动物营养学报    2020, Vol. 32 Issue (5): 1965-1972    PDF    
microRNA调控胆固醇代谢研究进展
胡亚军 , 胡毅     
湖南农业大学, 湖南特色水产资源利用工程技术研究中心, 长沙 410128
摘要: microRNA(miRNA)是一种非编码蛋白的短序列RNA,通过与靶基因靶标区的序列互补配对,抑制mRNA翻译或直接降解mRNA,对靶基因表达起负调控作用。胆固醇是合成机体生理活性物质的重要原料,也是构成细胞膜的主要成分。近年来,关于miRNA调控胆固醇代谢相关研究被重视和报导。本文就miRNA对动物胆固醇代谢调控相关研究进行综述。
关键词: microRNA    mRNA    胆固醇代谢    
MicroRNA Regulates Cholesterol Metabolism: a Review
HU Yajun , HU Yi     
Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
Abstract: MicroRNA (miRNA) is a kind of short sequence RNA that does not encode protein. It plays a negative role for the target mRNA expression by pairing with complementary sequence of the target gene, and inhibits the transcription of mRNA, even degrades mRNA. Cholesterol is not only an important raw material for the synthesis of physiological active substances, but also the main component of cell membrane. Recent years, there are mounts of papers about the regulation of cholesterol metabolism by miRNA, this review focused on the regulation of animal cholesterol metabolism by miRNA.
Key words: microRNA    mRNA    cholesterol metabolism    

胆固醇是一种环戊烷多氢菲的衍生物,溶解性与脂肪类似,以游离和胆固醇脂的形式存在,主要通过肝脏合成,其次是食物摄取[1];肠道转运时间与胆固醇吸收呈负相关,转运时间越慢,吸收率越高[2]。肝脏通过控制胆固醇生物合成与产生脂蛋白并结合胆固醇转运、摄取及转化为胆汁酸排泄等方式,维持机体胆固醇稳态[3-4]

microRNA(miRNA)是内源性的、非编码蛋白质、分子量小的RNA(18~25个核苷酸),进化上具有高度保守性,几乎存在于所有生物体内的各种组织中[5]。miRNA分为蛋白质编码的内含子型miRNA和非蛋白质编码的miRNA,非蛋白编码的miRNA一般位于编码基因的外围,占绝大多数;也有一部分miRNA成簇地排列在染色体上,且可协同表达[6]。miRNA可以调节参与同一细胞途径或生理过程的多个mRNA的表达,同一个mRNA也可以被多个miRNA调控。miRNA可通过抑制胆固醇合成、转运与分解相关基因表达与翻译,并参与不同组织之间协同调控,且可稳定地在血液中被运输[7]

1 miRNA调控mRNA机制

miRNA通过特异性互补结合mRNA序列的3′非翻译区(3′ untranslated regions, 3′UTR),抑制靶mRNA转录和翻译[8],甚至降解靶mRNA[9]。miRNA调控mRNA具体机制如下:miRNA通过RNA聚合酶Ⅱ被转录成一个具有几千个碱基对的双链茎环结构原代miRNA(primary miRNA, pri-miRNA),pri-miRNA进一步被Drosha-DGCR8复合酶处理形成(precursor RNA, pre-miRNA;60~70个核苷酸)[10]。exportin 5蛋白可识别pre-miRNA,将pre-miRNA从细胞核运输到细胞质中,pre-miRNA被核酸内切酶Dicer切割成18~25个核苷酸的双链miRNA,双链miRNA随后在DGCR8蛋白的激活下被打开,其中的一条链随即被降解,为过客链(passenger strand),另一条成熟的miRNA链为引导链(guide strand)。DGCR8蛋白与成熟的miRNA结合到RNA诱导的沉默复合物(RNA induced silencing complex,RISCs)中,RISCs含有裂解mRNA的降解酶[11]。miRNA通过3种方式调控靶基因:1)若靶基因的3′UTR靶序列区与miRNA精确互补,则mRNA转录被抑制;2)若靶基因靶序列区与miRNA为不完全互补,则mRNA翻译被抑制;3)以上2种方式同时对靶基因抑制[12-13]

