2. 内蒙古农业大学兽医学院, 呼和浩特 010018
2. Veterinary Medical College, Inner Mongolia Agricultural University, Hohhot 010018, China
近年来,随着人们生活水平的逐步提高和膳食结构的不断改善,牛肉因其味道鲜美、富含蛋白质和人体所需的关键微量元素等优点而备受人们青睐[1]。《2019年度肉牛牦牛产业技术发展报告》指出,我国全年牛肉消费量达923.3万t,同比增长8.24%;牛肉进口总量为165.95万t,同比增长59.65%[2]。近年来牛肉消费量的逐年增加引发消费者对牛肉品质的关注,市场上优质牛肉供不应求。因此,肉牛生产相关从业者和科研人员在提高肉牛产肉率的同时,还应关注如何改善牛肉品质以生产优质牛肉。本文就牛肉营养价值以及影响牛肉品质的因素进行归纳总结和比较分析,以期为牛肉品质改善提供理论参考。
1 牛肉品质特性及营养价值牛肉的色泽、质地及大理石花纹等感官指标和营养价值(包括蛋白质及氨基酸组成、脂肪含量及脂肪酸组成等方面)是消费者选购优质牛肉的主要依据。随着牛肉消费量的不断增加,消费者越来越关注牛肉生产安全、营养价值和动物福利等,以上关注点直接影响牛肉的市场定位和消费水平,进而影响肉牛产业的可持续发展,因此有必要深入了解牛肉品质特性和营养价值。
1.1 牛肉外观与食用品质特性肉色、质地和脂肪分布状况等牛肉外观品质特性直接决定了消费者的购买欲望[3]。肉色是肌肉生理生化结构变化的外部呈现,新鲜牛肉呈现出肌红蛋白的紫红色,肌红蛋白含量的不同直接导致了牛肉色泽产生差异,其含量受到肉牛品种、饲粮及饲养管理等因素的影响[4]。有研究报道指出,饲粮中粗饲料比例、肉牛日龄与肉色深度呈正相关[5]。牛肉在加工贮藏过程中会出现褪色现象,牛肉中肌红蛋白与氧气结合所形成的氧合肌红蛋白的氧化速率是影响肉色稳定的关键因素[6]。Kang等[7]研究发现含有较高比例Ⅰ型肌纤维的肌肉具有更高的氧消耗速率,从而导致其褪色迅速。牛肉的质地与其系水力相关,贮藏期间牛肉肌纤维束和肌束膜间、肌纤维和肌内膜间出现空隙可导致汁液和肌红蛋白流失,高温环境易导致肌肉的汁液过度流失、牛肉质地松软[8]。有研究提出生长发育较好的肉牛具有更好的肌细胞韧性和完整性,持有更好的保水能力[9]。嫩度、多汁性和风味等牛肉食用品质特性是消费者判定肉品质的直接因素。嫩度是牛肉品质判定中最重要的适口性指标,牛肉的嫩度与肌纤维数量和细度呈正相关,且受到肌间脂肪含量的影响;肉牛品种、日龄、饲养管理方式和宰后加工方式等因素均对牛肉嫩度产生影响[10]。
1.2 牛肉营养价值氨基酸是组成蛋白质的基本单位,各类氨基酸的含量和比例是评价肉类蛋白质营养价值的重要指标[11]。人体自身无法合成的氨基酸被称为必需氨基酸,研究表明牛肉中含有人体所需的8种必需氨基酸,且必需氨基酸占总氨基酸的比例(39.0%)高于羊肉(37.2%)、猪肉(38.3%)和鸡肉(33.5%)[12]。牛肉具有低脂肪的特点,其脂肪含量(5.7%)显著低于人们日常消费量较大的猪肉(6.6%)和羊肉(7.0%)。肉产品中脂肪酸的含量和种类不仅直接影响其营养价值,且对人体健康具有重要意义。有研究表明单不饱和脂肪酸(MUFA)具有提高血液中高密度脂蛋白(HDL)含量和降低低密度脂蛋白(LDL)含量的作用,具有预防动脉硬化及调节血脂等功效[10]。牛肉中MUFA含量(49.11%)显著高于猪肉(44.63%)、羊肉(33.25%)和鸡肉(30.96%),具有更好的保健功能[13]。此外,牛肉中的共轭亚油酸(CLA)含量分别是猪肉和鸡肉中的2.5和15.0倍,近年来大量学者的研究结果显示,CLA在提高人体免疫力、预防心脑血管疾病及抗癌等方面均有积极作用[11]。此外,牛肉中n-6/n-3多不饱和脂肪酸(PUFA)比例合理,并含有丰富的二十二碳六烯酸(DHA)和二十碳五烯酸(EPA)等功能性脂肪酸以及维生素和矿物质[14-15]。
综上所述,与人们消费量较大的其他肉产品相比,牛肉具有高蛋白质、低脂肪等特点,且富含人体所需的必需氨基酸和有利于健康的PUFA,属于优质蛋白质来源,因此越来越受到人们的青睐,同时也引发了人们对牛肉品质的密切关注。
2 牛肉品质的影响因素及调控 2.1 品种和日龄调控肉品质的基因在不同品种动物机体内的表达有所差异,这导致不同品种之间的肉品质有所区别[16]。王琨等[17]通过比较不同品种肉牛(15~18月龄)的肉品质发现,各组试验牛在相同的饲粮组成和饲养条件下,与安格斯牛、西门塔尔牛和利木赞牛相比,秦川牛里脊肉的剪切力更小,肉质更加细嫩,这可能是由于我国地方黄牛品种的肌肉纤维直径较细的原因。通常情况下肌内脂肪的含量与肌肉嫩度呈高度正相关,但有学者通过比较相同饲养条件下秦川肉牛与云岭牛的肉品质差异发现,在秦川牛肌内脂肪含量较低的前提条件下,2种肉牛的牛肉嫩度无显著差异,这验证了上述我国地方黄牛肌肉纤维直径较细的推论[18]。西门塔尔牛具有适应性强、耐粗饲且产肉性能较好等优点,被广泛应用于与地方黄牛杂交。有研究报道西门塔尔牛×地方黄牛的产肉性能显著高于地方黄牛,安格斯×西门塔尔牛F1代牛肉剪切力显著低于西门塔尔牛[19]。赵称赫[20]通过比较常年在同一草场放牧饲养的相同日龄蒙古牛与西门塔尔牛的肉品质差异发现,蒙古牛肌肉中n-6/n-3 PUFA的比例更合理,且总氨基酸和风味氨基酸含量均显著高于西门塔尔牛,说明蒙古牛的综合营养价值和食用品质均较西门塔尔牛要好;此外,曹芝[21]在相同育肥方案下比较了不同品种肉牛的背最长肌营养成分,结果表明草原红牛背最长肌中总氨基酸、风味氨基酸、PUFA及MUFA含量均显著高于西门塔尔牛、红安格斯牛和夏洛莱牛,呈现出更高的营养价值和牛肉风味。
相同品种不同日龄牛肉品质差异产生的原因是不同日龄肉牛肌肉中胶原蛋白和脂肪含量存在不同程度的差异,而胶原蛋白和脂肪含量对牛肉的营养价值和食用品质均有直接影响。不同生长阶段肉牛的生长发育有所差异,犊牛以骨骼和四肢生长为主,青年牛所摄入的营养主要用以体长和肌肉发育,成年后的肉牛则由蛋白质沉积为主转变为脂肪沉积为主。Jecminkova等[22]通过16和22月龄育肥牛的比较屠宰试验发现,不同月龄育肥牛背最长肌的肉色和嫩度无显著差异。Cho等[23]比较研究了不同日龄(1.9~11.5岁)韩国Hanwoo肉牛的肉品质,结果显示试验牛背最长肌中肌红蛋白含量与屠宰日龄呈高度正相关,这导致较大日龄肉牛的肉色显著变深,但日龄对牛肉中饱和脂肪酸(SFA)和MUFA含量均无显著影响;唐丹等[24]也对不同日龄延边牛的牛肉肉色进行了类似的报道。
综上可知,通常情况下我国地方黄牛品种的牛肉营养价值和风味均优于国外大型肉牛品种,未来应把握地方黄牛的牛肉品质优势进行选育改良研究;不同品种肉牛的成熟阶段有所差异导致了相同日龄肉牛肉品质的不同,因此,为生产优质高端牛肉,应综合考虑肉牛的成熟年龄和品种差异,未来的研究方向可集中于根据肉牛的成熟日龄确定合理的屠宰日龄。
