2. 内蒙古自治区草食家畜饲料工程技术研究中心, 呼和浩特 010018
2. Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
在当前“禁抗”和“减抗”的背景下,天然产物的开发和应用成为热点。阿魏酰低聚糖(feruloyl oligosaccharides, FOs)是由阿魏酸羧基与低聚糖羟基通过酯键联接而成的一种阿魏酰衍生物[1]。阿魏酸大量存在于农作物(小米、小麦以及玉米)加工副产品糠麸中,其主要通过酯键与多糖、木质素交联构成植物细胞壁。据报道,通过酸、酶以及发酵处理可以使糠麸中的部分糖苷键断裂,进而获得FOs[2-3]。FOs同时具有阿魏酸和低聚糖的生理功能,如抗氧化、调节免疫、抑制蛋白非酶糖基化反应及益生等[4],因此具备开发成为功能性饲用添加剂的潜力。本文将对FOs的结构与组成、生理功能及其在动物生产中的应用前景进行综述。
1 FOs的制备利用物理法、化学法、生物酶法和微生物发酵法处理麦麸、玉米皮和米糠等原料可获得FOs[5]。物理法是采用机械方式(微波、超声波和高温蒸煮等)降解;化学法是利用化学试剂(草酸、三氟乙酸和盐酸等)水解;生物酶法是利用酶制剂(木聚糖酶、纤维素酶和崩溃酶等)酶解;微生物发酵法是利用菌株自身产生的酶(淀粉酶、蛋白酶和半纤维素酶等)酶解。但是,物理法、化学法和生物酶法存在产量低、降解率高、废液产量大以及工艺复杂等问题,目前主要采用微生物发酵法制备FOs。FOs的制备如表 1所示。Rose等[6]研究发现,在180 ℃的条件下微波处理玉米皮10 min,FOs的得率为4.77%。物理法易造成FOs分解,使其得率下降。Schooneveld-Bergmans等[7]利用氢氧化钙和氢氧化钡处理小麦麸皮也可获得FOs,其得率为3%,此法存在化学物质残留问题。Yuan等[8]的研究结果显示,木聚糖酶酶解小麦麸皮制备FOs的最佳条件为:温度42 ℃,pH 5.2,时间35 h,木聚糖酶添加量4.8 g/L,其产量可达1.5 mmol/L。然而,生物酶法制备FOs会产生大量废水,增加生产成本。此外,郝希然[9]对制备FOs的发酵菌种进行了筛选,发现枯草芽孢杆菌(Bacillus subtilis)、地衣芽孢杆菌D3(Bacillus licheniformis D3)和酿酒酵母(Saccharomyces cerevisiae)发酵小麦麸皮获得的FOs产量最高,可达1 309.46 nmol/g。微生物发酵法制备FOs得率高,不会产生废液,极大地降低了生产成本。
![]() |
表 1 FOs的制备 Table 1 Preparation of FOs |
FOs既含有疏水的阿魏酰基团,又含有亲水的低聚糖基团,可溶于水,耐酸且耐高温。通过气相色谱分析FOs的单糖组成,发现其主要由葡萄糖、阿拉伯糖、木糖、半乳糖和甘露糖组成[10]。FOs的主链是以β-1, 4-糖苷键连接的D-木聚糖,侧链是α-L-呋喃型阿拉伯糖残基,而阿魏酸则通过酯键与阿拉伯糖残基上的O-5位相连。FOs的种类由糖基化单糖的组成和数量、阿魏酸连接的糖残基的种类和连接位置以及阿魏酸的含量和种类决定。据文献报道,利用不同提取方法获得的FOs种类也有所不同,主要有阿魏酰阿拉伯糖、阿魏酰阿拉伯糖基木糖、阿魏酰阿拉伯糖基木二糖、阿魏酰阿拉伯糖基木三糖及阿魏酰阿拉伯糖基木四糖[6, 11-12],参照文献[12-18]总结了不同种类FOs的结构,详见表 2。研究发现,在麦类作物中有一种高度阿魏酰化且分子质量低的阿拉伯木聚糖,其阿拉伯糖与木糖的比例接近1 : 1。在这种FOs中,一些木糖残基在C-2(高阿魏酰化)和C-3(非阿魏酰化)位置被阿拉伯糖取代[19-20]。如果FOs中的阿拉伯糖与木糖的比例和阿魏酸含量较高,所形成的溶液也具有较高的黏度,且更易溶于水[21-22]。
![]() |
表 2 不同种类FOs的结构 Table 2 Structure of different kinds of FOs |
目前,关于FOs的体外降解研究较多,而体内消化吸收机制研究较少。体外试验发现,FOs的完全降解需要阿魏酸酯酶和非淀粉多糖降解酶(主要是木聚糖酶和α-L-阿拉伯糖苷酶)的协同作用[23-24]。体内研究发现,大鼠的小肠和大肠都存在阿魏酸酯酶,且大肠中的阿魏酸酯酶活性更高,可能是大肠中分泌阿魏酸酯酶的微生物(双歧杆菌和乳酸杆菌)更丰富[25-27]。但是,Andreasen等[27]研究发现,FOs被大鼠肠道微生物发酵后,并没有被机体消化,而是全部被排出。由此可推断,FOs的空间结构复杂,几乎不能被单胃动物消化吸收。
4 FOs的生理功能及其作用机制FOs不能被降解吸收,而是作为一种益生元,发挥抗氧化、调节免疫、促进有益菌增殖、抑制有害菌增殖(竞争黏附位点和营养物质及生成挥发性脂肪酸)及优化肠道菌群结构等作用,进而改善动物机体健康状况[28-29]。
