胆汁酸的形式排泄[25];LDL和VLDL则通过结合胆固醇生成低密度脂蛋白胆固醇(low density lipoprotein cholesterol, LDL-C)和极低密度脂蛋白胆固醇(very low density lipoprotein cholesterol, VLDL-C),运载胆固醇进入肝细胞外周血液及组织细胞,而VLDL运载的胆固醇颗粒相比LDL较大,且数量较少,不易通过动脉内膜[26-27]。
肝X受体(liver X receptor, LXR)是胆固醇转运的重要调节因子,包括LXRα和LXRβ,当SREBP2被敲除,LXR蛋白表达量与活性降低[28],LXR可特异性地被氧甾醇、氧化型胆固醇及胆固醇合成途径的中间产物激活[29]。有研究表明,敲除小鼠LXR基因会导致胆固醇在肝脏中积累,而加入合成的LXR启动剂则能促进胆固醇从肝脏转运。LXR不但可增加ATP结合盒转运体G1(ATP-binding cassette transporter G1, ABCG1)蛋白数量,还可将ABCG1从细胞内位置重新分布到质膜[30]。ABCG1介导胆固醇与HDL结合,将胆固醇从肝脏外周组织转运到肝脏中再循环,或形成胆汁酸,这一过程称为胆固醇逆向转运(reverse cholesterol transport, RCT),由于胆固醇不能在细胞内降解,RCT是确保体内胆固醇平衡的必要过程[31],RCT运输胆固醇的过程涉及清道夫受体B类Ⅰ型(scavenger receptor class B type Ⅰ, SR-BⅠ)介导的HDL-C选择性脂质摄取,肝脏SR-BⅠ表达上调可加速HDL-C在血液中清除[32]。细胞质膜是ABCG1促进细胞中胆固醇与HDL结合向外排的主要部位,ABCG1可通过扩散或碰撞机制将胆固醇从质膜的内小叶转移到外小叶,转移到细胞外胆固醇受体[33]。卵磷脂胆固醇脂酰转移酶(lecithin cholesterol acyltransferase, LCAT)可介导胆固醇酯化与HDL颗粒重塑,促进胆固醇从外周组织向血液运输[34],HDL通过胆固醇酯转移蛋白介导的转移途径间接将HDL转移到载脂蛋白B(apolipoprotein B, ApoB),并输送到肝脏[35]。LXR能激活细胞中ATP结合盒转运蛋白A1(ATP-binding cassette protein A1, ABCA1),ABCA1是ATP结合盒转运蛋白膜转运体家族的一类胞膜蛋白,介导HDL颗粒形成,是脂质从细胞向载脂蛋白转移的关键调节因子,在HDL的形成中起着关键作用[36-37]。载脂蛋白A-Ⅰ(apolipoprotein A-Ⅰ, ApoA-Ⅰ)是HDL的主要蛋白成分,ApoA-Ⅰ/ABCA1反应体系包括3个步骤:首先,ApoA-Ⅰ的一个小的调节池与ABCA1结合,从而促进磷脂向质膜外小叶的净转运,导致磷脂双层的2个小叶的侧向堆积密度不均匀;然后,通过弯曲和产生囊外脂质结构域来减轻膜应变,高弯曲膜表面的形成促进了ApoA-Ⅰ与这些结构域的高亲和力结合;最后,这个结合的ApoA-Ⅰ池溶解外泡结构域,以产生盘状新生的高密度脂蛋白颗粒。这些颗粒含有2、3或4个ApoA-Ⅰ分子和1个膜磷脂类补体以及一些胆固醇[38]。
SREBP2不但介导胆固醇生物合成基因表达,并同时抑制前蛋白转化酶枯草溶菌素9(proprotein convertase, subtilisin/kexin type 9, PCSK9)蛋白表达,而PCSK9可促进LDL及VLDL降解因子表达,降低血浆LDL及VLDL含量[28, 39]。LXR不但协同SREBP1c因子并提高肝脏对VLDL合成和分泌[40],而且LXR可通过调控LDLR与细胞内胆固醇结合,控制稳态组织胆固醇浓度[41]。