2.2 饲粮 2.2.1 营养水平饲粮是动物机体维持生命活动的基础,营养物质的摄入水平直接决定了动物生产性能的发挥[25]。牛肉质量的高低取决于肉牛所摄入的饲粮能量和营养物质水平,相较于粗纤维含量较高的粗饲料,富含非结构性碳水化合物的精饲料具有更高的能量水平和消化率[26]。因此,在通常情况下,通过提高饲粮中精料水平可有效地提高肌内脂肪含量,进而改善牛肉嫩度。郝力壮[27]通过进行暖季放牧牦牛补饲试验发现合理补饲可显著改善牦牛肉嫩度,提高其背最长肌中氨基酸和MUFA含量。Latimori等[28]研究发现补充1.0%破碎玉米组肉牛的背最长肌中的不饱和脂肪酸(UFA)含量显著高于补充0.7%破碎玉米组;然而,有学者通过在犊牛饲粮中添加不同比例的精料发现,精料的添加比例和牛肉的嫩度、脂肪含量呈负相关,这可能是由于成年牛和犊牛瘤胃功能的不同引起肉牛对饲料的利用效率有所差异[29]。摄入适宜水平的能量可降低牛肉中SFA含量并增加功能性氨基酸的比例,饲粮中蛋白质水平的提高利于肉牛蛋白质沉积,但对脂肪沉积可能有一定的负面作用[30]。Van Cleef等[31]研究发现,在肉牛饲粮中添加30%的粗甘油可降低牛肉中胆固醇含量并显著提高MUFA含量;李秋凤等[32]的研究结果表明,在肉牛饲粮中添加15%的亚麻籽油可显著改善牛肉嫩度且可提高牛肉中亚麻酸含量。动物生长发育过程中虽然对维生素、矿物质的需求量较少,但它们均是动物生长发育所需的重要营养物质。近年来大量学者的研究表明添加适宜比例的微量元素可有效改善牛肉品质。例如,Correa等[33]研究发现,在肉牛饲粮中添加不同形式的铜均可提高牛肉中UFA含量并降低其SFA比例;Spears等[34]研究发现,在肉牛饲粮中添加无机锌和有机锌均可有效改善牛肉品质;万发春[35]在杂交阉牛饲粮中添加1 100 IU/kg的维生素A,研究发现牛肉嫩度和风味均得到较大改善。
2.2.2 饲料添加剂近年来,全球牛肉的消费量不断上升,为了满足消费市场牛肉的需求,抗生素类、磺胺类、激素类(即促生长剂)等饲料添加剂被用于肉牛饲养以提高肉牛生长效率和改善牛肉品质。但出于对细菌耐药性的担忧,许多国家限制或禁止使用抗生素,我国农业农村部宣布从2020年1月1日起,将在全国范围内禁止使用除中药外的所有促生长类药物饲料添加剂品种。因此,天然植物添加剂的开发利用备受国内外学者关注。Ornaghi等[36]在安格斯×内洛尔杂交公牛[(16±2)月龄、(385±20) kg]的饲粮中添加3 g/(d·头)天然复合植物提取物,结果表明添加天然复合植物提取物可显著提高育肥牛的牛肉嫩度且对其他肉品质指标无负面影响。但Fugita等[37]进行了类似的研究,结果发现添加复合植物提取物可显著提高育肥牛的屠宰性能,但对其肉品质无显著影响。耿春银[38]在西门塔尔×鲁西黄牛F1代杂交育肥肉牛[(505±25) kg、24月龄左右)]的饲粮中添加活性干酵母(0.8 g/d)和酵母发酵物(50 g/d),研究结果表明2个试验组肉牛的背最长肌中MUFA含量均显著增加,同时嫩度均显著提高,这表明饲粮中添加活性干酵母和酵母发酵物均可改善肉牛的脂肪沉积。Oliveira等[39]研究发现,在肉牛饲粮中添加棉籽可优化牛肉中脂肪酸的比例,且不影响牛肉风味;肉牛饲粮中添加28 g/d牛至油可提高牛肉品质。
总的来说,通过饲粮营养调控和添加饲料添加剂可有效改善牛肉品质。通常情况下饲粮营养水平的提高对牛肉品质具有积极作用,未来的研究中应考虑提高精料比例对肉牛胃肠道健康的影响,同时天然饲料添加剂的添加比例以及其有效活性成分对肉品质的调控机理应成为未来的研究重点。
2.3 饲养方式目前,肉牛饲养方式主要分为放牧和舍饲2种:放牧是肉牛在放牧草场进行放牧饲养,自由采食牧草,可有效地降低生产成本;舍饲通常是采取以谷物为主要饲料来源的围栏饲养,该饲养方式下肉牛生产效率较高。近年来人们越来越关心2种饲养方式下牛肉品质和营养价值的差异。Crouse等[40]和French等[41]研究发现,与放牧牛相比,舍饲牛的牛肉更加鲜红且肌间脂肪含量更丰富。Alfaia等[42]和Duckett等[43]的研究结果同样表明放牧牛的肉色较暗,这是由于放牧牛常年在放牧草场自由采食和运动,其肌肉中肌红蛋白含量较高所导致。此外,有研究发现舍饲牛肉的剪切力显著低于放牧牛或有低于放牧牛的趋势,这表明舍饲牛肉的嫩度较好[44]。综上所述,与放牧牛相比,舍饲牛的肉质更加细嫩、色泽鲜红且肌间脂肪沉积更好,在目前的消费市场更容易受到消费者青睐,但较好的牛肉外观特性仅仅能提高消费者的购买欲望,随着生活水平的提高,人们更加关注牛肉营养价值和饮食健康。
以摄入过多的SFA可导致机体血清中胆固醇含量升高,过高的胆固醇含量易导致高胆固醇血症,而低密度脂蛋白胆固醇(LDL-C)可诱发人的动脉粥样硬化,进而诱发冠心病和中风[45]。牛肉中胆固醇含量与羊肉、鸡肉和猪肉并无显著差异,且有研究发现牛肉胆固醇含量与肉牛品种、日龄及饲粮营养水平等因素并无显著相关关系,但与肌内脂肪含量密切相关[46]。Rule等[47]和Garcia等[48]的研究结果表明,放牧牛不同部位肌肉内胆固醇含量均显著低于舍饲牛,更有利于人体健康。肉豆蔻酸和软脂酸这2种SFA与血清中胆固醇含量呈密切正相关,有学者研究发现放牧安格斯牛和其他杂交肉牛品种牛肉中肉豆蔻酸和软脂酸含量均显著低于舍饲牛,其SFA组成结构更加合理,有利于人体健康[49]。
β-胡萝卜素是一种脂溶性抗氧化剂,可有效预防心血管疾病和机体衰老所诱发的疾病[50]。Yang等[51]和Insani等[52]研究发现放牧牛肉中β-胡萝卜素含量极显著高于舍饲牛,这是由于放牧牛所采食的牧草中含有大量的类胡萝卜素物质,其主要沉积于牛肉脂肪中,同时这也是放牧牛肉中脂肪颜色发黄的原因。碳链中只含有1个不饱和键的脂肪酸被称为MUFA,研究发现MUFA对人体具有调节血糖、血脂及抗氧化等保健功能[53]。目前的研究结果表明舍饲牛肉中MUFA含量显著高于放牧牛,但放牧牛肉中异油酸含量更高,Lim等[54]发现异油酸对CLA和抗癌物质的合成具有积极作用。PUFA主要包括n-3和n-6系列,两者相互协作调节动物机体的生长发育、繁殖及抗病等生物学功能,是人体所必需的脂肪酸[55]。Connor[56]研究指出n-6/n-3 PUFA的比例为1 : (1~4)更有利于人体健康,放牧牛肉中两者比例为1 : 3,符合健康饮食的需要。n-3脂肪酸是所有脂肪酸中对保持心脏健康最为有利的一类脂肪酸,且对机体大脑发育有积极作用。研究表明,放牧牛肉中n-3脂肪酸含量显著高于舍饲牛[57]。此外,分别被称为“血管清道夫”和“脑黄金”的n-3脂肪酸EPA和DHA在放牧牛肉中的含量也较高,这可能是由于放牧牛的饲粮主要是牧草,而60%的植物脂肪酸均为n-3脂肪酸[58]。
总的来说,舍饲牛肉的嫩度、色泽及大理石花纹等外观和食用品质以及MUFA含量优于放牧牛;但从营养价值和人体健康保健角度出发,放牧牛的SFA和PUFA比例更为合理,营养组成更均衡,具有更好的营养价值和保健作用,更有利于人体健康。
2.4 应激应激可导致牛肉品质的下降。研究发现,与适宜温度相比,长期处于炎热环境下的肉牛更易生产出DFD肉(屠宰后肌肉pH高达6.5以上,暗红色、质地坚硬、表面干燥的干硬肉)[59]。肉牛主要依赖挥发性脂肪酸作为葡萄糖前体,而处于热应激状态下的肉牛采食量下降,肝糖原往往不能维持机体能量内稳态,必须利用肌肉糖原作为葡萄糖来源[60]。Weglarz等[61]研究发现,冬季屠宰的杂交肉牛肉色较夏季更鲜红;有学者研究发现有遮阳棚的牧场所生产的牛肉DFD肉发生率显著低于无遮阳设施牧场。高温环境下机体内释放的大量磷脂酶A可激活肌浆中钙离子,进而增强ATP酶活性,导致肌糖原降解,最终导致肌肉中含大量红色细胞色素的线粒体下降,肌肉红色度降低[62]。有学者研究发现高温可导致肉牛的肌肉剪切力增加和嫩度降低,高温环境下肉牛肌肉中肌糖原分解氧化产生的大量自由基和丙二醛可导致pH升高,进而影响肌肉中钙蛋白酶活性,导致肌肉嫩度下降[63]。Panjono等[64]比较了不同季节韩国本地肉牛肉品质的差异,结果表明夏季高温高湿条件下生产的牛肉肌间脂肪含量显著低于其他季节。除了环境因素所引起的应激,由运输管理、人工驱赶及屠宰环境所引起的宰前应激也可显著影响牛肉品质。有研究表明,长达12 h的运输应激可显著降低西门塔尔杂交肉牛的牛肉嫩度,造成牛肉品质下降[65]。由于肉牛宰前禁食禁水措施加之长途运输,导致肉牛机体内糖原量减少,屠宰后的肉牛肌肉中没有足够的乳酸降低牛肉的pH,肌肉中较高的pH可导致肌肉蛋白质变性,造成嫩度下降和肉色降低等负面影响,最终生产出DFD肉。