4.1 抗氧化在动物机体遭受高温、严寒、通风不良等环境应激时,会产生大量自由基,破坏氧化-抗氧化系统的平衡,进而导致自由基积累,损害动物健康,引起生产性能下降甚至死亡。FOs因其具有阿魏酰基团,表现出良好的抗氧化活性。体外研究发现,从小麦麸皮中提取出4种不同聚合度的FOs均具有清除1, 1-二苯基苦基苯肼(1, 1-diphenyl-2-picrylhydrazyl,DPPH)自由基、超氧化物自由基和羟自由基的活性,且效果优于游离阿魏酸[11]。张丽娜[30]采用生物酶法制备FOs,发现其可减少由高糖诱导的氧化应激肝细胞中活性氧(reactive oxyen species,ROS)的生成量,说明其具有一定的抗氧化活性。另外,FOs可缓解由过氧化氢诱导的人淋巴细胞氧化应激,保护DNA免受过氧化氢的损伤[31]。体内试验发现,利用微生物发酵法制备FOs,将其灌胃给由敌草快诱导的氧化应激模型大鼠,可提高氧化应激大鼠肝脏和回肠中核因子E2相关因子2(nuclear factor erythroid 2 p45-related factor 2, Nrf2)mRNA和蛋白的表达水平以及谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)、过氧化氢酶(catalase, CAT)及超氧化物歧化酶(Superoxide dismutase, SOD)这3种抗氧化酶的mRNA表达水平,提高抗氧化功能,进而发挥氧化防御作用[32]。Wang等[33]研究发现,在杜寒杂交羔羊饲粮中添加100~200 mg/kg FOs可提高其日增重和饲料转化效率,增加血浆中总抗氧化能力(total antioxidant capacity,T-AOC)和还原型谷胱甘肽(reduced glutathione, GSH)的含量,提高抗氧化酶GSH-Px、CAT及SOD的活性。综上所述,FOs的抗氧化作用机制包括:1)作为氢质子或电子供体,与自由基结合,终止自由基链式反应;2)维持动物细胞线粒体的正常功能,减少ROS的生成;3)激活核因子E2相关因子2-抗氧化反应元件(nuclear factor erythroid 2 related factor 2-antioxidant response element, Nrf2-ARE)抗氧化信号通路,诱导抗氧化酶的表达,进而缓解氧化应激。
4.2 免疫调节FOs也可作为一种免疫调节剂,通过促进细胞因子释放、介导与免疫相关的信号通路及激活免疫细胞等方式调控动物机体的免疫功能。Yu等[34]利用出芽短梗霉菌发酵麦麸制备FOs,发现其可增加免疫力低下的荷瘤小鼠的胸腺指数和脾脏指数,且可促进γ-干扰素(interferon-γ,INF-γ)和白细胞介素-3(interleukin-3,IL-3)的分泌,进而提高其免疫力。此外,从大米和玉米皮中提取的FOs同样具有调节免疫反应的作用,其中大米麸皮FOs通过增加Toll样受体-4(Toll-like receptor-4,TLR-4)和Toll样受体-2(Toll-like receptor-2, TLR-2)下游信号分子细胞外信号调节激酶(extracellular signal-regulated kinase, ERK)、p38丝裂原激活蛋白激酶(p38-mitogen-activated protein kinases p38MAPK)和Jun氨基末端激酶(c-Jun N-terminal kinases, JNK)的磷酸化,诱导树突细胞成熟,发挥抗病毒感染的作用[35];而玉米皮FOs可提高小鼠血清半数溶血值和吞噬细胞的吞噬率[36]。免疫调节是机体的一种防御机能,在动物抵御病原体入侵过程中发挥着重要作用。FOs调节免疫的可能机制包括:1)促进免疫器官生长;2)诱导细胞因子分泌;3)通过识别树突细胞表面的模式识别受体TLR-4和TLR-2,从而激活丝裂原激活蛋白激酶(mitogen-activated protein kinase, MAPK)和核因子-κB(nuclear factor-kappa B, NF-κB)信号通路,诱导树突细胞成熟;4)诱导吞噬细胞成熟、分化和增殖,进而发挥免疫调节作用。
4.3 益生FOs不能被宿主内源酶消化,但其可被肠道微生物利用,进而发挥益生作用。体外试验发现,将FOs(生物酶法制备)作为碳源加入到培养基中,两歧双歧杆菌F-35大量增殖,且其菌体生长量与FOs的浓度呈正相关,说明FOs对双歧杆菌具有较强的增殖效果[37]。此外,FOs可提高产生乙酸和乳酸等短链脂肪酸的产量,降低肠道pH[38-39]。FOs还具有抑菌作用。体外抑菌试验发现,木聚糖酶水解麦麸制备的FOs对金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌、沙门氏菌有抑制作用,而对藤黄微球菌及酵母菌没有抑制作用[40]。FOs除了可以在体外促进有益菌的增殖和抑制有害菌的增殖外,还可通过发挥抗氧化作用调节肠道菌群结构。氧化应激会改变动物肠道菌群结构,导致大肠杆菌(Escherichia coli)和肠球菌属(Enterococcus)的数量增加,而乳酸杆菌属(Lactobacillus)的数量减少[41]。Ou等[42]研究表明,以FOs饲喂大鼠,可增加其肠道细菌多样性,增加乳酸杆菌属和瘤胃球菌属(Ruminococcus)的相对丰度,降低梭菌属(Clostridia)和绿脓杆菌属(Turicibacter)的相对丰度。FOs发挥益生作用的可能机制主要包括2个方面:一方面,FOs通过促进有益菌的增殖和短链脂肪酸的产生,从而抑制病原菌的增殖;另一方面,FOs通过调控动物肠道菌群结构,维持肠道微生态的平衡,进而发挥益生作用。