2 miRNA调控胆固醇合成代谢

哺乳动物细胞存在3种固醇调节元件结合蛋白(sterol regulatory element binding protein, SREBP)的亚型,分别为SREBP1a、SREBP1c及SREBP2。SREBP1c受胰岛素、氧化甾醇和磷脂酰胆碱的调节,优先促进脂肪酸、磷脂和三酰甘油合成相关基因的转录;SREBP2和SREBP1a则调节细胞内胆固醇稳态[14]。SREBP由1个与膜定位调节域相连的氨基末端转录因子域组成,并由2个紧密相连的膜疏水螺旋将前体SREBP以发夹的方式排列在内质网和核膜上,这2个螺旋由1个31-氨基酸亲水环分开,该亲水环伸入内质网的内腔;SREBP氨基末端片段包含基本螺旋环螺旋亮氨酸拉链结构和转录激活域,并与其裂解活化蛋白(SREBP cleavage-activating protein, Scap)形成复合物[1]。正常情况下,SREBP蛋白以非活性形式与Scap结合于内质网中,Scap是一种内质网结合的细胞质蛋白,作为监测细胞固醇水平的传感器[15]。当SREBP被激活,可释放其N端并进入核内,与固醇调节元件结合并调控下游基因[16]。SREBP2是胆固醇生物合成和摄取的主要调节因子,其蛋白控制刺激细胞胆固醇摄取和合成程序。SREBP2的前体穿插于细胞内质网膜内外,其氨基端和羧基端的功能结构域暴露于细胞质中,当SREBP1c基因被敲除,会导致SREBP2表达和蛋白表达增加,说明SREBP1c反向调节SREBP2的表达[14]。miRNA-185对SREBP2转录调控迅速,当miRNA-185被过度表达,SREBP2的表达也迅速减弱[17]。当细胞胆固醇含量较高的情况下,miRNA-185可抑制SREBP2基因的表达,使胆固醇从头合成相关基因表达降低,低密度脂蛋白受体(low density lipoprotein receptor,LDLR)蛋白和低密度脂蛋白(low density lipoprotein LDL)摄取减少;同时,miRNA-185可被SREBP1c转录激活,负调控SREBP2的表达,且miRNA-4644和miRNA-4306被认为与miRNA-185具有相同的3′UTR序列[18]

Vickers等[19]发现,miRNA-223可直接靶向并抑制2个胆固醇生物合成基因——3-羟基-3-甲基戊二酰辅酶A合成酶1(3-hydroxy-3-methylglutaryl coenzyme A synthase 1, HMGCS1)和甾醇C4甲基氧化酶(sterol-C4-methyl oxidase-like, SC4MOL)表达。SC4MOL基因的功能缺失会导致胆固醇生物合成的丧失,降低胆固醇合成效率[20]。胆固醇合成的第1步是由HMGCS1介导,该基因编码3-羟基-3-甲基戊二酰辅酶A(3-hydroxy-3-methylglutaryl coenzyme A, HMG-CoA),将乙酰辅酶A转化为HMG-CoA[21]。3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase, HMGCR)是肝脏胆固醇合成过程中的限速酶,通过催化HMG-CoA转化为甲羟戊酸,控制胆固醇合成[22]。HMGCR的C端(起催化作用)位于细胞质内,8个穿膜区上的N端将该酶结合于胞内的内质网上。当肝细胞胆固醇含量较高时,SREBP2可激活促进细胞中胆固醇外排;当细胞中胆固醇含量较低时,SREBP2前体从内质网转移到高尔基体,在高尔基体中,SREBP2前体被加工成成熟的核形式,启动HMG-CoAHMGCR的转录,提高肝细胞对胆固醇合成及摄取[14]。HMGCR除了直接调控胆固醇合成外,该基因表达量与细胞内胆固醇含量变化存在反馈调节[22]。Sun等[23]以非酒精性脂肪肝细胞模型进行体外试验,通过荧光素酶分析发现,HMGCR是miRNA-21的直接靶点,miRNA-21对HMGCR转录降解且阻碍其蛋白质翻译,导致胆固醇合成量降低。Selitsky等[24]在人肝癌细胞中证实,miRNA-21和miRNA-27均可显著抑制人肝癌细胞对胆固醇合成,分别抑制了约30%和70%;且miRNA-27通过靶向调节HMGCR的基因转录来抑制胆固醇合成,并认为miRNA-27可能在HMGCR内,甚至在其开放阅读框内。