3 牛肉品质的改善机理研究牛肉品质的好坏直接决定了其市场消费潜力,进而影响整个肉牛产业的发展[66]。通过营养调控改善牛肉品质已成为肉牛生产过程中的共识,可通过改善饲粮营养水平有效地提高牛肉的食用品质和营养价值[67]。近年来,组学技术的迅速发展为探明营养调控改善肉品质的机理提供了有力的帮助。代谢组学技术主要是通过筛选生物体内具有显著差异的低分子量代谢产物以阐明机体代谢过程和变化规律[68]。Li等[69]通过利用超高效液相色谱-质谱联用技术(UHPLC-QE-MS)非靶标代谢组学比较研究了自然放牧和放牧补饲饲养条件下牦牛背最长肌代谢谱的差异,结果表明,可注释到KEGG代谢通路上的38个差异代谢物中有31上调、7个下调,且上调的差异代谢物主要参与了机体的蛋白质和氨基酸代谢,同时揭示了补饲精料可极显著地提高放牧牦牛背最长肌中氨基酸含量的调控机制。有研究通过利用转录组测序技术筛选影响肉牛肌内脂肪沉积的差异基因,结果发现甲状腺激素反应蛋白抗体(THRSP)基因内含子的2处位点(T682C和T448C)与肉牛大理石花纹的形成密切相关;解偶联蛋白3(UCP3)基因mRNA表达量在肌内脂肪沉积较高的肉牛中显著上调[70]。
牛肉中的脂肪含量直接影响其嫩度、色泽和口味等食用特性,脂肪细胞的体积和数量及脂肪酸代谢与牛肉中脂肪含量密切相关,因此研究肉牛脂肪细胞的增殖分化的机理是改善肉牛体脂沉积和生产优质牛肉的有效途径。Zhang等[71]研究发现,Krüppel样因子(KLF)家族重要成员KLF3基因可通过调控脂肪酸结合蛋白4(FABP4)和脂肪酸合成酶(FAS)基因的表达,进而促进肉牛脂肪细胞分化以及增强脂肪代谢水平;Guo等[72]通过研究KLF家族基因对秦川牛前体脂肪细胞分化的影响,发现KLF3和KLF15均可通过调控过氧化物酶体增殖物激活受体γ(PPARγ)和FAS基因的表达对秦川牛脂质代谢产生积极作用,且2个基因之间具有相互调控关系,可作为分子遗传标记用于秦川牛的选育改良。miRNA是一类可通过与靶基因mRNA进行配对转录后发挥调控作用的非编码RNA,广泛参与到动物的生命活动中[73]。Li等[74]通过研究miR-143和miR-378对牛前体脂肪细胞分化的影响发现,前者可靶向调控MAPK信号通路中的MAP2K5,后者可靶向调控AMPK信号通路中的钙调蛋白依赖蛋白激酶激酶2(GaMKK2),且均可促进肉牛前体脂肪细胞的分化。
综上可知,目前研究学者们已通过利用系统生物学手段筛选出与肉牛脂质代谢和脂肪沉积相关的候选基因,为优质肉牛的选育改良提供了理论基础;miRNA对牛肉品质靶基因的调控也有大量报道,但miRNA对靶基因的分子调控与肉牛肉品质之间的联系需进行深入研究,进而明确其在肉牛生产中的应用价值。
4 小结与展望综上所述,牛肉具有高蛋白质、低脂肪、脂肪酸比例合理且富含维生素、矿物质等优点而备受消费者青睐,但目前优质牛肉供不应求,需加大优质牛肉的供应。牛肉品质受到品种、饲粮及饲养方式等多种因素的影响,因此牛肉品质调控的研究方向可根据不同品种、日龄和实际生产条件进行精准育肥,以期生产出优质牛肉;在深入研究了解肉牛生长代谢机理的前提下,可利用系统生物学手段筛选确定与牛肉蛋白质和脂肪沉积的标记基因,进而为调控肉牛蛋白质和脂肪沉积,为生产优质牛肉打下理论基础。
[1] |
VAHMANI P, PONNAMPALAM E N, KRAFT J, et al. Bioactivity and health effects of ruminant meat lipids.Invited review[J]. Meat Science, 2020, 165: 108114. DOI:10.1016/j.meatsci.2020.108114 |
[2] |
曹兵海, 李俊雅, 王之盛, 等. 2019年度肉牛牦牛产业技术发展报告[J]. 中国畜牧杂志, 2020, 56(3): 173-178. CAO B H, LI J Y, WANG Z S, et al. 2019 beef cattle and yak industry technology development report[J]. Chinese Journal of Animal Science, 2020, 56(3): 173-178 (in Chinese). |
[3] |
NAIR M N, LI S T, BEACH C M, et al. Changes in the sarcoplasmic proteome of beef muscles with differential color stability during postmortem aging[J]. Meat and Muscle Biology, 2018, 2(1). DOI:10.22175/mmb2017.07.0037 |
[4] |
CARPENTER C E, CORNFORTH D P, WHITTIER D. Consumer preferences for beef color and packaging did not affect eating satisfaction[J]. Meat Science, 2001, 57(4): 359-363. DOI:10.1016/S0309-1740(00)00111-X |
[5] |
PRIOLO A, MICOL D, AGABRIEL J. Effects of grass feeding systems on ruminant meat colour and flavour.A review[J]. Animal Research, 2001, 50(3): 185-200. DOI:10.1051/animres:2001125 |
[6] |
MANCINI R A, KAYLIN B, SUMAN S P, et al. Muscle-specific mitochondrial functionality and its influence on fresh beef color stability[J]. Journal of Food Science, 2018, 83(8): 2077-2082. DOI:10.1111/1750-3841.14219 |
[7] |
KANG S M, KANG G, SEONG P N, et al. Evaluation of various packaging systems on the activity of antioxidant enzyme, and oxidation and color stabilities in sliced Hanwoo (Korean cattle) beef loin during chill storage[J]. Asian-Australasian Journal of Animal Sciences, 2014, 27(9): 1336-1344. DOI:10.5713/ajas.2014.14136 |
[8] |
HUMADA M J, SAÑUDO C, SERRANO E. Chemical composition, vitamin E content, lipid oxidation, colour and cooking losses in meat from Tudanca bulls finished on semi-extensive or intensive systems and slaughtered at 12 or 14 months[J]. Meat Science, 2014, 96(2): 908-915. DOI:10.1016/j.meatsci.2013.10.004 |