miRNA在调节胆固醇转运的多个步骤中的发挥作用。miRNA参与调控RCT的大部分步骤,包括HDL的生物合成、肝细胞对HDL-C的摄取、胆汁酸的合成和分泌等[10]。已被证实,多种miRNA负调控载脂蛋白因子转录。HDL可通过结合二价阳离子转运内源性miRNA[42],且SREBP转录因子可刺激miRNA-33a/b的表达,表明机体部分miRNA与其靶基因存在一定的反馈关系[43]。
3.1 miRNA调控HDL代谢miRNA-33主要有miRNA-33a与miRNA-33b,其分别位于人体SREBP2和SREBP1基因的内含子中,两者具有相同的种子序列,只有2个核苷酸不同[44],而小鼠、鸡等动物由于miRNA-33b编码区部分缺失,miRNA-33b不能表达,只存在miRNA-33a[45];miRNA-33a/b均可在鱼类中表达,且表达量较低,其被认为在鱼类调控胆固醇代谢中不起主导作用[46]。miRNA-33a和miRNA-30b可与LXR靶基因ABCA1和ABCG1的3′UTR序列互补结合,抑制ABCA1和ABCG1表达,控制胆固醇稳态[47-48]。ABCA1是HDL合成及结合胆固醇排出的调控因子,它的3′UTR长度超过3 000 bp,包括许多miRNA结合位点,已知其存在3个与miRNA-33高度保守的结合靶位点互补区域,在人和小鼠肝细胞和巨噬细胞中过表达miRNA-33,可抑制ABCA1的mRNA表达,且抑制胆固醇与ApoA-Ⅰ和HDL结合[45, 49]。当抑制miRNA-33a/b表达,能提高肝脏ABCA1基因的表达,使血浆HDL含量显著提高,促进胆固醇向肝脏转运[50-51]。也有学者发现,miRNA-33a和miRNA-10b不仅调节ABCA1,而且可靶向ABCG1(仅在小鼠中),并增强这些miRNA对HDL-C代谢和RCT的影响[45, 50]。当细胞中胆固醇含量降低时,miRNA-758可以通过抑制ABCA1表达,保留神经中的胆固醇[52],miRNA-182和miRNA-183也通过影响核SREBP的积累来控制胆固醇的稳态[53]。
miRNA-223可通过抑制SREBP2转录来控制胆固醇稳态。当胆固醇缺乏,miRNA-223转录和表达降低,且抑制miRNA-223可减轻肝细胞对胆固醇生物合成和摄取的抑制,并防止胆固醇与HDL结合形成HDL-C,提高细胞胆固醇含量[19]。除了控制胆固醇的生物合成,在人类中,miRNA-223还通过控制靶向SR-BⅠ的3′UTR的表达来抑制HDL-C的摄取[19],且SR-BⅠ可被miRNA-185靶向调节,但具体机制仍不明确。除此之外,miRNA-223还参与机体炎症反应,并与大部分炎症标志物因子呈正相关[54]。
3.2 miRNA调控LDL代谢miRNA-130b和miRNA-301b位于人类22号染色体上一个与总胆固醇和HDL-C水平异常相关的位点上。这2个miRNA共享相同的种子序列,并被预测以相同的代谢因子为靶点,2种miRNA都直接靶向LDLR和ABCA1的3′UTR,从而显著降低了人肝癌细胞和小鼠巨噬细胞中LDL-C的摄取和与ApoA-Ⅰ的结合以及胆固醇的流出[55]。miRNA-148a直接作用于LDLR的3′UTR,miRNA-148a过表达和抑制分别显著降低和提高小鼠肝脏LDLR表达[17]。SREBP2可控制PCSK9的表达,而PCSK9可通过降解可介导LDLR转录来控制LDL-C代谢[41];与miRNA-185相似,LXR介导的SREBP1c诱导导致miRNA-148a表达量增加。miRNA-128-1通过直接靶向LDLR和ABCA1的3′UTR调控人肝癌细胞和小鼠巨噬细胞胆固醇向ApoA-Ⅰ的流出[55]。