3 miRNA调控胆固醇转运代谢

脂蛋白在肝脏中合成,经卵磷脂胆固醇酰基转移酶催化,并形成胆固醇酯的方式运载胆固醇,主要为高密度脂蛋白(high density lipoprotein, HDL)、LDL、极低密度脂蛋白(very low lipoprotein, VLDL)。HDL可与胆固醇结合为高密度脂蛋白胆固醇(high density lipoprotein cholesterol, HDL-C),并从肝脏以外组织转运到肝脏进行再循环,或以胆汁酸的形式排泄[25];LDL和VLDL则通过结合胆固醇生成低密度脂蛋白胆固醇(low density lipoprotein cholesterol, LDL-C)和极低密度脂蛋白胆固醇(very low density lipoprotein cholesterol, VLDL-C),运载胆固醇进入肝细胞外周血液及组织细胞,而VLDL运载的胆固醇颗粒相比LDL较大,且数量较少,不易通过动脉内膜[26-27]

肝X受体(liver X receptor, LXR)是胆固醇转运的重要调节因子,包括LXRα和LXRβ,当SREBP2被敲除,LXR蛋白表达量与活性降低[28],LXR可特异性地被氧甾醇、氧化型胆固醇及胆固醇合成途径的中间产物激活[29]。有研究表明,敲除小鼠LXR基因会导致胆固醇在肝脏中积累,而加入合成的LXR启动剂则能促进胆固醇从肝脏转运。LXR不但可增加ATP结合盒转运体G1(ATP-binding cassette transporter G1, ABCG1)蛋白数量,还可将ABCG1从细胞内位置重新分布到质膜[30]。ABCG1介导胆固醇与HDL结合,将胆固醇从肝脏外周组织转运到肝脏中再循环,或形成胆汁酸,这一过程称为胆固醇逆向转运(reverse cholesterol transport, RCT),由于胆固醇不能在细胞内降解,RCT是确保体内胆固醇平衡的必要过程[31],RCT运输胆固醇的过程涉及清道夫受体B类Ⅰ型(scavenger receptor class B type Ⅰ, SR-BⅠ)介导的HDL-C选择性脂质摄取,肝脏SR-BⅠ表达上调可加速HDL-C在血液中清除[32]。细胞质膜是ABCG1促进细胞中胆固醇与HDL结合向外排的主要部位,ABCG1可通过扩散或碰撞机制将胆固醇从质膜的内小叶转移到外小叶,转移到细胞外胆固醇受体[33]。卵磷脂胆固醇脂酰转移酶(lecithin cholesterol acyltransferase, LCAT)可介导胆固醇酯化与HDL颗粒重塑,促进胆固醇从外周组织向血液运输[34],HDL通过胆固醇酯转移蛋白介导的转移途径间接将HDL转移到载脂蛋白B(apolipoprotein B, ApoB),并输送到肝脏[35]。LXR能激活细胞中ATP结合盒转运蛋白A1(ATP-binding cassette protein A1, ABCA1),ABCA1是ATP结合盒转运蛋白膜转运体家族的一类胞膜蛋白,介导HDL颗粒形成,是脂质从细胞向载脂蛋白转移的关键调节因子,在HDL的形成中起着关键作用[36-37]。载脂蛋白A-Ⅰ(apolipoprotein A-Ⅰ, ApoA-Ⅰ)是HDL的主要蛋白成分,ApoA-Ⅰ/ABCA1反应体系包括3个步骤:首先,ApoA-Ⅰ的一个小的调节池与ABCA1结合,从而促进磷脂向质膜外小叶的净转运,导致磷脂双层的2个小叶的侧向堆积密度不均匀;然后,通过弯曲和产生囊外脂质结构域来减轻膜应变,高弯曲膜表面的形成促进了ApoA-Ⅰ与这些结构域的高亲和力结合;最后,这个结合的ApoA-Ⅰ池溶解外泡结构域,以产生盘状新生的高密度脂蛋白颗粒。这些颗粒含有2、3或4个ApoA-Ⅰ分子和1个膜磷脂类补体以及一些胆固醇[38]

SREBP2不但介导胆固醇生物合成基因表达,并同时抑制前蛋白转化酶枯草溶菌素9(proprotein convertase, subtilisin/kexin type 9, PCSK9)蛋白表达,而PCSK9可促进LDL及VLDL降解因子表达,降低血浆LDL及VLDL含量[28, 39]。LXR不但协同SREBP1c因子并提高肝脏对VLDL合成和分泌[40],而且LXR可通过调控LDLR与细胞内胆固醇结合,控制稳态组织胆固醇浓度[41]

miRNA在调节胆固醇转运的多个步骤中的发挥作用。miRNA参与调控RCT的大部分步骤,包括HDL的生物合成、肝细胞对HDL-C的摄取、胆汁酸的合成和分泌等[10]。已被证实,多种miRNA负调控载脂蛋白因子转录。HDL可通过结合二价阳离子转运内源性miRNA[42],且SREBP转录因子可刺激miRNA-33a/b的表达,表明机体部分miRNA与其靶基因存在一定的反馈关系[43]