[9] |
PETRI R M, MAPIYE C, DUGAN M E R, et al. Subcutaneous adipose fatty acid profiles and related rumen bacterial populations of steers fed red clover or grass hay diets containing flax or sunflower-seed[J]. PLoS One, 2014, 9(8): e104167. DOI:10.1371/journal.pone.0104167 |
[10] |
LEE L, LEE B, KIM H K, et al. Sensory quality characteristics with different beef quality grades and surface texture features assessed by dented area and firmness, and the relation to muscle fiber and bundle characteristics[J]. Meat Science, 2018, 145: 195-201. DOI:10.1016/j.meatsci.2018.06.034 |
[11] |
DE LEMOS M V A, PERIPOLLI E, BERTON M P, et al. Association study between copy number variation and beef fatty acid profile of Nellore cattle[J]. Journal of Applied Genetics, 2018, 59(2): 203-223. DOI:10.1007/s13353-018-0436-7 |
[12] |
MARIZ L D S, AMARAL P D M, FILHO S D C V, et al. Dietary protein reduction on microbial protein, amino acids digestibility, and body retention in beef cattle.Ⅰ.Digestibility sites and ruminal synthesis estimated by purine bases and 15N as markers[J]. Journal of Animal Science, 2018, 96(2): 2453-2467. |
[13] |
JIANG Q M, LI C Y, YU Y N, et al. Comparison of fatty acid profile of three adipose tissues in Ningxiang pigs[J]. Animal Nutrition, 2018, 4(3): 256-259. DOI:10.1016/j.aninu.2018.05.006 |
[14] |
王莉梅, 王德宝, 王晓冬, 等. 纯种日本和牛与西门塔尔杂交牛与西门塔尔牛肉品质对比分析[J]. 中国牛业科学, 2019, 45(5): 17-20, 57. WANG L M, WANG D B, WANG X D, et al. Comparative analysis of beef quality between Japanese Wagyu and Simmental crossbreed cattle and pure Simmental cattle[J]. China Cattle Science, 2019, 45(5): 17-20, 57 (in Chinese). |
[15] |
WANG Z Z, ZHU B, NIU H, et al. Genome wide association study identifies SNPs associated with fatty acid composition in Chinese Wagyu cattle[J]. Journal of Animal Science and Biotechnology, 2019, 10: 27. DOI:10.1186/s40104-019-0322-0 |
[16] |
MORDENTI A L, BROGNA N, CANESTRARI G, et al. Effects of breed and different lipid dietary supplements on beef quality[J]. Animal Science Journal, 2019, 90(5): 619-627. DOI:10.1111/asj.13177 |
[17] |
王琨, 昝林森. 不同肉牛品种杂种后代饲喂全混合日粮(TMR)育肥效果对比试验[J]. 中国牛业科学, 2018, 44(5): 8-11. WANG K, ZAN L S. Comparative experiment on fattening effect of total mixed dietary grain (TMR) for different hybrids beef breeds[J]. China Cattle Science, 2018, 44(5): 8-11 (in Chinese). DOI:10.3969/j.issn.1001-9111.2018.05.003 |
[18] |
王泳杰, 王之盛, 胡瑞, 等. 不同品种肉牛产肉性能、牛肉营养品质及风味物质的比较[J]. 动物营养学报, 2019, 31(8): 3621-3631. WANG Y J, WANG Z S, HU R, et al. Comparison of meat performance nutritional quality and flavor substance in beef of different breeds cattle[J]. Chinese Journal of Animal Nutrition, 2019, 31(8): 3621-3631 (in Chinese). |
[19] |
TRIASIH D, KRISDIANI D, RIYANTO J, et al. The effect of different location of muscle on quality of frozen Simmental ongole grade male meat[J]. IOP Conference:Series:Earth and Environmental Science, 2018, 119(1): 012039. |
[20] |
赵称赫.蒙古牛肉品质及背最长肌脂肪代谢相关基因mRNA表达量的研究[D].硕士学位论文.呼和浩特: 内蒙古农业大学, 2016: 26-35. ZHAO C H.Study on meat quality and mRNA expression of longissimus dorsi muscle fatty metabolism related factors of Mongolia cattle[D]. Master's Thesis.Hohhot: Inner Mongolia Agricultural University, 2016: 26-35.(in Chinese) |
