动物营养学报    2020, Vol. 32 Issue (11): 4998-5005    PDF    
断奶仔猪肠道菌群结构特征及其调控研究进展
王文文1,2 , 王园1,2 , 安晓萍1,2 , 齐景伟1,2     
1. 内蒙古农业大学动物科学学院, 呼和浩特 010018;
2. 内蒙古自治区草食家畜饲料工程技术研究中心, 呼和浩特 010018
摘要: 仔猪断奶腹泻是由断奶应激引起的一系列复杂生理变化所致,是导致仔猪死亡的主要原因。大量研究显示,肠道菌群结构紊乱普遍发生于腹泻仔猪中,通过调节肠道菌群结构可以缓解仔猪断奶腹泻。因此,本文就断奶前后仔猪肠道菌群结构变化、断奶腹泻仔猪肠道菌群结构特征及其调控措施进行了综述,以期为缓解和阻止仔猪断奶腹泻提供理论参考。
关键词: 断奶仔猪    腹泻    肠道菌群    高通量测序技术    
Research Advances on Structural Characteristics and Modulation of Gut Microbiota of Weaned Piglets
WANG Wenwen1,2 , WANG Yuan1,2 , AN Xiaoping1,2 , QI Jingwei1,2     
1. College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China;
2. Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
Abstract: Post-weaning diarrhea is caused by a series of complex physiological changes caused by weaning stress, which is a major cause of mortality. A large number of studies have shown that there is a gut microbial disorder in diarrhea piglets, and post-weaning diarrhea can be alleviated though modulating gut microbiota composition. Therefore, this review focused on changes of gut microbiota structure in the pre-weaning and post-weaning period, the structural characteristics of gut microbiota in the post-weaning diarrhea of piglet and regulation of gut microbiota, in order to provide theoretical reference for alleviating and preventing post-weaning diarrhea.
Key words: weaned piglets    diarrhea    gut microbiota    high-throughput sequencing technology    

仔猪早期断奶技术可以提高生产效率,是养猪业重要的饲养管理技术之一。然而早期断奶会产生应激,发生断奶应激综合征,损害仔猪健康,给猪生产造成了巨大的经济损失。断奶应激综合征中最为严重的是腹泻问题。仔猪断奶腹泻的病因呈现交叉性,断奶应激是导致仔猪腹泻的根本原因,微生物感染是继发性病因。近年来研究发现,不论是何种原因导致的仔猪断奶腹泻都会引起肠道菌群多样性下降和结构改变。稳定的肠道菌群不仅可以阻止产肠毒素大肠杆菌(enterotoxigenic Escherichia coli,ETEC)、艰难梭菌(Clostridium difficile)、鼠伤寒沙门氏菌(Salmonella typhimurium)等致腹泻性病原菌的定植[1],还在调控动物机体健康中发挥着重要作用,如营养物质消化、免疫应答、肠道屏障、肠肌反射及内分泌等多种生理活动[2]。一旦肠道菌群结构紊乱,就会引起菌群易位、细胞凋亡、肠道通透性增加、炎症及肠道功能紊乱等不良反应,进而导致腹泻、生长性能下降甚至死亡。随着测序技术的普及,采用高通量测序技术研究仔猪肠道菌群已成为热点。目前,主要通过饲粮干预的方式调控肠道菌群结构,进而缓解仔猪断奶腹泻,也有科研人员尝试通过粪菌移植(fecal microbiota transplantation,FMT)的方式调节肠道菌群结构,这对“减抗”和“禁抗”有重要意义。因此,本文将从断奶前后仔猪肠道菌群结构变化、断奶腹泻仔猪肠道菌群结构特征及其调控措施等方面加以综述。