3.1 miRNA调控HDL代谢

miRNA-33主要有miRNA-33a与miRNA-33b,其分别位于人体SREBP2和SREBP1基因的内含子中,两者具有相同的种子序列,只有2个核苷酸不同[44],而小鼠、鸡等动物由于miRNA-33b编码区部分缺失,miRNA-33b不能表达,只存在miRNA-33a[45];miRNA-33a/b均可在鱼类中表达,且表达量较低,其被认为在鱼类调控胆固醇代谢中不起主导作用[46]。miRNA-33a和miRNA-30b可与LXR靶基因ABCA1和ABCG1的3′UTR序列互补结合,抑制ABCA1和ABCG1表达,控制胆固醇稳态[47-48]。ABCA1是HDL合成及结合胆固醇排出的调控因子,它的3′UTR长度超过3 000 bp,包括许多miRNA结合位点,已知其存在3个与miRNA-33高度保守的结合靶位点互补区域,在人和小鼠肝细胞和巨噬细胞中过表达miRNA-33,可抑制ABCA1的mRNA表达,且抑制胆固醇与ApoA-Ⅰ和HDL结合[45, 49]。当抑制miRNA-33a/b表达,能提高肝脏ABCA1基因的表达,使血浆HDL含量显著提高,促进胆固醇向肝脏转运[50-51]。也有学者发现,miRNA-33a和miRNA-10b不仅调节ABCA1,而且可靶向ABCG1(仅在小鼠中),并增强这些miRNA对HDL-C代谢和RCT的影响[45, 50]。当细胞中胆固醇含量降低时,miRNA-758可以通过抑制ABCA1表达,保留神经中的胆固醇[52],miRNA-182和miRNA-183也通过影响核SREBP的积累来控制胆固醇的稳态[53]

miRNA-223可通过抑制SREBP2转录来控制胆固醇稳态。当胆固醇缺乏,miRNA-223转录和表达降低,且抑制miRNA-223可减轻肝细胞对胆固醇生物合成和摄取的抑制,并防止胆固醇与HDL结合形成HDL-C,提高细胞胆固醇含量[19]。除了控制胆固醇的生物合成,在人类中,miRNA-223还通过控制靶向SR-BⅠ的3′UTR的表达来抑制HDL-C的摄取[19],且SR-BⅠ可被miRNA-185靶向调节,但具体机制仍不明确。除此之外,miRNA-223还参与机体炎症反应,并与大部分炎症标志物因子呈正相关[54]

3.2 miRNA调控LDL代谢

miRNA-130b和miRNA-301b位于人类22号染色体上一个与总胆固醇和HDL-C水平异常相关的位点上。这2个miRNA共享相同的种子序列,并被预测以相同的代谢因子为靶点,2种miRNA都直接靶向LDLR和ABCA1的3′UTR,从而显著降低了人肝癌细胞和小鼠巨噬细胞中LDL-C的摄取和与ApoA-Ⅰ的结合以及胆固醇的流出[55]。miRNA-148a直接作用于LDLR的3′UTR,miRNA-148a过表达和抑制分别显著降低和提高小鼠肝脏LDLR表达[17]。SREBP2可控制PCSK9的表达,而PCSK9可通过降解可介导LDLR转录来控制LDL-C代谢[41];与miRNA-185相似,LXR介导的SREBP1c诱导导致miRNA-148a表达量增加。miRNA-128-1通过直接靶向LDLR和ABCA1的3′UTR调控人肝癌细胞和小鼠巨噬细胞胆固醇向ApoA-Ⅰ的流出[55]

3.3 miRNA调控VLDL代谢

miRNA-122和miRNA-30c是人体内通过控制VLDL分泌和胆固醇生物合成而改变血浆LDL-C的miRNA,且miRNA-122在物种间高度保守[56]。miRNA-122a和miRNA-122b这2种亚型均存在于虹鳟鱼中,而人与鼠只存在单一亚型miRNA-122a[57-58];此外,miRNA-122在虹鳟和高等脊椎动物肝脏中特异性表达,且表达量都很高[59]。Chang等[60]认为人和鼠中miRNA-122靶基因是阳离子氨基酸转运载体1(cationic amino acid transporter 1, CAT1),但Cirera等[61]用高胆固醇饲粮饲喂哥廷根小型猪的研究发现,肝脏miRNA-122表达量下降,但CAT1表达量无显著差异。

miRNA-30c通过直接靶向微粒体甘油三酯转移蛋白减少脂质合成和ApoB的分泌来控制血浆胆固醇水平[62]。Jeon等[53]发现,miRNA-182和miRNA-96可分别靶向F-box和WD重复结构域7(F-box and WD repeat domain-containing7, Fbxw7)和胰岛素诱导基因2(insulin-induced gene 2, INSIG2)的抑制表达,这2种蛋白限制细胞核SREBP积累,INSIG2降低细胞膜膜结合SREBP前体的蛋白水解酶活性,Fbxw7是E3泛素连接酶,通过蛋白酶体靶向核中SREBP的转换。