[21] |
曹芝.内蒙古不同杂交品种肉牛生产性状比较研究[D].硕士学位论文.呼和浩特: 内蒙古农业大学, 2012: 48-59. CAO Z.Comparative studies on performance of crossbred beef from different breed combination in Inner Mongolia[D]. Master's Thesis.Hohhot: Inner Mongolia Agricultural University, 2012: 48-59.(in Chinese) |
[22] |
JECMINKOVA K, MVLLER U, KYSELOVA J, et al. Association of leptin, Toll-like receptor 4, and chemokine receptor of interleukin 8 C-X-C motif single nucleotide polymorphisms with fertility traits in Czech Fleckvieh cattle[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(11): 1721-1728. DOI:10.5713/ajas.17.0900 |
[23] |
CHO S, KANG G, SE P N, et al. Effect of slaughter age on the antioxidant enzyme activity, color, and oxidative stability of Korean Hanwoo (Bos taurus coreanae) cow beef[J]. Meat Science, 2015, 108: 44-49. DOI:10.1016/j.meatsci.2015.05.018 |
[24] |
唐丹, 马云, 梁成云. 不同年龄延边黄牛牛肉在冻藏期间肉色与氧化稳定性的研究[J]. 食品科学, 2010, 31(5): 48-51. TANG D, MA Y, LIANG C Y. Oxidative stability and color properties of beef from Yanbian yellow cattle of different ages during frozen storage[J]. Food Science, 2010, 31(5): 48-51 (in Chinese). DOI:10.3969/j.issn.1671-1513.2010.05.011 |
[25] |
高堂亮, 沈思军, 潘晓亮, 等. 真空冷冻干燥法制备微生态制剂及其对肉牛养分表观消化率的影响[J]. 饲料工业, 2018, 39(13): 42-46. GAO T L, SHEN S J, PAN X L, et al. Preparing probiotics by vacuum freeze-drying method and its effect on nutrient apparent digestibility of beef cattle[J]. Feed Industry, 2018, 39(13): 42-46 (in Chinese). |
[26] |
YALÇIN S, KARAKAN T, RAMAY M S, et al. Effects of supplementation of sepiolite and humate to beef cattle concentrate on pellet quality characteristics[J]. Veteriner Fakültesi Dergisi, 2020, 67(1): 81-86. |
[27] |
郝力壮.牦牛暖季补饲对改善肉品质的作用及机理研究[D].博士学位论文.兰州: 兰州大学, 2019: 60-75. HAO L Z.Effect of supplementary feeding in the warm season on meat quality of yaks and underlying mechanisms[D]. Ph.D.Thesis.Lanzhou: Lanzhou University, 2019: 60-75.(in Chinese) |
[28] |
LATIMORI N J, KLOSTER A M, GARCÍA P T, et al. Diet and genotype effects on the quality index of beef produced in the Argentine Pampeana region[J]. Meat Science, 2008, 79(3): 463-469. DOI:10.1016/j.meatsci.2007.10.008 |
[29] |
LAGE J F, PAULINO P V R, FILHO S C V, et al. Influence of genetic type and level of concentrate in the finishing diet on carcass and meat quality traits in beef heifers[J]. Meat Science, 2012, 90(3): 770-774. DOI:10.1016/j.meatsci.2011.11.012 |
[30] |
UEMOTO Y, OGAWA S, SATOH M, et al. Development of prediction equation for methane-related traits in beef cattle under high concentrate diets[J]. Animal Science Journal, 2020, 91(1): e13341. |
[31] |
VAN CLEEF E H C B, D'ÁUREA A P, FÁVARO V, et al. Effects of dietary inclusion of high concentrations of crude glycerin on meat quality and fatty acid profile of feedlot fed Nellore bulls[J]. PLoS One, 2017, 12(6): e0179830. DOI:10.1371/journal.pone.0179830 |
[32] |
李秋凤, 许蕾蕾, 李建国, 等. 亚麻籽对育肥牛肉品质及脂肪酸的影响[J]. 草业学报, 2013, 22(5): 272-279. LI Q F, XU L L, LI J G, et al. Effects of flax seed on beef quality and fatty acids in fattening cattle[J]. Acta Prataculturae Sinica, 2013, 22(5): 272-279 (in Chinese). |
[33] |