1 肠道菌群在调控肠道健康中的作用

肠道菌群是肠道的重要组成部分,与营养物质代谢、肠道屏障功能和免疫应答等密切相关,直接影响动物健康。肠道菌群以不能被宿主内源酶消化的饲料残渣为底物,其中纤维类物质可被拟杆菌属(Bacteroides)、瘤胃球菌属(Ruminococcus)、柔嫩梭菌属(Faecalibacterium prausnitzi)及罗斯氏菌属(Roseburia)等肠道菌降解产生短链脂肪酸(SCFAs),为肠上皮细胞供能[3];蛋白质可被梭菌属(Clostridium)、链球菌属(Streptococcus)及乳杆菌属(Lactobacillus)等肠道菌降解为小肽和氨基酸,进而被宿主利用[4]。此外,唾液乳杆菌(Lactobacillus salivarius)可分泌胆酸盐水解酶,调节胆汁酸代谢,进而影响脂类的利用[5]。除参与营养物质代谢外,肠道菌群还可通过直接和间接2种方式抑制致病菌的增殖,阻止其入侵和大量繁殖。肠道菌群的直接抑菌机理为:与致病菌竞争营养物质,某些肠道菌群可以分泌唾液酸酶,利用与结肠黏蛋白2共价连接的低聚糖,释放唾液酸获得能量,而沙门氏菌(Salmonella)和Clostridium difficile无法分泌唾液酸酶[1, 6]。另外,肠道菌群定植可诱导白细胞介素-22(interleukin-22,IL-22)的产生,IL-22可增强宿主肠道黏液的糖基化修饰,从而促进考拉杆菌属(Phascolarctobacterium)的生长,而Phascolarctobacterium可与Clostridium difficile竞争琥珀酸盐以抑制后者定植[7]。肠道菌群的间接抑菌机理为:调节肠上皮功能和激活先天免疫及适应性免疫,可以通过分泌细菌素、抗菌肽[8]、次级胆汁酸[9]及细胞接触依赖性抑制结构(Ⅵ型分泌系统)[10]等方式实现。格氏乳酸杆菌(Lactobacillus gasseri)LA39和弗氏乳酸杆菌(Lactobacillus frumenti)可分泌gassericin A细菌素,通过靶向调控仔猪肠上皮功能来发挥腹泻抗性,从而阻止断奶腹泻的发生[11]

2 断奶对仔猪肠道菌群结构的影响

新生仔猪肠道菌群的定植在出生后立即开始,此后随着肠腔环境改变、饲粮结构调整以及断奶应激的发生,肠道内特定菌群的定植位点发生转变,菌群结构也发生变化。最初的定植者是来自母体和环境中的微生物,大多是需氧或兼性厌氧细菌,如大肠杆菌(Escherichia coli)、福氏志贺菌(Shigella flexnerii)和Streptococcus。这些细菌消耗氧气,从而创造一个有利于厌氧菌生长的厌氧环境,如BacteroidesClostridium、双歧杆菌属(Bifidobacterium)和Lactobacillus,最终抑制需氧菌的定植[12-13]。仔猪肠道寄居的细菌主要有五大类(门水平),分别为厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)、螺旋菌门(Spirochaetes)和柔膜菌门(Tenericutes),其中Firmicutes和Bacteroidetes为优势菌门。断奶不会影响门水平上细菌的种类,但会改变其相对丰度,主要是由Firmicutes向Bacteroidetes转变[14]。然而在科和属水平上,断奶前后发生了显著的变化,拟杆菌科(Bacteroidaceae)、韦荣球菌科(Veillonellaceae)、梭菌科(Clostridiaceae)、肠球菌科(Enterococcaceae)和Bacteroides为断奶前仔猪肠道的优势菌,而乳杆菌科(Lactobacillaceae)、毛螺旋菌科(Lachnospiraceae)、瘤胃球菌科(Ruminococcaceae)、肠杆菌科(Enterobacteriaceae)、普雷沃菌科(Prevotellaceae)、普雷沃菌属(Prevotella)、LactobacillusClostridium为断奶后仔猪肠道的优势菌[15-17]。断奶后Enterobacteriaceae(包含ETEC和Salmonella typhimurium)的相对丰度增加,会导致腹泻和炎症[16]。另外,Bacteroides的相对丰度降低[14]。肠道菌群与仔猪是共生关系,任何时候肠道菌群种类和数量变化都有可能导致肠道菌群紊乱,影响机体正常的生理活动,发生疾病。Bacteroides具有促进派伊尔小结的B淋巴细胞分化产生免疫球蛋白A(IgA)+细胞的作用,产生分泌型免疫球蛋白A(sIgA)参与肠道黏膜免疫反应,抵抗致病菌的入侵[18],断奶后Bacteroides的相对丰度降低,导致sIgA含量降低,进而导致仔猪免疫力下降,这可能与断奶腹泻的发生有关。