4 miRNA调控胆固醇分解代谢

胆固醇是构成细胞膜的成分,可通过调控细胞膜流动性来维持细胞膜稳定,同时也是胆汁酸、性激素、维生素D及肾上腺皮质激素等机体生理活性物质的重要合成原料[63]。胆固醇可分解为胆汁酸参与机体脂代谢,且胆汁酸完全由肝脏中的胆固醇合成。胆汁酸合成速率主要受胆固醇7α-羟化酶(cholesterol 7alpha-hydroxylase, CYP7A1)转录调控,CYP7A1是编码胆汁酸合成途径中的限速酶,此酶活性增加会导致胆固醇分解代谢加快,从而降低细胞内胆固醇含量[64];除此之外,胆汁酸另一个合成途径限速酶为甾醇27羟化酶(sterol 27-hydroxylase, CYP27A1)[65]。在鼠的研究中发现,CYP7A1是miRNA-33a的靶基因,miRNA-33a可作为一种快速反馈机制靶向抑制CYP7A1的翻译,且CYP7A1可通过将肝脏过量的胆固醇转化为胆汁酸,并反馈激活SREBP2和miRNA-33a,在感知和维持胆固醇稳态方面起主导作用[66]

Tao等[67]对罗非鱼miRNA和mRNA基因组进行测序分析发现,miRNA-21与miRNA-200b负调控细胞色素P450家族11亚科A成员1(cytochrome P450 family 11 subfamily A member 1,CYP11A1),CYP11A1可将胆固醇转化为孕烯雌酮,并参与机体类固醇激素合成。

5 小结

miRNA可通过对胆固醇合成、转运、分解相关靶基因表达进行负调控,且可在血液中被运输。miRNA可以调节参与同一细胞途径或生理过程的多个mRNA的表达,同时,同一个mRNA也可被多个miRNA调控,且miRNA表达与靶基因存在反馈调节。由于动物种属间差异,其miRNA表达量也不同,且存在同一miRNA的不同亚型分别调控同一靶基因的不同亚型的现象,甚至某些动物miRNA亚型缺失。这使得miRNA与靶mRNA调控关系更加复杂,其靶向关系与功能研究尤为重要。