CORREA L B, ZANETTI M A, DEL CLARO G R, et al. Effects of supplementation with two sources and two levels of copper on meat lipid oxidation, meat colour and superoxide dismutase and glutathione peroxidase enzyme activities in Nellore beef cattle[J]. British Journal of Nutrition, 2014, 112(8): 1266-1273. DOI:10.1017/S0007114514002025 |
[34] |
SPEARS J W, KEGLEY E B. Effect of zinc source (zinc oxide vs zinc proteinate) and level on performance, carcass characteristics, and immune response of growing and finishing steers[J]. Journal of Animal Science, 2002, 80(10): 2747-2752. |
[35] |
万发春.维生素A对利鲁杂交阉牛牛肉品质的影响及机理研究[D].博士学位论文.北京: 中国农业科学院, 2005: 37-50. WANG F C.Effects of vitamin A on beef quality of Limousin×Luxi crossbred steers and action mechanisms[D]. Ph.D.Thesis.Beijing: Chinese Academy of Agricultural Sciences, 2005: 37-50.(in Chinese) |
[36] |
ORNAGHI M G, GUERRERO A, VITAL A C P, et al. Improvements in the quality of meat from beef cattle fed natural additives[J]. Meat Science, 2020, 163: 108059. DOI:10.1016/j.meatsci.2020.108059 |
[37] |
FUGITA C A, DO PRADO R M, VALERO M V, et al. Effect of the inclusion of natural additives on animal performance and meat quality of crossbred bulls (Angus×Nellore) finished in feedlot[J]. Animal Production Science, 2017, 58(11): 2076-2083. |
[38] |
耿春银.活性酵母与酵母培养物饲喂育肥牛生长性能、胴体指标和牛肉品质的比较[D].博士学位论文.北京: 中国农业大学, 2015: 45-56. GENG C Y.Comparison of live yeast (Saccharomyces cerevisiae) and yeast culture for growth performance, carcass traits and meat quality in finishing cattle[D]. Ph.D.Thesis.Beijing: China Agricultural University, 2015: 45-56.(in Chinese) |
[39] |
OLIVEIRA P P A, CORTE R R S, SILVA S L, et al. The effect of grazing system intensification on the growth and meat quality of beef cattle in the Brazilian Atlantic Forest biome[J]. Meat Science, 2018, 139: 157-161. DOI:10.1016/j.meatsci.2018.01.019 |
[40] |
CROUSE J D, CROSS H R, SEIDEMAN S C. Effects of a grass or grain diet on the quality of three beef muscles[J]. Journal of Animal Science, 1984, 58(3): 619-625. DOI:10.2527/jas1984.583619x |
[41] |
FRENCH P, O'RIORDAN E G, MONAHAN F J, et al. Meat quality of steers finished on autumn grass, grass silage or concentrate-based diets[J]. Meat Science, 2000, 56(2): 173-180. DOI:10.1016/S0309-1740(00)00037-1 |
[42] |
ALFAIA C P M, ALVES S P, MARTINS S I V, et al. Effect of the feeding system on intramuscular fatty acids and conjugated linoleic acid isomers of beef cattle, with emphasis on their nutritional value and discriminatory ability[J]. Food Chemistry, 2009, 114(3): 939-946. DOI:10.1016/j.foodchem.2008.10.041 |
[43] |
DUCKETT S K, NEEL J P S, LEWIS R M, et al. Effects of forage species or concentrate finishing on animal performance, carcass and meat quality[J]. Journal of Animal Science, 2013, 91(3): 1454-1467. DOI:10.2527/jas.2012-5914 |
[44] |
GREINER S P, ROUSE G H, WILSON D E, et al. The relationship between ultrasound measurements and carcass fat thickness and longissimus muscle area in beef cattle[J]. Journal of Animal Science, 2003, 81(3): 676-682. DOI:10.2527/2003.813676x |
[45] |
张佳.不同配比的功能性脂肪酸对摄入反式脂肪酸大鼠的血脂及组织脂肪酸代谢的影响[D].硕士学位论文.南昌: 南昌大学, 2011: 41-42. ZHANG J.The effect of different proportions of functional fatty acids on the blood lipids and tissue fatty acid metabolism of rats ingesting trans fatty acids[D]. Master's Thesis.Nanchang: Nanchang University, 2011: 41-42.(in Chinese) |