3 断奶腹泻仔猪的肠道菌群结构特征

一般认为,仔猪肠道菌群结构紊乱容易引起腹泻,而腹泻又会加重肠道菌群结构的紊乱。研究发现,断奶腹泻仔猪的肠道菌群结构异常,主要表现为多样性下降,致病菌相对丰度增加,共生菌相对丰度降低。通过采用平板计数法对特定细菌进行测定后发现,腹泻仔猪粪便中总细菌、BifidobacteriumLactobacillus的数量降低,Escherichia coli的数量有增加的趋势[19]。近年来研究发现,腹泻不会影响Firmicutes和Bacteroidetes的主导地位,但会降低Bacteroidetes的相对丰度[20],增加疣微菌门(Verrucomicrobia)和Proteobacteria的相对丰度[21]。Verrucomicrobia会降低黏蛋白的分泌,而黏蛋白可在肠道表面形成一层黏液层抵抗致病菌入侵[22]。Proteobacteria中包括Escherichia coli、螺杆菌属(Helicobacter)、弯曲菌属(Campylobacter)及Salmonella等致病菌属,其相对丰度的增加可能会加剧腹泻。在属水平上,克雷伯氏菌属(Klebsiella)、Lactobacillus和埃希氏-志贺菌属(Escherichia-Shigella)相对丰度升高,BacteroidesLachnoclostridiumRuminococcus相对丰度下降,其中Escherichia-ShigellaKlebsiella均为致病菌。BacteroidesRuminococcus均为纤维降解菌,其相对丰度的降低会影响SCFAs的产量,而SCFAs在维持肠道屏障、缓解炎症、调节免疫及介导肠道病原菌的定植等方面具有重要作用[23],其含量的降低会影响仔猪的健康。在科水平上,Dou等[24]研究发现,腹泻仔猪粪便中Enterobacteriaceae、Clostridiaceae、梭杆菌科(Fusobacteriaceae)及棒状杆菌科(Corynebacteriaceae)相对丰度增加,而Fusobacteriaceae和Corynebacteriaceae与慢性炎症相关。

4 仔猪肠道菌群的调控 4.1 益生菌

断奶应激常伴随着肠道内有益菌数量的减少和致病菌数量的增加。益生菌通过竞争排斥调节肠道菌群结构,提高肠道屏障功能,对肠腔中的有害物质和致病菌进行有效隔离,进而预防和阻止仔猪断奶腹泻。在猪生产中,常用的益生菌有芽孢杆菌类、乳酸菌类和酵母菌类等。胡远亮[25]利用变性梯度凝胶电泳分析发现,枯草芽孢杆菌(Bacillus subtilis)可以增加仔猪肠道菌群多样性指数和条带,可减少Escherichia coli相对丰度,增加Lactobacillus相对丰度。饲粮中添加Lactobacillus frumenti不仅可以提高仔猪肠道中Lactobacillus frumentiLactobacillus gasseri LA39、青春双歧杆菌(Parabacteroides distasonis)和特鲁利斯酿酒酵母菌(Kazachstania telluris)等有益菌的相对丰度,降低脱硫脱硫弧菌(Desulfovibrio desulfuricans)和扁平云假丝酵母菌(Candida humilis)等机会致病菌的相对丰度,还可提高紧密连接蛋白的蛋白表达水平及sIgA的mRNA表达水平[26]。研究发现,乳酸可通过增加紧密连接蛋白表达,维持上皮屏障,抵抗病原菌的入侵[27]。益生菌预保护作用可能是通过促进Lactobacillus frumentiLactobacillus gasseri LA39等乳酸菌的增殖,增加乳酸的含量,上调紧密连接蛋白表达,提高肠道屏障功能实现的。在肠道菌群紊乱的情况下,添加益生菌可改善肠道菌群结构,进而缓解仔猪断奶腹泻。Pan等[28]和Che等[29]研究相继发现,在ETEC攻毒条件下,添加益生菌仍可促进Lactobacillus的增殖,并抑制Escherichia coli的增殖,缓解断奶腹泻。Li等[30]研究鼠李糖乳杆菌(Lactobacillus rhamnosus)对ETEC攻毒断奶仔猪的影响,结果发现,低剂量Lactobacillus rhamnosus可以调节肠道菌群结构,缓解由ETEC攻毒引起的急性炎症反应和腹泻;但高剂量Lactobacillus rhamnosus减少了回肠食糜中LactobacilliusBacteroides的相对丰度,且Toll样受体2(TLR2)、Toll样受体9(TLR9)和肿瘤坏死因子-α(TNF-α)等与免疫相关基因的mRNA表达降低。LactobacilliusBacteroides相对丰度的降低,可能会减少sIgA的分泌,且肠道pH会增加,容易诱发仔猪断奶腹泻。因此,益生菌在使用过程中需要精确地探究其对不同动物的适宜剂量,且其分子机制仍需要进一步研究。