3.3 miRNA调控VLDL代谢miRNA-122和miRNA-30c是人体内通过控制VLDL分泌和胆固醇生物合成而改变血浆LDL-C的miRNA,且miRNA-122在物种间高度保守[56]。miRNA-122a和miRNA-122b这2种亚型均存在于虹鳟鱼中,而人与鼠只存在单一亚型miRNA-122a[57-58];此外,miRNA-122在虹鳟和高等脊椎动物肝脏中特异性表达,且表达量都很高[59]。Chang等[60]认为人和鼠中miRNA-122靶基因是阳离子氨基酸转运载体1(cationic amino acid transporter 1, CAT1),但Cirera等[61]用高胆固醇饲粮饲喂哥廷根小型猪的研究发现,肝脏miRNA-122表达量下降,但CAT1表达量无显著差异。
miRNA-30c通过直接靶向微粒体甘油三酯转移蛋白减少脂质合成和ApoB的分泌来控制血浆胆固醇水平[62]。Jeon等[53]发现,miRNA-182和miRNA-96可分别靶向F-box和WD重复结构域7(F-box and WD repeat domain-containing7, Fbxw7)和胰岛素诱导基因2(insulin-induced gene 2, INSIG2)的抑制表达,这2种蛋白限制细胞核SREBP积累,INSIG2降低细胞膜膜结合SREBP前体的蛋白水解酶活性,Fbxw7是E3泛素连接酶,通过蛋白酶体靶向核中SREBP的转换。
4 miRNA调控胆固醇分解代谢胆固醇是构成细胞膜的成分,可通过调控细胞膜流动性来维持细胞膜稳定,同时也是胆汁酸、性激素、维生素D及肾上腺皮质激素等机体生理活性物质的重要合成原料[63]。胆固醇可分解为胆汁酸参与机体脂代谢,且胆汁酸完全由肝脏中的胆固醇合成。胆汁酸合成速率主要受胆固醇7α-羟化酶(cholesterol 7alpha-hydroxylase, CYP7A1)转录调控,CYP7A1是编码胆汁酸合成途径中的限速酶,此酶活性增加会导致胆固醇分解代谢加快,从而降低细胞内胆固醇含量[64];除此之外,胆汁酸另一个合成途径限速酶为甾醇27羟化酶(sterol 27-hydroxylase, CYP27A1)[65]。在鼠的研究中发现,CYP7A1是miRNA-33a的靶基因,miRNA-33a可作为一种快速反馈机制靶向抑制CYP7A1的翻译,且CYP7A1可通过将肝脏过量的胆固醇转化为胆汁酸,并反馈激活SREBP2和miRNA-33a,在感知和维持胆固醇稳态方面起主导作用[66]。
Tao等[67]对罗非鱼miRNA和mRNA基因组进行测序分析发现,miRNA-21与miRNA-200b负调控细胞色素P450家族11亚科A成员1(cytochrome P450 family 11 subfamily A member 1,CYP11A1),CYP11A1可将胆固醇转化为孕烯雌酮,并参与机体类固醇激素合成。
5 小结miRNA可通过对胆固醇合成、转运、分解相关靶基因表达进行负调控,且可在血液中被运输。miRNA可以调节参与同一细胞途径或生理过程的多个mRNA的表达,同时,同一个mRNA也可被多个miRNA调控,且miRNA表达与靶基因存在反馈调节。由于动物种属间差异,其miRNA表达量也不同,且存在同一miRNA的不同亚型分别调控同一靶基因的不同亚型的现象,甚至某些动物miRNA亚型缺失。这使得miRNA与靶mRNA调控关系更加复杂,其靶向关系与功能研究尤为重要。
[1] |
BROWN M S, GOLDSTEIN J L. Sterol regulatory element binding proteins (SREBPs):controllers of lipid synthesis and cellular uptake[J]. Nutrition Reviews, 1998, 56(Suppl.2): S1-S3. |
[2] |
MCNAMARA D J.CHOLESTEROL|Sources, absorption, function and metabolism[M]//CABALLERO B.Encyclopedia of human nutrition.Amsterdam: Elsevier, 2005, 1(2005): 379-385.