[46] |
DALEY C A, ABBOTT A, DOYLE P S, et al. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef[J]. Nutrition Journal, 2010, 9: 10. DOI:10.1186/1475-2891-9-10 |
[47] |
RULE D C, BROUGHTON K S, SHELLITO S M, et al. Comparison of muscle fatty acid profiles and cholesterol concentrations of bison, beef cattle, elk, and chicken[J]. Journal of Animal Science, 2002, 80(5): 1202-1211. DOI:10.2527/2002.8051202x |
[48] |
GARCIA P T, PENSEL N A, SANCHO A M, et al. Beef lipids in relation to animal breed and nutrition in Argentina[J]. Meat Science, 2008, 79(3): 500-508. DOI:10.1016/j.meatsci.2007.10.019 |
[49] |
WILLIAMSON C S, FOSTER R K, STANNER S A, et al. Red meat in the diet[J]. Nutrition Bulletin, 2005, 30(4): 323-355. DOI:10.1111/j.1467-3010.2005.00525.x |
[50] |
万发春, 魏晨, 张相伦, 等. β-胡萝卜素-15, 15'-加氧酶在利鲁牛各组织部位的表达[J]. 山东农业科学, 2019, 51(3): 105-110. WAN C F, WEI C, ZHANG X L, et al. Expression of β-carotene-15, 15'-monooxygenase (BCMO1) in tissues of Lilu cattle[J]. Shandong Agricultural Sciences, 2019, 51(3): 105-110 (in Chinese). |
[51] |
YANG A, BREWSTER M J, LANARI M C, et al. Effect of vitamin E supplementation on α-tocopherol and β-carotene concentrations in tissues from pasture- and grain-fed cattle[J]. Meat Science, 2002, 60(1): 35-40. DOI:10.1016/S0309-1740(01)00102-4 |
[52] |
INSANI E M, EYHERABIDE A, GRIGIONI G, et al. Oxidative stability and its relationship with natural antioxidants during refrigerated retail display of beef produced in Argentina[J]. Meat Science, 2008, 79(3): 444-452. DOI:10.1016/j.meatsci.2007.10.017 |
[53] |
NIAN Y Q, ALLEN P, HARRISON S M, et al. Effect of castration and carcass suspension method on the quality and fatty acid profile of beef from male dairy cattle[J]. Journal of the Science of Food and Agriculture, 2018, 98(11): 4339-4350. DOI:10.1002/jsfa.8960 |
[54] |
LIM J N, OH J J, WANG T, et al. Trans-11 18 : 1 vaccenic acid (TVA) has a direct anti-carcinogenic effect on MCF-7 human mammary adenocarcinoma cells[J]. Nutrients, 2014, 6(2): 627-636. DOI:10.3390/nu6020627 |
[55] |
BORGES J B S, GONSIOROSKI A V, DA SILVA E P. Effects of polyunsaturated fatty acids (PUFA) supplementation on reproductive performance of beef heifers submitted to fixed-time artificial insemination (FTAI) protocol[J]. Acta Scientiae Veterinari, 2019, 47(1): 1675-1684. |
[56] |
CONNOR W E. Importance of n-3 fatty acids in health and disease[J]. The American Journal of Clinical Nutrition, 2000, 71(Suppl.1): 171S-175S. |
[57] |
PATTERSON E, WALL R, FITZGERALD G F, et al. Health implications of high dietary omega-6 polyunsaturated fatty acids[J]. Journal of Nutrition and Metabolism, 2012, 2012: 539426. |
[58] |
VARELA A, OLIETE B, MORENO T, et al. Effect of pasture finishing on the meat characteristics and intramuscular fatty acid profile of steers of the Rubia Gallega breed[J]. Meat Science, 2004, 67(3): 515-522. DOI:10.1016/j.meatsci.2003.12.005 |
[59] |
GREGORY N G. How climatic changes could affect meat quality[J]. Food Research International, 2010, 43(7): 1866-1873. DOI:10.1016/j.foodres.2009.05.018 |
[60] |