4.2 有机酸

断奶腹泻发生后,致病菌大量繁殖,脂多糖释放增加,仔猪肠道发生炎症。有机酸,如苯甲酸、SCFAs、长链脂肪酸及丁酸钠等,因其具有抑制病原菌、促进肠道发育、调节肠道菌群和缓解炎症等作用[31],常被添加在仔猪饲粮中。有机酸可降低肠道pH,抑制致病菌的生长。Chen等[32]研究发现,在断奶仔猪饲粮中添加苯甲酸可增加回肠中芽孢杆菌属(Bacillus)和Lactobacillus的数量,降低Escherichia coli的数量,且可降低空肠pH。有机酸除了可以抑制致病菌的生长,还可通过调节肠道菌群结构减少炎症反应,这对缓解仔猪断奶腹泻具有重要作用。Li等[33]研究发现,有机酸能够降低仔猪肠道中Escherichia-Shigella和Verrucomicrobia的相对丰度,提高Prevotella的相对丰度和丙酸及丁酸等SCFAs的含量。研究显示,Escherichia-Shigella和Verrucomicrobia的相对丰度均与炎症呈正相关[34-35]Prevotella是一种纤维降解菌,可分泌β-葡聚糖酶、甘露糖酶和木聚糖酶来降解植物源饲料中的纤维类物质[36],增加SCFAs的含量,这对提高断奶仔猪营养物质消化率和保持健康有积极影响。研究发现,丁酸除了可以为肠上皮细胞提供能量,促进其增殖外,还可缓解炎症,一是通过激活肠道巨噬细胞和树突状细胞上的G蛋白偶联受体109A(GPR109A),促进T细胞分化,促进抗炎因子白细胞介素-10(interleukin-10,IL-10)的表达[37];二是通过抑制组蛋白去乙酰化酶(HDACs)的活性下调炎症介质的表达[38]。此外,Wen等[39]报道,丁酸钠可减少结肠中ClostridiumEscherichia coli的总存活数,并可降低血清中TNF-α和白细胞介素-6(interleukin-6,IL-6)的含量,且可降低核转录因子-κB(NF-κB)的mRNA表达量,从而缓解断奶应激引起的腹泻和炎症反应。因此,有机酸可能是通过增加SCFAs产生菌的数量,进而增加SCFAs的含量,降低肠道pH,抑制病原菌增殖,进而缓解仔猪断奶腹泻和炎症。

4.3 植物提取物

植物提取物因其具有多糖、黄酮及多酚等多种生物活性成分,具有调节肠道菌群结构、提高免疫力及抗氧化等作用,这对治疗致病菌感染有一定效果。研究发现,植物提取物-巴西辣椒油可增加仔猪肠道中Lactobacillus的数量,并减少腹泻率[40]。Zhao等[41]从蒲公英根中提取活性成分,研究其对断奶仔猪肠道菌群和免疫功能的影响,结果显示,互营球菌属(Syntrophococcus)的相对丰度和血清中IL-6的含量增加,而狭义梭菌属1(Clostridium sensu_stricto_1)的相对丰度和白细胞介素-4(interleukin-4,IL-4)的含量降低,此结果表明蒲公英根部提取物可通过抑制致病菌和提高免疫力来预防仔猪断奶腹泻。此外。黄芪多糖、白术多糖及枸杞多糖均有调节肠道菌群的作用[42]