参考文献
[1]
BROWN M S, GOLDSTEIN J L. Sterol regulatory element binding proteins (SREBPs):controllers of lipid synthesis and cellular uptake[J]. Nutrition Reviews, 1998, 56(Suppl.2): S1-S3.
[2]
MCNAMARA D J.CHOLESTEROL|Sources, absorption, function and metabolism[M]//CABALLERO B.Encyclopedia of human nutrition.Amsterdam: Elsevier, 2005, 1(2005): 379-385.
[3]
SOBENIN I A, SALONEN J T, ZHELANKIN A V, et al. Low density lipoprotein-containing circulating immune complexes:role in atherosclerosis and diagnostic value[J]. BioMed Research International, 2014, 2014: 205697.
[4]
TRAJKOVSKA K T, TOPUZOVSKA S. High-density lipoprotein metabolism and reverse cholesterol transport:strategies for raising HDL cholesterol[J]. The Anatolian Journal of Cardiology, 2017, 18(2): 149-154.
[5]
AMBROS V. The functions of animal microRNAs[J]. Nature, 2004, 431(7006): 350-355. DOI:10.1038/nature02871
[6]
KREK A, GRÜN D, POY M N, et al. Combinatorial microRNA target predictions[J]. Nature Genetics, 2005, 37(5): 495-500. DOI:10.1038/ng1536
[7]
WANG Y C, LI Y Y, WANG X Y, et al. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity[J]. Diabetologia, 2013, 56(10): 2275-2285. DOI:10.1007/s00125-013-2996-8
[8]
KIM D, SUNG Y M, PARK J, et al. General rules for functional microRNA targeting[J]. Nature Genetics, 2016, 48(12): 1517-1526. DOI:10.1038/ng.3694
[9]
BAGGA S, BRACHT J, HUNTER S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation[J]. Cell, 2005, 122(4): 553-563. DOI:10.1016/j.cell.2005.07.031
[10]
ROTTIERS V, NÄÄR A M. MicroRNAs in metabolism and metabolic disorders[J]. Nature Reviews Molecular Cell Biology, 2012, 13(4): 239-250. DOI:10.1038/nrm3313
[11]
FLOWERS E, FROELICHER E S, AOUIZERAT B E. MicroRNA regulation of lipid metabolism[J]. Metabolism, 2012, 62(1): 12-20.
[12]
FILIPOWICZ W, BHATTACHARYYA S N, SONENBERG N. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight?[J]. Nature Reviews Genetics, 2008, 9(2): 102-114. DOI:10.1038/nrg2290
[13]
BARTEL D P. MicroRNAs:target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233. DOI:10.1016/j.cell.2009.01.002
[14]
DEBOSE-BOYD R A, YE J. SREBPs in lipid metabolism, insulin signaling, and beyond[J]. Trends in Biochemical Sciences, 2018, 43(5): 358-368. DOI:10.1016/j.tibs.2018.01.005
[15]
BROWN M S, GOLDSTEIN J L. Cholesterol feedback:from Schoenheimer's bottle to Scap's MELADL[J]. Journal of Lipid Research, 2009, 50(Suppl.1): S15-S27.
[16]
MOHAMED A, VIVEIROS A, WILLIAMS K, et al. Aβ inhibits SREBP-2 activation through Akt inhibition[J]. Journal of Lipid Research, 2018, 59(1): 1-13. DOI:10.1194/jlr.M076703
[17]
GOEDEKE L, ROTLLAN N, CANFRÁN-DUQUE A, et al. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels[J]. Nature Medicine, 2015, 21(11): 1280-1289. DOI:10.1038/nm.3949
[18]
YANG M H, LIU W D, PELLICANE C, et al. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake[J]. Journal of Lipid Research, 2014, 55(2): 226-238. DOI:10.1194/jlr.M041335
[19]
VICKERS K C, LANDSTREET S R, LEVIN M G, et al. MicroRNA-223 coordinates cholesterol homeostasis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): 14518-14523. DOI:10.1073/pnas.1215767111
[20]
HE M, KRATZ L E, MICHEL J J, et al. Mutations in the human SC4MOL gene encoding a methyl sterol oxidase cause psoriasiform dermatitis, microcephaly, and developmental delay[J]. Journal of Clinical Investigation, 2011, 121(3): 976-984. DOI:10.1172/JCI42650
[21]
QUINTANA A M, HERNANDEZ J A, GONZALEZ C G. Functional analysis of the zebrafish ortholog of HMGCS1 reveals independent functions for cholesterol and isoprenoids in craniofacial development[J]. PLoS One, 2017, 12(7): e180856.
[22]
HUANG J B, CHEN S J, CAI D L, et al. Long noncoding RNA lncARSR promotes hepatic cholesterol biosynthesis via modulating Akt/SREBP-2/HMGCR pathway[J]. Life Sciences, 2018, 203: 48-53. DOI:10.1016/j.lfs.2018.04.028
[23]
SUN C Z, HUANG F Z, LIU X Y, et al. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR[J]. International Journal of Molecular Medicine, 2015, 35(3): 847-853. DOI:10.3892/ijmm.2015.2076
[24]