5 FOs在动物生产中的应用前景FOs作为一种功能性低聚糖,广泛应用于食品工业领域。然而,在饲料工业领域,对糠麸类饲料的综合利用远远不足,常将其作为廉价的副产物直接用于饲粮中,造成了资源的浪费。近年来,科研人员加大了对糠麸类饲料的研发。目前,FOs的提取、分离及纯化技术已发展成熟,其生产成本大幅度下降。此外,FOs相较于黄芪多糖、白术多糖、姜黄素及枸杞多糖等抗生素替代品,具有原材料来源广泛、生产成本低及产量高等优点。在集约化养殖模式下,饲养管理措施(去势、免疫及断奶)、饲粮结构变化和活动空间减少均会引起氧化应激。在氧化应激状态下,动物体内产生大量自由基,一者会破坏免疫细胞降低免疫力;二者清除自由基会消耗机体储备,导致生长和生产性能下降;三者氧化应激会改变肠道菌群结构,损伤肠道。FOs因含有阿魏酰和低聚糖基团,有多种生理功能,具有替代抗生素的潜力,这已在模式动物的研究上得到了证实。研究发现,FOs可通过p38MAPK/磷脂酰肌醇-3-激酶(phosphatidylinositol-3-kinase, PI3K)-Nrf2/Kelch样环氧氯丙烷相关蛋白-1(Kelch-like ECH-associated protein 1, Keap1)-肌腱纤维肉瘤蛋白K(masculoaponeurotic fibrosarcoma K, MafK)途径缓解偶氮二异丁基脒盐酸盐[2, 2′-azobis (2-methylpropionamide) dihydrochloride,AAPH]诱导的氧化损伤,促进肝脏、肾脏及心脏中Ⅱ期抗氧化酶SOD、CAT和GSH-Px的转录,并可增加抗氧化物质GSH的含量[43]。本课题组研发的发酵麸皮多糖中含有不同聚合度的FOs[44],在抗炎、调控肠道菌群及提高免疫力方面均有作用。在敌草快引起的炎症状态下,灌胃发酵麸皮多糖可以降低大鼠血浆和肝脏组织中炎性因子肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-6(interleukin-6,IL-6)、白细胞介素-2(interleukin-2,IL-2)和白细胞介素-1β(interleukin-1β,IL-1β)的含量[45]。此外,利用Illumina-HiSeq高通量测序技术分析发酵麸皮多糖对SD大鼠盲肠菌群结构的影响时发现,发酵麸皮多糖可降低拟杆菌门中普氏菌属9(Prevotella_9)的相对丰度,增加厚壁菌门中瘤胃球菌属1(Ruminococcus_1)和粪球菌属1(Coprococcus_1)的相对丰度[46]。Ruminococcus_1和Coprococcus_1都属于短链脂肪酸产生菌,其代谢产物短链脂肪酸可以作用于免疫细胞,通过影响细胞因子释放参与免疫调节,在肠道抵御致病菌的过程中发挥作用[47]。由此可推断,FOs通过调控肠道菌群结构,调节免疫反应,从而提高动物抗病力,减少抗生素在生产中的用量。
6 小结与展望随着“禁抗”“减抗”时代的来临,寻找开发无毒无害的抗生素替代品已成为热点。FOs作为一种功能性低聚糖,具有多种生理功能,且其来源广泛,在动物生产中应用前景广阔,有替代抗生素的潜力。然而,FOs的结构复杂,关于其多种生理功能的分子机制需进行更深入的探索,并且可能还存在一些潜在的生理功能需要进一步开发和研究。此外,还应该对FOs在动物机体内的吸收代谢进行探索,以便更好地应用于生产实践。
[1] |
WANG J, YUAN X P, SUN B G, et al. On-line separation and structural characterisation of feruloylated oligosaccharides from wheat bran using HPLC-ESI-MSn[J]. Food Chemistry, 2009, 115(4): 1529-1541. DOI:10.1016/j.foodchem.2009.01.058 |
[2] |
MAES C, DELCOUR J A. Structural characterisation of water-extractable and water-unextractable arabinoxylans in wheat bran[J]. Journal of Cereal Science, 2002, 35(3): 315-326. DOI:10.1006/jcrs.2001.0439 |
[3] |
KATILEVICIUTE A, PLAKYS G, BUDREVICIUTE A, et al. A sight to wheat bran:high value-added products[J]. Biomolecules, 2019, 9(12): 887. DOI:10.3390/biom9120887 |
[4] |
OU J Y, SUN Z. Feruloylated oligosaccharides:structure, metabolism and function[J]. Journal of Functional Foods, 2014, 7: 90-100. DOI:10.1016/j.jff.2013.09.028 |
[5] |
解春艳, 吴智艳, 杜鹃, 等. 阿魏酰低聚糖研究进展[J]. 食品科学, 2012, 33(7): 336-340. XIE C Y, WU Z Y, DU J, et al. Research progress in feruloyl oligosaccharides[J]. Food Science, 2012, 33(7): 336-340 (in Chinese). |
[6] |
ROSE D J, INGLETT G E. Production of feruloylated arabinoxylo-oligosaccharides from maize (Zea mays) bran by microwave-assisted autohydrolysis[J]. Food Chemistry, 2010, 119(4): 1613-1618. DOI:10.1016/j.foodchem.2009.09.053 |
[7] |