4.4 其他

除了益生菌和有机酸可调节肠道菌群结构外,发酵豆粕、抗菌肽及卵黄抗体也可通过调节肠道菌群结构缓解仔猪断奶腹泻。Xie等[43]和Yuan等[44]等研究了发酵豆粕对断奶仔猪的影响,结果发现,发酵豆粕可减少Escherichia coli的数量,增加LactobacillusPrevotella等产丁酸菌的数量,改善肠道健康状况,从而减少腹泻率。Mach等[45]研究发现,Prevotella的相对丰度与sIgA的含量呈正相关。由此推断发酵豆粕可通过增加LactobacillusPrevotella的数量,以增加乳酸的含量和促进sIgA的分泌,提高仔猪抗病力,缓解仔猪断奶腹泻。抗菌肽CWA同样可减少Escherichia coli的数量,增加Lactobacillus的数量,增加SCFAs含量,增强肠道屏障功能,进而缓解断奶仔猪肠道炎症,是治疗仔猪断奶腹泻的有效物质[46]。Han等[47]在饲粮中添加卵黄抗体,可以减少ETEC攻毒断奶仔猪粪便中Escherichia coli的数量、提高总SCFAs、乙酸和血清中免疫球蛋白M(IgM)的含量,提高免疫力,进而缓解断奶腹泻。卵黄抗体缓解仔猪断奶腹泻的可能机制是SCFAs促进B细胞代谢分化为浆细胞[48],进而增加免疫球蛋白的生成量,从而抵御ETEC的感染。在断奶仔猪饲粮中添加色氨酸,可提高抗菌肽表达,增加Prevotella、布劳特氏菌属(Blautia)、艾克曼菌属(Akkermansia)及Lactobacillus等有益菌的相对丰度,降低Enterobacteriaceae的相对丰度[49]Blautia中的Blautia faecis)和Blautia stercoris能利用肠道中的碳水化合物作为发酵底物,产生乙酸和乳酸[50]Akkermansia不仅与黏液层的形成有关[51],还可诱导叉头状转录因子3(Foxp3)基因调节T细胞分化[52]。色氨酸可能是通过调控肠道菌群结构,进而调节免疫,达到缓解仔猪断奶腹泻的目的。

4.5 FMT技术

FMT技术指将健康仔猪粪便中的功能菌群移植到患病仔猪肠道中,重建肠道菌群以达到治疗腹泻的目的。FMT技术可以重建仔猪肠道菌群,并降低腹泻率。研究发现,将母源粪菌灌喂给仔猪,可暂时改变其肠道菌群结构。22日龄时,仔猪粪便中的梭菌属(Faecalibacterium)和Oribacterium的相对丰度增加,而瘤胃梭菌属(Ruminiclostridium)和未分类的普雷沃氏菌科(unclassified Prevotellaceae)的相对丰度降低[53],后期其对菌群结构的影响基本消失,这可能是母源粪菌失活,无法定殖所致。另有研究发现,将从江香猪的粪便微生物移植到腹泻仔猪肠道中,其肠道菌群结构发生转变,LactobacillusBacteroidesRuminococcus的相对丰度增加,FaecalibacteriumPrevotella的相对丰度降低,显著降低了腹泻率[11]。FMT技术在畜禽生产中的应用还不成熟,如粪菌保存和移植方式,需要深入研究。

综上所述,目前调控仔猪肠道菌群的方式有饲粮干预和FMT技术。益生菌、有机酸、植物提取物及发酵豆粕等可通过调节肠道菌群结构,提高肠道屏障功能,激活免疫及抑制炎症反应等方式缓解仔猪断奶腹泻(表 1),它们均有减少抗生素在饲料中使用的可能。

表 1 饲粮干预手段对断奶仔猪肠道菌群的调控作用 Table 1 Modulation of dietary intervention on gut microbiota of weaned piglets
5 小结与展望

仔猪健康与肠道菌群密切相关,断奶腹泻仔猪普遍存在着肠道菌群紊乱的现象。随着高通量测序技术的普及,研究人员对肠道菌群有了更多的认识,关于断奶腹泻仔猪肠道菌群的结构和功能的研究也不断增多。目前已知仔猪断奶腹泻发生的部分原因是仔猪肠道菌群紊乱,通过调控肠道菌群对防治断奶腹泻有积极作用。但也有许多未解之谜:某些菌种的功能是什么?是否具有种属差异性?如何影响宿主?通过调节肠道菌群结构缓解仔猪断奶腹泻的具体机制是什么?因此,需要深入研究这些问题,明确肠道菌群及其代谢产物调控仔猪生理的具体分子机制,这将为防治仔猪断奶腹泻提供新的策略。此外,测序数据量庞大,需要更为科学的处理和统计方法,这将有助于仔猪肠道菌群的研究。