SELITSKY S R, DINH T A, TOTH C L, et al. Transcriptomic analysis of chronic hepatitis B and C and liver cancer reveals microrna-mediated control of cholesterol synthesis programs[J]. mBio, 2015, 6(6): e1500-15.
[25]
ZHOU L Y, LI C C, GAO L, et al. High-density lipoprotein synthesis and metabolism (review)[J]. Molecular Medicine Reports, 2015, 12(3): 4015-4021. DOI:10.3892/mmr.2015.3930
[26]
GIBBONS G F, WIGGINS D, BROWN A M, et al. Synthesis and function of hepatic very-low-density lipoprotein[J]. Biochemical Society Transactions, 2004, 32(1): 59-64.
[27]
SNIDERMAN A, THOMAS D, MARPOLE D, et al. Low density lipoprotein:a metabolic pathway for return of cholesterol to the splanchnic bed[J]. Journal of Clinical Investigation, 1978, 61(4): 867-873. DOI:10.1172/JCI109012
[28]
RONG S X, CORTÉS V A, RASHID S, et al. Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice[J]. eLife, 2017, 6: e25015. DOI:10.7554/eLife.25015
[29]
BOBIN-DUBIGEON C, CHAUVIN A, BRILLAUD-MEFLAH V, et al. Liver X receptor (LXR)-regulated genes of cholesterol trafficking and breast cancer severity[J]. Anticancer Research, 2017, 37(10): 5495-5498.
[30]
WANG N, RANALLETTA M, MATSUURA F, et al. LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26(6): 1310-1316. DOI:10.1161/01.ATV.0000218998.75963.02
[31]
KENNEDY M A, BARRERA G C, NAKAMURA K, et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation[J]. Cell Metabolism, 2005, 1(2): 121-131.
[32]
HOEKSTRA M, SORCI-THOMAS M. Rediscovering scavenger receptor type BⅠ:surprising new roles for the HDL receptor[J]. Current Opinion in Lipidology, 2017, 28(3): 255-260. DOI:10.1097/MOL.0000000000000413
[33]
YANCEY P G, BORTNICK A E, KELLNER-WEIBEL G, et al. Importance of different pathways of cellular cholesterol efflux[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23(5): 712-719. DOI:10.1161/01.ATV.0000057572.97137.DD
[34]
FOTAKIS P, KUIVENHOVEN J A, DAFNIS E, et al. The effect of natural LCAT mutations on the biogenesis of HDL[J]. Biochemistry, 2015, 54(21): 3348-3359. DOI:10.1021/acs.biochem.5b00180
[35]
HUNT J A, LU Z J. Cholesteryl ester transfer protein (CETP) inhibitors[J]. Current Topics in Medicinal Chemistry, 2009, 9(5): 419-427. DOI:10.2174/156802609788340823
[36]
TALL A R, WANG N. Tangier disease as a test of the reverse cholesterol transport hypothesis[J]. The Journal of Clinical Investigation, 2000, 106(10): 1205-1207. DOI:10.1172/JCI11538
[37]
SCHMITZ G, LANGMANN T. Structure, function and regulation of the ABC1 gene product[J]. Current Opinion in Lipidology, 2001, 12(2): 129-140. DOI:10.1097/00041433-200104000-00006
[38]
VEDHACHALAM C, DUONG P T, NICKEL M, et al. Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-Ⅰ and formation of high density lipoprotein particles[J]. Journal of Biological Chemistry, 2007, 282(34): 25123-25130. DOI:10.1074/jbc.M704590200
[39]
ISHIBASHI M, MASSON D, WESTERTERP M, et al. Reduced VLDL clearance in Apoe-/-Npc1-/- mice is associated with increased Pcsk9 and Idol expression and decreased hepatic LDL-receptor levels[J]. Journal of Lipid Research, 2010, 51(9): 2655-2663. DOI:10.1194/jlr.M006163
[40]
OKAZAKI H, GOLDSTEIN J L, BROWN M S, et al. LXR-SREBP-1c-phospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size[J]. Journal of Biological Chemistry, 2010, 285(9): 6801-6810. DOI:10.1074/jbc.M109.079459
[41]
ZELCER N, HONG C, BOYADJIAN R, et al. LXR regulates cholesterol uptake through idol-dependent ubiquitination of the LDL receptor[J]. Science, 2009, 325(5936): 100-104. DOI:10.1126/science.1168974
[42]
VICKERS K C, PALMISANO B T, SHOUCRI B M, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins[J]. Nature Cell Biology, 2011, 13(4): 423-433. DOI:10.1038/ncb2210
[43]
JEON T I, OSBORNE T F. miRNA and cholesterol homeostasis[J]. Biochimica et Biophysica Acta:Molecular and Cell Biology of Lipids, 2016, 1861(12): 2041-2046. DOI:10.1016/j.bbalip.2016.01.005
[44]
DÁVALOS A, GOEDEKE L, SMIBERT P, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(22): 9232-9237. DOI:10.1073/pnas.1102281108
[45]
RAYNER K J, SUÁREZ Y, DÁVALOS A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis[J]. Science, 2010, 328(5985): 1570-1573. DOI:10.1126/science.1189862