|
[3] |
SOBENIN I A, SALONEN J T, ZHELANKIN A V, et al. Low density lipoprotein-containing circulating immune complexes:role in atherosclerosis and diagnostic value[J]. BioMed Research International, 2014, 2014: 205697. |
[4] |
TRAJKOVSKA K T, TOPUZOVSKA S. High-density lipoprotein metabolism and reverse cholesterol transport:strategies for raising HDL cholesterol[J]. The Anatolian Journal of Cardiology, 2017, 18(2): 149-154. |
[5] |
AMBROS V. The functions of animal microRNAs[J]. Nature, 2004, 431(7006): 350-355. DOI:10.1038/nature02871 |
[6] |
KREK A, GRÜN D, POY M N, et al. Combinatorial microRNA target predictions[J]. Nature Genetics, 2005, 37(5): 495-500. DOI:10.1038/ng1536 |
[7] |
WANG Y C, LI Y Y, WANG X Y, et al. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity[J]. Diabetologia, 2013, 56(10): 2275-2285. DOI:10.1007/s00125-013-2996-8 |
[8] |
KIM D, SUNG Y M, PARK J, et al. General rules for functional microRNA targeting[J]. Nature Genetics, 2016, 48(12): 1517-1526. DOI:10.1038/ng.3694 |
[9] |
BAGGA S, BRACHT J, HUNTER S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation[J]. Cell, 2005, 122(4): 553-563. DOI:10.1016/j.cell.2005.07.031 |
[10] |
ROTTIERS V, NÄÄR A M. MicroRNAs in metabolism and metabolic disorders[J]. Nature Reviews Molecular Cell Biology, 2012, 13(4): 239-250. DOI:10.1038/nrm3313 |
[11] |
FLOWERS E, FROELICHER E S, AOUIZERAT B E. MicroRNA regulation of lipid metabolism[J]. Metabolism, 2012, 62(1): 12-20. |
[12] |
FILIPOWICZ W, BHATTACHARYYA S N, SONENBERG N. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight?[J]. Nature Reviews Genetics, 2008, 9(2): 102-114. DOI:10.1038/nrg2290 |
[13] |
BARTEL D P. MicroRNAs:target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233. DOI:10.1016/j.cell.2009.01.002 |
[14] |
DEBOSE-BOYD R A, YE J. SREBPs in lipid metabolism, insulin signaling, and beyond[J]. Trends in Biochemical Sciences, 2018, 43(5): 358-368. DOI:10.1016/j.tibs.2018.01.005 |
[15] |
BROWN M S, GOLDSTEIN J L. Cholesterol feedback:from Schoenheimer's bottle to Scap's MELADL[J]. Journal of Lipid Research, 2009, 50(Suppl.1): S15-S27. |
[16] |
MOHAMED A, VIVEIROS A, WILLIAMS K, et al. Aβ inhibits SREBP-2 activation through Akt inhibition[J]. Journal of Lipid Research, 2018, 59(1): 1-13. DOI:10.1194/jlr.M076703 |
[17] |
GOEDEKE L, ROTLLAN N, CANFRÁN-DUQUE A, et al. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels[J]. Nature Medicine, 2015, 21(11): 1280-1289. DOI:10.1038/nm.3949 |
[18] |
YANG M H, LIU W D, PELLICANE C, et al. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake[J]. Journal of Lipid Research, 2014, 55(2): 226-238. DOI:10.1194/jlr.M041335 |
[19] |
VICKERS K C, LANDSTREET S R, LEVIN M G, et al. MicroRNA-223 coordinates cholesterol homeostasis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): 14518-14523. DOI:10.1073/pnas.1215767111 |
[20] |
HE M, KRATZ L E, MICHEL J J, et al. Mutations in the human SC4MOL gene encoding a methyl sterol oxidase cause psoriasiform dermatitis, microcephaly, and developmental delay[J]. Journal of Clinical Investigation, 2011, 121(3): 976-984. DOI:10.1172/JCI42650 |