参考文献
[1]
VOGT S L, FINLAY B B. Gut microbiota-mediated protection against diarrheal infections[J]. Journal of Travel Medicine, 2017, 24(Suppl.1): S39-S43.
[2]
GILBERT J A, BLASER M J, CAPORASO J G, et al. Current understanding of the human microbiome[J]. Nature Medicine, 2018, 24(4): 392-400. DOI:10.1038/nm.4517
[3]
LOPETUSO L R, SCALDAFERRI F, PETITO V, et al. Commensal clostridia:leading players in the maintenance of gut homeostasis[J]. Gut Pathogens, 2013, 5: 23. DOI:10.1186/1757-4749-5-23
[4]
ADIBI S A. The oligopeptide transporter (Pept-1) in human intestine:biology and function[J]. Gastroenterology, 1997, 113(1): 332-340. DOI:10.1016/S0016-5085(97)70112-4
[5]
WANG Z, ZENG X M, MO Y M, et al. Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters[J]. Applied and Environmental Microbiology, 2012, 78(24): 8795-8802. DOI:10.1128/AEM.02519-12
[6]
NG K M, FERREYRA J A, HIGGINBOTTOM S K, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens[J]. Nature, 2013, 502(7469): 96-99. DOI:10.1038/nature12503
[7]
NAGAO-KITAMOTO H, LESLIE J L, KITAMOTO S, et al. Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota[J]. Nature Medicine, 2020, 26(4): 608-617. DOI:10.1038/s41591-020-0764-0
[8]
KOMMINENI S, BRETL D J, LAM V, et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract[J]. Nature, 2015, 526(7575): 719-722. DOI:10.1038/nature15524
[9]
BUFFIE C G, BUCCI V, STEIN R R, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile[J]. Nature, 2015, 517(7533): 205-208. DOI:10.1038/nature13828
[10]
RUSSELL A B, WEXLER A G, HARDING B N, et al. A type Ⅵ secretion-related pathway in Bacteroidetes mediates interbacterial antagonism[J]. Cell Host & Microbe, 2014, 16(2): 227-236.
[11]
胡军.利用贵州从江香猪资源发掘早期断奶仔猪腹泻抗性相关肠道微生物及其作用机制研究[D].博士学位论文.武汉: 华中农业大学, 2019.
[12]
KONSTANTINOV S R, AWATI A A, WILLIAMS B A, et al. Post-natal development of the porcine microbiota composition and activities[J]. Environmental Microbiology, 2006, 8(7): 1191-1199. DOI:10.1111/j.1462-2920.2006.01009.x
[13]
WELLOCK I J, FORTOMARIS J G, HOUDIJK J G M, et al. The effect of dietary protein supply on the performance and risk of post-weaning enteric disorders in newly weaned pigs[J]. Animal Science Journal, 2007, 82: 327-335.
[14]
PAJARILLO E A B, CHAE J P, BALOLONG M P, et al. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition[J]. The Journal of General and Applied Microbiology, 2014, 60(4): 140-146. DOI:10.2323/jgam.60.140
[15]
ALUTHGE N D, VAN SAMBEEK D, CARNEY-HINKLE E E, et al. Board invited review:the pig microbiota and the potential for harnessing the power of the microbiome to improve growth and health[J]. Journal of Animal Science, 2019, 97(9): 3741-3757. DOI:10.1093/jas/skz208
[16]
GUEVARRA R B, LEE J H, LEE S H, et al. Piglet gut microbial shifts early in life:causes and effects[J]. Journal of Animal Science and Biotechnology, 2019, 10: 1. DOI:10.1186/s40104-018-0308-3
[17]
GUEVARRA R B, HONG S H, CHO J H, et al. The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition[J]. Journal of Animal Science and Biotechnology, 2018, 9: 54. DOI:10.1186/s40104-018-0269-6
[18]
YANAGIBASHI T, HOSONO A, OYAMA A, et al. IgA production in the large intestine is modulated by a different mechanism than in the small intestine:Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells[J]. Immunobiology, 2013, 218(4): 645-651. DOI:10.1016/j.imbio.2012.07.033