[46]
CHI W, TONG C B, GAN X N, et al. Characterization and comparative profiling of miRNA transcriptomes in bighead carp and silver carp[J]. PLoS One, 2011, 6(8): e23549. DOI:10.1371/journal.pone.0023549
[47]
MARQUART T J, ALLEN R M, ORY D S, et al. miR-33 links SREBP-2 induction to repression of sterol transporters[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(27): 12228-12232. DOI:10.1073/pnas.1005191107
[48]
GERIN I, CLERBAUX L A, HAUMONT O, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation[J]. Journal of Biological Chemistry, 2010, 285(44): 33652-33661. DOI:10.1074/jbc.M110.152090
[49]
NAJAFI-SHOUSHTARI S H, KRISTO F, LI Y X, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis[J]. Science, 2010, 328(5985): 1566-1569. DOI:10.1126/science.1189123
[50]
HORIE T, ONO K, HORIGUCHI M, et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2(Srebp2) regulates HDL in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17321-17326. DOI:10.1073/pnas.1008499107
[51]
RAYNER K J, ESAU C C, HUSSAIN F N, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides[J]. Nature, 2011, 478(7369): 404-407. DOI:10.1038/nature10486
[52]
LIU J P, TANG Y, ZHOU S F, et al. Cholesterol involvement in the pathogenesis of neurodegenerative diseases[J]. Molecular and Cellular Neuroscience, 2009, 43(1): 33-42.
[53]
JEON T I, ESQUEJO R M, ROQUETA-RIVERA M, et al. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis[J]. Cell Metabolism, 2013, 18(1): 51-61. DOI:10.1016/j.cmet.2013.06.010
[54]
WU X L, YANG J H, YU L, et al. Plasma miRNA-223 correlates with risk, inflammatory markers as well as prognosis in sepsis patients[J]. Medicine, 2018, 92(27): e11352.
[55]
WAGSCHAL A, NAJAFI-SHOUSHTARI S H, WANG L F, et al. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis[J]. Nature Medicine, 2015, 21(11): 1290-1297. DOI:10.1038/nm.3980
[56]
GOEDEKE L, WAGSCHAL A, FERNÁNDEZ-HERNANDO C, et al. miRNA regulation of LDL-cholesterol metabolism[J]. Biochimica et Biophysica Acta:Molecular and Cell Biology of Lipids, 2016, 1861(12): 2047-2052. DOI:10.1016/j.bbalip.2016.03.007
[57]
MENNIGEN J A, PANSERAT S, LARQUIER M, et al. Postprandial regulation of hepatic microRNAs predicted to target the insulin pathway in rainbow trout[J]. PLoS One, 2012, 7(6): e38604. DOI:10.1371/journal.pone.0038604
[58]
TSAI W C, HSU S D, HSU C S, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis[J]. Journal of Clinical Investigation, 2012, 122(8): 2884-2897. DOI:10.1172/JCI63455
[59]
RAMACHANDRA R K, SALEM M, GAHR S, et al. Cloning and characterization of microRNAs from rainbow trout (Oncorhynchus mykiss):their expression during early embryonic development[J]. BMC Developmental Biology, 2008, 8: 41. DOI:10.1186/1471-213X-8-41
[60]
CHANG J H, NICOLAS E, MARKS D, et al. miR-122, a Mammalian liver-specific microRNA, is processed from hcr mRNA and maydownregulate the high affinity cationic amino acid transporter CAT-1[J]. RNA Biology, 2004, 1(2): 106-113. DOI:10.4161/rna.1.2.1066
[61]
CIRERA S, BIRCK M, BUSK P K, et al. Expression profiles of miRNA-122 and its target CAT1 in minipigs (Sus scrofa) fed a high-cholesterol diet[J]. Comparative Medicine, 2010, 60(2): 136-141.
[62]
SOH J, IQBAL J, QUEIROZ J, et al. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion[J]. Nature Medicine, 2013, 19(7): 892-900. DOI:10.1038/nm.3200
[63]
FIELDING C J, FIELDING P E. Molecular physiology of reverse cholesterol transport[J]. Journal of Lipid Research, 1995, 36(2): 211-228.
[64]
CHIANG J Y L. Bile acids:regulation of synthesis[J]. Journal of Lipid Research, 2009, 50(10): 1955-1966. DOI:10.1194/jlr.R900010-JLR200
[65]
CORTES V A, BUSSO D, MARDONES P, et al. Retracted:advances in the physiological and pathological implications of cholesterol[J]. Biological Reviews, 2013, 88(4): 825-843. DOI:10.1111/brv.12025
[66]
LI T G, FRANCL J M, BOEHME S, et al. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice[J]. Hepatology, 2013, 58(3): 1111-1121.
[67]
TAO W J, SUN L N, SHI H J, et al. Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation[J]. BMC Genomics, 2016, 17: 328. DOI:10.1186/s12864-016-2636-z