HUGHES J, CLARKE F, PURSLOW P, et al. A high rigor temperature, not sarcomere length, determines light scattering properties and muscle colour in beef M. sternomandibularis meat and muscle fibres[J]. Meat Science, 2018, 145: 1-8. DOI:10.1016/j.meatsci.2018.05.011 |
[61] |
WEGLARZ A. Meat quality defined based on pH and colour depending on cattle category and slaughter season[J]. Czech Journal of Animal Science, 2010, 55(12): 548-556. DOI:10.17221/2520-CJAS |
[62] |
MENAHAN L A, SCHULTZ L H, HOEKSTRA W G. Metabolism of butyrate-3-14C in the ruminant under various metabolic states[J]. Journal of Dairy Science, 1967, 50(9): 1417-1429. DOI:10.3168/jds.S0022-0302(67)87644-6 |
[63] |
GONZALEZ-RIVAS P A, DIGIACOMO K, GIRALDO P A, et al. Reducing rumen starch fermentation of wheat with three percent sodium hydroxide has the potential to ameliorate the effect of heat stress in grain-fed wethers'[J]. Journal of Animal Science, 2017, 95(12): 5547-5562. DOI:10.2527/jas2017.1843 |
[64] |
PANJONO, KANG S M, LEE I S, et al. The quality characteristics of M. longissimus from Hanwoo (Korean cattle) steer with different raising altitudes and slaughter seasons[J]. Livestock Science, 2011, 136(2/3): 240-246. |
[65] |
ALENDE M, LAGRECA G V, PORDOMINGO A J, et al. Effects of transport, lairage and ageing time on stress indicators and on instrumental and sensory quality of beef from steers[J]. Archivos de Medicina Veterinaria, 2014, 46(2): 217-227. DOI:10.4067/S0301-732X2014000200007 |
[66] |
FARMER L J, FARRELL D T. Review:beef-eating quality:a European journey[J]. Animal, 2018, 12(11): 2424-2433. DOI:10.1017/S1751731118001672 |
[67] |
SLAM F, HOSSAIN M A, RAHMAN M F, et al. Effect of synthetic or herbal preservatives on the quality of beef meatballs at different shelf life periods[J]. SAARC Journal of Agriculture, 2018, 16(1): 23-34. DOI:10.3329/sja.v16i1.37420 |
[68] |
孙益, 万力生, 李佳曦, 等. 基于代谢组学的支气管哮喘生物标志物研究进展[J]. 安徽医药, 2018, 22(3): 395-398. SUN Y, WAN L S, LI J X, et al. Research progress of the biomarkers of bronchial asthma based on the metabonomics[J]. Anhui Medicine, 2018, 22(3): 395-398 (in Chinese). DOI:10.3969/j.issn.1009-6469.2018.03.002 |
[69] |
LI Z H, YANG X, HUANG Y Y, et al. Using mineral elements to authenticate the geographical origin of yak meat[J]. Kafkas Vniversitesi Veteriner Fakültesi Dergisi, 2019, 25(1): 93-98. |
[70] |
CHEN D, LI W F, DU M, et al. Sequencing and characterization of divergent marbling levels in the beef cattle (longissimus dorsi muscle) transcriptome[J]. Asian-Australasian Journal of Animal Sciences, 2015, 28(2): 158-165. |
[71] |
ZHANG L, ZHAO Y F, NING Y, et al. Ectopical expression of FABP4 gene can induce bovine muscle-derived stem cells adipogenesis[J]. Biochemical and Biophysical Research Communications, 2016, 482(2): 352-358. |
[72] |
GUO H F, KHAN R, RAZA S H A, et al. KLF15 promotes transcription of KLF3 gene in bovine adipocytes[J]. Gene, 2018, 659: 77-83. DOI:10.1016/j.gene.2018.03.049 |
[73] |
WITWER K W. Circulating microRNA biomarker studies:pitfalls and potential solutions[J]. Clinical Chemistry, 2015, 61(1): 56-63. DOI:10.1373/clinchem.2014.221341 |
[74] |
LI D W, LIU H Y, LI Y S, et al. Identification of suitable endogenous control genes for quantitative RT-PCR analysis of miRNA in bovine solid tissues[J]. Molecular Biology Reports, 2014, 41(10): 6475-6480. DOI:10.1007/s11033-014-3530-x |