[19]
闫学艳.健康与腹泻仔猪肠道菌群差异研究及猪源乳酸杆菌的筛选[D].硕士学位论文.南昌: 江西农业大学, 2014.
[20]
汪群.腹泻与健康仔猪粪便菌群的比较及致病菌的分离与耐药性研究[D].硕士学位论文.广州: 华南理工大学, 2019.
[21]
TRAN H, ANDERSON C L, BUNDY J W, et al. Effects of spray-dried porcine plasma on fecal microbiota in nursery pigs[J]. Journal of Animal Sciences, 2018, 96(3): 1017-1031.
[22]
DUBOURG G, LAGIER J C, ARMOUGOM F, et al. High-level colonisation of the human gut by Verrucomicrobia following broad-spectrum antibiotic treatment[J]. International Journal of Antimicrobial Agents, 2013, 41(2): 149-155. DOI:10.1016/j.ijantimicag.2012.10.012
[23]
NICOLAS G R, CHANG P V. Deciphering the chemical lexicon of host-gut microbiota interactions[J]. Trends in Pharmacological Sciences, 2019, 40(6): 430-445. DOI:10.1016/j.tips.2019.04.006
[24]
DOU S, GADONNA-WIDEHEM P, ROME V, et al. Characterisation of early-life fecal microbiota in susceptible and healthy pigs to post-weaning diarrhoea[J]. PLoS One, 2017, 12(1): e0169851. DOI:10.1371/journal.pone.0169851
[25]
胡远亮.利用分子生物技术研究益生菌对断奶仔猪生长及粪便菌群的影响[D].博士学位论文.武汉: 华中农业大学, 2014.
[26]
HU J, CHEN L L, ZHENG W Y, et al. Lactobacillus frumenti facilitates intestinal epithelial barrier function maintenance in early-weaned piglets[J]. Frontiers in Microbiology, 2018, 9: 897. DOI:10.3389/fmicb.2018.00897
[27]
LEE Y S, KIM T Y, KIM Y, et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development[J]. Cell Host & Microbe, 2018, 24(6): 833-846.
[28]
PAN L, ZHAO P F, MA X K, et al. Probiotic supplementation protects weaned pigs against enterotoxigenic Escherichia coli K88 challenge and improves performance similar to antibiotics[J]. Journal of Animal Science, 2017, 95(6): 2627-2639.
[29]
CHE L Q, XU Q, WU C, et al. Effects of dietary live yeast supplementation on growth performance, diarrhoea severity, intestinal permeability and immunological parameters of weaned piglets challenged with enterotoxigenic Escherichia coli K88[J]. British Journal of Nutrition, 2017, 118(1): 949-958.
[30]
LI X Q, ZHU Y H, ZHANG H F, et al. Risks associated with high-dose Lactobacillus rhamnosus in an Escherichia coli model of piglet diarrhoea:intestinal microbiota and immune imbalances[J]. PLoS One, 2012, 7(7): e40666. DOI:10.1371/journal.pone.0040666
[31]
LIU Y L. Fatty acids, inflammation and intestinal health in pigs[J]. Journal of Animal Science and Biotechnology, 2015, 6: 41. DOI:10.1186/s40104-015-0040-1
[32]
CHEN J L, ZHENG P, ZHANG C, et al. Benzoic acid beneficially affects growth performance of weaned pigs which was associated with changes in gut bacterial populations, morphology indices and growth factor gene expression[J]. Journal of Animal Physiology and Animal Nutrition, 2017, 101(6): 1137-1146. DOI:10.1111/jpn.12627
[33]
LI S, ZHENG J, DENG K, et al. Supplementation with organic acids showing different effects on growth performance, gut morphology, and microbiota of weaned pigs fed with highly or less digestible diets[J]. Journal of Animal Science, 2018, 96(8): 3302-3318.
[34]
NAGALINGAM N A, KAO J Y, YOUNG V B. Microbial ecology of the murine gut associated with the development of dextran sodium sulfate-induced colitis[J]. Inflammatory Bowel Diseases, 2011, 17(4): 917-926. DOI:10.1002/ibd.21462
[35]
BROWER-SINNING R, ZHONG D N, GOOD M, et al. Mucosa-associated bacterial diversity in necrotizing enterocolitis[J]. PLoS One, 2014, 9(9): e105046. DOI:10.1371/journal.pone.0105046