[21] |
QUINTANA A M, HERNANDEZ J A, GONZALEZ C G. Functional analysis of the zebrafish ortholog of HMGCS1 reveals independent functions for cholesterol and isoprenoids in craniofacial development[J]. PLoS One, 2017, 12(7): e180856. |
[22] |
HUANG J B, CHEN S J, CAI D L, et al. Long noncoding RNA lncARSR promotes hepatic cholesterol biosynthesis via modulating Akt/SREBP-2/HMGCR pathway[J]. Life Sciences, 2018, 203: 48-53. DOI:10.1016/j.lfs.2018.04.028 |
[23] |
SUN C Z, HUANG F Z, LIU X Y, et al. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR[J]. International Journal of Molecular Medicine, 2015, 35(3): 847-853. DOI:10.3892/ijmm.2015.2076 |
[24] |
SELITSKY S R, DINH T A, TOTH C L, et al. Transcriptomic analysis of chronic hepatitis B and C and liver cancer reveals microrna-mediated control of cholesterol synthesis programs[J]. mBio, 2015, 6(6): e1500-15. |
[25] |
ZHOU L Y, LI C C, GAO L, et al. High-density lipoprotein synthesis and metabolism (review)[J]. Molecular Medicine Reports, 2015, 12(3): 4015-4021. DOI:10.3892/mmr.2015.3930 |
[26] |
GIBBONS G F, WIGGINS D, BROWN A M, et al. Synthesis and function of hepatic very-low-density lipoprotein[J]. Biochemical Society Transactions, 2004, 32(1): 59-64. |
[27] |
SNIDERMAN A, THOMAS D, MARPOLE D, et al. Low density lipoprotein:a metabolic pathway for return of cholesterol to the splanchnic bed[J]. Journal of Clinical Investigation, 1978, 61(4): 867-873. DOI:10.1172/JCI109012 |
[28] |
RONG S X, CORTÉS V A, RASHID S, et al. Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice[J]. eLife, 2017, 6: e25015. DOI:10.7554/eLife.25015 |
[29] |
BOBIN-DUBIGEON C, CHAUVIN A, BRILLAUD-MEFLAH V, et al. Liver X receptor (LXR)-regulated genes of cholesterol trafficking and breast cancer severity[J]. Anticancer Research, 2017, 37(10): 5495-5498. |
[30] |
WANG N, RANALLETTA M, MATSUURA F, et al. LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26(6): 1310-1316. DOI:10.1161/01.ATV.0000218998.75963.02 |
[31] |
KENNEDY M A, BARRERA G C, NAKAMURA K, et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation[J]. Cell Metabolism, 2005, 1(2): 121-131. |
[32] |
HOEKSTRA M, SORCI-THOMAS M. Rediscovering scavenger receptor type BⅠ:surprising new roles for the HDL receptor[J]. Current Opinion in Lipidology, 2017, 28(3): 255-260. DOI:10.1097/MOL.0000000000000413 |
[33] |
YANCEY P G, BORTNICK A E, KELLNER-WEIBEL G, et al. Importance of different pathways of cellular cholesterol efflux[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23(5): 712-719. DOI:10.1161/01.ATV.0000057572.97137.DD |
[34] |
FOTAKIS P, KUIVENHOVEN J A, DAFNIS E, et al. The effect of natural LCAT mutations on the biogenesis of HDL[J]. Biochemistry, 2015, 54(21): 3348-3359. DOI:10.1021/acs.biochem.5b00180 |
[35] |
HUNT J A, LU Z J. Cholesteryl ester transfer protein (CETP) inhibitors[J]. Current Topics in Medicinal Chemistry, 2009, 9(5): 419-427. DOI:10.2174/156802609788340823 |
[36] |