SCHOONEVELD-BERGMANS M E F, HOPMAN A M C P, BELDMAN G, et al. Extraction and partial characterization of feruloylated glucuronoarabinoxylans from wheat bran[J]. Carbohydrate Polymers, 1998, 35(1/2): 39-47. |
[8] |
YUAN X P, WANG J, YAO H Y. Production of feruloyl oligosaccharides from wheat bran insoluble dietary fibre by xylanases from Bacillus subtilis[J]. Food Chemistry, 2006, 95(3): 484-492. DOI:10.1016/j.foodchem.2005.01.043 |
[9] |
郝希然.小麦麸皮阿魏酰低聚糖的发酵制备工艺及其体外抗氧化活性研究[D].硕士学位论文.呼和浩特: 内蒙古农业大学, 2019. HAO X R.Study on the microbial fermentation of wheat bran feruloylated oligosaccharides and its in vitro antioxidant activity[D].Master's Thesis.Hohhot: Inner Mongolia Agricultural University, 2019. (in Chinese) |
[10] |
MALUNGA L N, ECK P, BETA T. Inhibition of intestinal α-glucosidase and glucose absorption by feruloylated arabinoxylan mono- and oligosaccharides from corn bran and wheat aleurone[J]. Journal of Nutrition & Metabolism, 2016, 2016: 1932532. |
[11] |
ZHAO W H, CHEN H, WU L G, et al. Antioxidant properties of feruloylated oligosaccharides of different degrees of polymerization from wheat bran[J]. Glycoconjugate Journal, 2018, 35(6): 547-559. DOI:10.1007/s10719-018-9847-2 |
[12] |
ISHⅡ T. Structure and functions of feruloylated polysaccharides[J]. Plant Science, 1997, 127(2): 111-127. |
[13] |
MALUNGA L N, BETA T. Isolation and identification of feruloylated arabinoxylan mono- and oligosaccharides from undigested and digested maize and wheat[J]. Heliyon, 2016, 2(5): e00106. DOI:10.1016/j.heliyon.2016.e00106 |
[14] |
ALLERDINGS E, RALPH J, STEINHART H, et al. Isolation and structural identification of complex feruloylated heteroxylan side-chains from maize bran[J]. Phytochemistry, 2006, 67(12): 1276-1286. DOI:10.1016/j.phytochem.2006.04.018 |
[15] |
COLQUHOUN I J, RALET M C, THIBAULT J F, et al. Structure identification of feruloylated oligosaccharides from sugar-beet pulp by NMR spectroscopy[J]. Carbohydrate Research, 1994, 263(2): 243-256. DOI:10.1016/0008-6215(94)00176-6 |
[16] |
RHODES D I, SADEK M, STONE B A. Hydroxycinnamic acids in walls of wheat aleurone cells[J]. Journal of Cereal Science, 2002, 36(1): 67-81. DOI:10.1006/jcrs.2001.0449 |
[17] |
袁小平.酶解麦麸制备阿魏酰低聚糖及其生物活性的研究[D].博士学位论文.无锡: 江南大学, 2006. YUAN X P.Study on enzymatic preparation of feruloyl oligosaccharides with biological activity from wheat bran[D].Ph.D.Thesis.Wuxi: Jiangnan University, 2006. (in Chinese) |