[36]
LAMENDELLA R, DOMINGO J W S, GHOSH S, et al. Comparative fecal metagenomics unveils unique functional capacity of the swine gut[J]. BMC Microbiology, 2011, 11: 103. DOI:10.1186/1471-2180-11-103
[37]
SINGH N, GURAV A, SIVAPRAKASAM S, et al. Activation of GPR109A, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40(1): 128-139. DOI:10.1016/j.immuni.2013.12.007
[38]
CHANG P V, HAO L M, OFFERMANNS S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(6): 2247-2252. DOI:10.1073/pnas.1322269111
[39]
ZOU X T, LU J J, WEN Z S. Effects of sodium butyrate on the intestinal morphology and DNA-binding activity of intestinal nuclear factor-κB in weanling pigs[J]. Journal of Animal and Veterinary Advances, 2012, 11(6): 814-821. DOI:10.3923/javaa.2012.814.821
[40]
CAIRO P L G, GOIS F D, SBARDELLA M, et al. Effects of dietary supplementation of red pepper (Schinus terebinthifolius Raddi) essential oil on performance, small intestinal morphology and microbial counts of weanling pigs[J]. Journal of the Science of Food & Agriculture, 2018, 98(2): 541-548.
[41]
ZHAO J B, ZHANG G, ZHOU X J, et al. Effect of Dandelion root extract on growth performance, immune function and bacterial community in weaned pigs[J]. Food and Agricultural Immunology, 2019, 30(1): 95-111. DOI:10.1080/09540105.2018.1548578
[42]
杨玲, 胡睿智, 夏嗣廷, 等. 植物多糖的功能性研究进展及其在动物生产中的应用[J]. 动物营养学报, 2019, 31(6): 2534-2543.
[43]
XIE Z J, HU L S, LI Y, et al. Changes of gut microbiota structure and morphology in weaned piglets treated with fresh fermented soybean meal[J]. World Journal of Microbiology and Biotechnology, 2017, 33(12): 213. DOI:10.1007/s11274-017-2374-7
[44]
YUAN L, CHANG J, YIN Q Q, et al. Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets[J]. Animal Nutrition, 2016, 3(1): 19-24.
[45]
MACH N, BERRI M, ESTELLÉ J, et al. Early-life establishment of the swine gut microbiome and impact on host phenotypes[J]. Environmental Microbiology Reports, 2015, 7(3): 554-569. DOI:10.1111/1758-2229.12285
[46]
YI H B, ZHANG L, GAN Z S, et al. High therapeutic efficacy of Cathelicidin-WA against postweaning diarrhea via inhibiting inflammation and enhancing epithelial barrier in the intestine[J]. Scientific Reports, 2016, 6: 25679. DOI:10.1038/srep25679
[47]
HAN S J, YU H T, YANG F F, et al. Effect of dietary supplementation with hyperimmunized hen egg yolk powder on diarrhoea incidence and intestinal health of weaned pigs[J]. Food and Agricultural Immunology, 2019, 30(1): 333-348. DOI:10.1080/09540105.2019.1581732
[48]
KIM M, QIE Y Q, PARK J, et al. Gut microbial metabolites fuel host antibody responses[J]. Cell Host & Microbe, 2016, 20(2): 202-214.
[49]
李金龙.日粮色氨酸促进抗菌肽表达对肠道微生物区系的调控和ETEC的预防作用[D].硕士学位论文.重庆: 西南大学, 2018.
[50]
PARK S K, KIM M S, BAE J W. Blautia faecis sp.nov.isolated from human faeces[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(2): 599-603.
[51]
ZENG B, HAN S S, WANG P, et al. The bacterial communities associated with fecal types and body weight of rex rabbits[J]. Scientific Reports, 2015, 5: 9342. DOI:10.1038/srep09342
[52]
HAGLAND H R, SØREIDE K. Cellular metabolism in colorectal carcinogenesis:influence of lifestyle, gut microbiome and metabolic pathways[J]. Cancer Letters, 2015, 356(2): 273-280. DOI:10.1016/j.canlet.2014.02.026
[53]
陈雪, 任二都, 苏勇. 早期灌喂母源粪菌对新生仔猪肠道菌群发育的影响[J]. 微生物学报, 2018, 58(7): 1224-1232.