TALL A R, WANG N. Tangier disease as a test of the reverse cholesterol transport hypothesis[J]. The Journal of Clinical Investigation, 2000, 106(10): 1205-1207. DOI:10.1172/JCI11538 |
[37] |
SCHMITZ G, LANGMANN T. Structure, function and regulation of the ABC1 gene product[J]. Current Opinion in Lipidology, 2001, 12(2): 129-140. DOI:10.1097/00041433-200104000-00006 |
[38] |
VEDHACHALAM C, DUONG P T, NICKEL M, et al. Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-Ⅰ and formation of high density lipoprotein particles[J]. Journal of Biological Chemistry, 2007, 282(34): 25123-25130. DOI:10.1074/jbc.M704590200 |
[39] |
ISHIBASHI M, MASSON D, WESTERTERP M, et al. Reduced VLDL clearance in Apoe-/-Npc1-/- mice is associated with increased Pcsk9 and Idol expression and decreased hepatic LDL-receptor levels[J]. Journal of Lipid Research, 2010, 51(9): 2655-2663. DOI:10.1194/jlr.M006163 |
[40] |
OKAZAKI H, GOLDSTEIN J L, BROWN M S, et al. LXR-SREBP-1c-phospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size[J]. Journal of Biological Chemistry, 2010, 285(9): 6801-6810. DOI:10.1074/jbc.M109.079459 |
[41] |
ZELCER N, HONG C, BOYADJIAN R, et al. LXR regulates cholesterol uptake through idol-dependent ubiquitination of the LDL receptor[J]. Science, 2009, 325(5936): 100-104. DOI:10.1126/science.1168974 |
[42] |
VICKERS K C, PALMISANO B T, SHOUCRI B M, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins[J]. Nature Cell Biology, 2011, 13(4): 423-433. DOI:10.1038/ncb2210 |
[43] |
JEON T I, OSBORNE T F. miRNA and cholesterol homeostasis[J]. Biochimica et Biophysica Acta:Molecular and Cell Biology of Lipids, 2016, 1861(12): 2041-2046. DOI:10.1016/j.bbalip.2016.01.005 |
[44] |
DÁVALOS A, GOEDEKE L, SMIBERT P, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(22): 9232-9237. DOI:10.1073/pnas.1102281108 |
[45] |
RAYNER K J, SUÁREZ Y, DÁVALOS A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis[J]. Science, 2010, 328(5985): 1570-1573. DOI:10.1126/science.1189862 |
[46] |
CHI W, TONG C B, GAN X N, et al. Characterization and comparative profiling of miRNA transcriptomes in bighead carp and silver carp[J]. PLoS One, 2011, 6(8): e23549. DOI:10.1371/journal.pone.0023549 |
[47] |
MARQUART T J, ALLEN R M, ORY D S, et al. miR-33 links SREBP-2 induction to repression of sterol transporters[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(27): 12228-12232. DOI:10.1073/pnas.1005191107 |
[48] |
GERIN I, CLERBAUX L A, HAUMONT O, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation[J]. Journal of Biological Chemistry, 2010, 285(44): 33652-33661. DOI:10.1074/jbc.M110.152090 |
[49] |
NAJAFI-SHOUSHTARI S H, KRISTO F, LI Y X, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis[J]. Science, 2010, 328(5985): 1566-1569. DOI:10.1126/science.1189123 |
[50] |
HORIE T, ONO K, HORIGUCHI M, et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2(Srebp2) regulates HDL in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17321-17326. DOI:10.1073/pnas.1008499107 |
[51] |
RAYNER K J, ESAU C C, HUSSAIN F N, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides[J]. Nature, 2011, 478(7369): 404-407. DOI:10.1038/nature10486 |