[18] |
LEQUART C, NUZILLARD J M, KUREK B, et al. Hydrolysis of wheat bran and straw by an endoxylanase:production and structural characterization of cinnamoyl-oligosaccharides[J]. Carbohydrate Research, 1999, 319(1/2/3/4): 102-111. |
[19] |
TROGH I, COURTIN C M, DELCOUR J A. Isolation and characterization of water-extractable arabinoxylan from hull-less barley flours[J]. Cereal Chemistry, 2004, 81(5): 576-581. DOI:10.1094/CCHEM.2004.81.5.576 |
[20] |
RAO R S P, MURALIKRISHNA G. Structural characteristics of water-soluble feruloyl arabinoxylans from rice (Oryza sativa) and ragi (finger millet, Eleusine coracana):variations upon malting[J]. Food Chemistry, 2007, 104(3): 1160-1170. DOI:10.1016/j.foodchem.2007.01.015 |
[21] |
郑学玲, 李利民, 姚惠源. 水溶戊聚糖分级纯化组分结构初步分析[J]. 食品与生物技术学报, 2005, 24(2): 6-9. ZHENG X L, LI L M, YAO H Y. The Structural analysis of purified fraction of water soluble pentosan[J]. Journal of Wuxi University of Light Industry, 2005, 24(2): 6-9 (in Chinese). DOI:10.3321/j.issn:1673-1689.2005.02.002 |
[22] |
BRILLOUET J M, MERCIER C. Fractionation of wheat bran carbohydrates[J]. Journal of the Science of Food and Agriculture, 1981, 32(3): 243-251. DOI:10.1002/jsfa.2740320307 |
[23] |
OLIVEIRA D M, MOTA T R, OLIVA B, et al. Feruloyl esterases:biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds[J]. Bioresource Technology, 2019, 278: 408-423. DOI:10.1016/j.biortech.2019.01.064 |
[24] |
SWAMY S K P, GOVINDASWAMY V. Therapeutical properties of ferulic acid and bioavailability enhancement through feruloyl esterase[J]. Journal of Functional Foods, 2015, 17: 657-666. DOI:10.1016/j.jff.2015.06.013 |
[25] |
SZWAJGIER D, ANNA D. Novel ferulic acid esterases from Bifidobacterium sp. produced on selected synthetic and natural carbon sources[J]. Acta Scientiarum Polonorum, Technologia Alimentaria, 2010, 9(3): 305-318. |
[26] |
LAI K K, LORCA G L, GONZALEZ C F. Biochemical properties of two cinnamoyl esterases purified from a Lactobacillus johnsonii strain isolated from stool samples of diabetes-resistant rats[J]. Applied and Environmental Microbiology, 2009, 75(15): 5018-5024. DOI:10.1128/AEM.02837-08 |
[27] |
ANDREASEN M F, KROON P A, WILLIAMSON G, et al. Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals[J]. Journal of Agricultural and Food Chemistry, 2001, 49(11): 5679-5684. DOI:10.1021/jf010668c |
[28] |
GIBSON G R, HUTKINS R, SANDERS M E, et al. Expert consensus document:the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics[J]. Nature Reviews Gastroenterology & Hepatology, 2017, 14(8): 491-502. |
[29] |
白宇仁, 孙元琳, 王晓闻, 等. 阿魏酰低聚糖制备、结构及生物活性研究进展[J]. 食品研究与开发, 2017, 38(20): 214-219. BAI Y R, SUN Y L, WANG X W, et al. The research progress on preparation, structure and biological activity of feruloylated oligosaccharides[J]. Food Research and Development, 2017, 38(20): 214-219 (in Chinese). DOI:10.3969/j.issn.1005-6521.2017.20.045 |
[30] |
张丽娜.麦麸阿魏酸糖酯的制备及其抗氧化活性研究[D].硕士学位论文.郑州: 河南工业大学, 2016. ZHANG L N.The preparation and antioxidant activity of feruloylated glycosides from wheat bran[D].Master's Thesis.Zhengzhou: Henan University of Technology, 2016. (in Chinese) |
[31] |
WANG J, SUN B G, CAO Y P, et al. Inhibitory effect of wheat bran feruloyl oligosaccharides on oxidative DNA damage in human lymphocytes[J]. Food Chemistry, 2008, 109(1): 129-136. |
[32] |
段元霄.麦麸阿魏酰聚糖对大鼠抗氧化功能的影响及其作用机制[D].硕士学位论文.呼和浩特: 内蒙古农业大学, 2018. DUAN Y X.Effects of feruloylated saccharides on antioxidative capacity in Wistar rats and the its regulation mechanism[D].Master's Thesis.Hohhot: Inner Mongolia Agricultural University, 2018. (in Chinese) |
[33] |
WANG Y, MENG Z Q, GUO J Q, et al. Effect of wheat bran feruloyl oligosaccharides on the performance, blood metabolites, antioxidant status and rumen fermentation of lambs[J]. Small Ruminant Research, 2019, 175: 65-71. DOI:10.1016/j.smallrumres.2019.04.006 |
[34] |
YU X H, YANG R Q, GU Z X, et al. Anti-tumor and immunostimulatory functions of two feruloyl oligosaccharides produced from wheat bran and fermented by Aureobasidium pullulans[J]. Bioresources, 2014, 9(4): 6778-6780. |
[35] |
CHI L C, HUA C H, YU C K, et al. Rice bran feruloylated oligosaccharides activate dendritic cells via Toll-like receptor 2 and 4 signaling[J]. Molecules, 2014, 19(4): 5325-5347. DOI:10.3390/molecules19045325 |
[36] |
解春艳, 王晶, 郭红珍, 等. 源于玉米皮渣的阿魏酰低聚糖增强小鼠免疫功能研究[J]. 食品科技, 2016, 41(7): 192-196. XIE C Y, WANG J, GUO H Z, et al. Immune function in mice of feruloyl oligosaccharides from maize bran[J]. Food Science and Technology, 2016, 41(7): 192-196 (in Chinese). |
[37] |
YUAN X P, WANG J, YAO H Y. Feruloyl oligosaccharides stimulate the growth of Bifidobacterium bifidum[J]. Anaerobe, 2005, 11(4): 225-229. DOI:10.1016/j.anaerobe.2005.02.002 |
[38] |