[52] |
LIU J P, TANG Y, ZHOU S F, et al. Cholesterol involvement in the pathogenesis of neurodegenerative diseases[J]. Molecular and Cellular Neuroscience, 2009, 43(1): 33-42. |
[53] |
JEON T I, ESQUEJO R M, ROQUETA-RIVERA M, et al. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis[J]. Cell Metabolism, 2013, 18(1): 51-61. DOI:10.1016/j.cmet.2013.06.010 |
[54] |
WU X L, YANG J H, YU L, et al. Plasma miRNA-223 correlates with risk, inflammatory markers as well as prognosis in sepsis patients[J]. Medicine, 2018, 92(27): e11352. |
[55] |
WAGSCHAL A, NAJAFI-SHOUSHTARI S H, WANG L F, et al. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis[J]. Nature Medicine, 2015, 21(11): 1290-1297. DOI:10.1038/nm.3980 |
[56] |
GOEDEKE L, WAGSCHAL A, FERNÁNDEZ-HERNANDO C, et al. miRNA regulation of LDL-cholesterol metabolism[J]. Biochimica et Biophysica Acta:Molecular and Cell Biology of Lipids, 2016, 1861(12): 2047-2052. DOI:10.1016/j.bbalip.2016.03.007 |
[57] |
MENNIGEN J A, PANSERAT S, LARQUIER M, et al. Postprandial regulation of hepatic microRNAs predicted to target the insulin pathway in rainbow trout[J]. PLoS One, 2012, 7(6): e38604. DOI:10.1371/journal.pone.0038604 |
[58] |
TSAI W C, HSU S D, HSU C S, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis[J]. Journal of Clinical Investigation, 2012, 122(8): 2884-2897. DOI:10.1172/JCI63455 |
[59] |
RAMACHANDRA R K, SALEM M, GAHR S, et al. Cloning and characterization of microRNAs from rainbow trout (Oncorhynchus mykiss):their expression during early embryonic development[J]. BMC Developmental Biology, 2008, 8: 41. DOI:10.1186/1471-213X-8-41 |
[60] |
CHANG J H, NICOLAS E, MARKS D, et al. miR-122, a Mammalian liver-specific microRNA, is processed from hcr mRNA and maydownregulate the high affinity cationic amino acid transporter CAT-1[J]. RNA Biology, 2004, 1(2): 106-113. DOI:10.4161/rna.1.2.1066 |
[61] |
CIRERA S, BIRCK M, BUSK P K, et al. Expression profiles of miRNA-122 and its target CAT1 in minipigs (Sus scrofa) fed a high-cholesterol diet[J]. Comparative Medicine, 2010, 60(2): 136-141. |
[62] |
SOH J, IQBAL J, QUEIROZ J, et al. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion[J]. Nature Medicine, 2013, 19(7): 892-900. DOI:10.1038/nm.3200 |
[63] |
FIELDING C J, FIELDING P E. Molecular physiology of reverse cholesterol transport[J]. Journal of Lipid Research, 1995, 36(2): 211-228. |
[64] |
CHIANG J Y L. Bile acids:regulation of synthesis[J]. Journal of Lipid Research, 2009, 50(10): 1955-1966. DOI:10.1194/jlr.R900010-JLR200 |
[65] |
CORTES V A, BUSSO D, MARDONES P, et al. Retracted:advances in the physiological and pathological implications of cholesterol[J]. Biological Reviews, 2013, 88(4): 825-843. DOI:10.1111/brv.12025 |
[66] |
LI T G, FRANCL J M, BOEHME S, et al. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice[J]. Hepatology, 2013, 58(3): 1111-1121. |
[67] |
TAO W J, SUN L N, SHI H J, et al. Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation[J]. BMC Genomics, 2016, 17: 328. DOI:10.1186/s12864-016-2636-z |