YANG J Y, MALDONADO-GÓMEZ M X, HUTKINS R W, et al. Production and in vitro fermentation of soluble, non-digestible, feruloylated oligo- and polysaccharides from maize and wheat brans[J]. Journal of Agricultural and Food Chemistry, 2014, 62(1): 159-166. DOI:10.1021/jf404305y |
[39] |
DAMEN B, VERSPREET J, POLLET A, et al. Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence[J]. Molecular Nutrition & Food Research, 2011, 55(12): 1862-1874. |
[40] |
陈洲.济麦22麦麸制备阿魏酰低聚糖及其生理活性研究[D].硕士学位论文.泰安: 山东农业大学, 2014. CHEN Z.Physiological activity of feruloyl xylo-oligosaccharides extracted from Jimai 22's wheat bran[D].Master's Thesis.Taian: Shandong Agricultural University, 2014. (in Chinese) |
[41] |
QIAO Y, SUN J, DING Y Y, et al. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress[J]. Applied Microbiology and Biotechnology, 2013, 97(4): 1689-1697. DOI:10.1007/s00253-012-4323-6 |
[42] |
OU J Y, HUANG J Q, SONG Y, et al. Feruloylated oligosaccharides from maize bran modulated the gut microbiota in rats[J]. Plant Foods for Human Nutrition, 2016, 71(2): 123-128. |
[43] |
ZHANG H J, ZHANG S S, WANG J, et al. Wheat bran feruloyl oligosaccharides protect against AAPH-induced oxidative injury via p38MAPK/PI3K-Nrf2/Keap1-MafK pathway[J]. Journal of Functional Foods, 2017, 29: 53-59. DOI:10.1016/j.jff.2016.12.009 |
[44] |
李暄.发酵麸皮多糖提取、分离纯化及生物活性研究[D].硕士学位论文.呼和浩特: 内蒙古农业大学, 2019. LI X.Extraction, separation, purification, and biological activity analysis of fermented wheat bran polysaccharide[D].Master's Thesis.Hohhot: Inner Mongolia Agricultural University, 2019. (in Chinese) |
[45] |
王园, 史俊祥, 段元霄, 等. 麸皮多糖微生物发酵工艺优化及其抗炎活性[J]. 食品科学, 2018, 39(14): 192-198. WANG Y, SHI J X, DUAN Y X, et al. Optimization of fermentation conditions for improved production of polysaccharides from wheat bran and anti-inflammatory effects of the extracted polysaccharides[J]. Food Science, 2018, 39(14): 192-198 (in Chinese). |
[46] |
王文文, 王园, 郝希然, 等. 发酵麸皮多糖对大鼠组织细胞因子含量及盲肠菌群结构的影响[J]. 动物营养学报, 2019, 31(6): 2865-2874. WANG W W, WANG Y, HAO X R, et al. Effects of fermented wheat bran polysaccharides on tissue cytokine contents and caecal microflora structure of rats[J]. Chinese Journal of Animal Nutrition, 2019, 31(6): 2865-2874 (in Chinese). |
[47] |
DU C T, GAO W, MA K, et al. MicroRNA-146a deficiency protects against Listeria monocytogenes infection by modulating the gut microbiota[J]. International Journal of Molecular Sciences, 2018, 19(4): 993. |