动物营养学报    2021, Vol. 33 Issue (3): 1430-1439    PDF    
羟基蛋氨酸锌对产蛋后期肉种母鸡生产性能、养分利用率和抗氧化性能的影响
荆佳林1 , 龚建刚2 *, 郝艳霜1 , 冯志华1 , 赵国先1 , 刘焕良3 , 闫伟4     
1. 河北农业大学动物科技学院, 保定 071000;
2. 河北农业大学食品科技学院, 保定 071000;
3. 河北玖兴农牧发展有限公司, 保定 071000;
4. 诺伟司国际贸易(上海)有限公司, 上海 200000
摘要: 本试验旨在研究饲粮添加不同水平羟基蛋氨酸锌(MHA-Zn)对产蛋后期肉种母鸡生产性能、养分利用率和抗氧化性能的影响。选取56周龄哈伯德肉种母鸡600只,随机分为5组,每组6个重复,每个重复20只。预试期2周,各组均饲喂不补充锌的基础饲粮。正试期10周,对照组在基础饲粮(锌含量27.81 mg/kg)中添加100 mg/kg硫酸锌(以锌元素计),试验组分别在基础饲粮中添加25、50、75和100 mg/kg MHA-Zn(以锌元素计)。结果表明:1)与对照组相比,75和100 mg/kg MHA-Zn添加组肉种母鸡产蛋率显著提高(P < 0.05);50、75和100 mg/kg MHA-Zn添加组平均蛋重显著提高(P < 0.05),料蛋比显著降低(P < 0.05);饲粮添加不同水平MHA-Zn替代硫酸锌有降低产蛋后期肉种母鸡破蛋率的趋势(0.05≤P < 0.10)。2)与对照组相比,饲粮添加不同水平MHA-Zn对产蛋后期肉种母鸡钙表观利用率有不同程度升高,其中100 mg/kg MHA-Zn添加组钙利用率显著提高(P < 0.05);试验组锌表观利用率和血清锌含量有升高趋势(0.05≤P < 0.10)。3)与对照组相比,饲粮添加50、75和100 mg/kg MHA-Zn显著降低产蛋后期肉种母鸡血清丙二醛含量(P < 0.05),饲粮添加75和100 mg/kg MHA-Zn显著提高肝脏超氧化物歧化酶活性和总抗氧化能力(P < 0.05)。4)与对照组相比,饲粮中MHA-Zn的添加水平为75 mg/kg时经济效益最佳。由此可见,饲粮添加适宜水平MHA-Zn替代硫酸锌能够改善产蛋后期肉种母鸡生产性能和养分利用率,并且提高血清和肝脏抗氧化能力;本试验条件下,最佳的MHA-Zn添加水平为75 mg/kg。
关键词: 肉种鸡    产蛋后期    羟基蛋氨酸锌    生产性能    养分利用率    抗氧化性能    
Effects of Methionine Hydroxyl Analog Chelated Zinc on Performance, Nutrient Utilization and Antioxidant Performance of Broiler Breeders during Later Laying Period
JING Jialin1 , GONG Jiangang2 *, HAO Yanshuang1 , FENG Zhihua1 , ZHAO Guoxian1 , LIU Huanliang3 , YAN Wei4     
1. College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China;
2. College of Food Science and Echnology, Hebei Agricultural University, Baoding 071000, China;
3. Hebei Jiuxing Agriculture and Animal Husbandry Development Co., Ltd., Baoding 071000, China;
4. Novus International Trading(Shanghai) Co., Ltd., Shanghai 200000, China
Abstract: This experiment was conducted to evaluate the effects of different supplemental levels of methionine hydroxyl analog chelated zinc (MHA-Zn) on performance, nutrient utilization and antioxidant performance of broiler breeders during later laying period. A total of 600 Hubbard (56-week-old) broiler breeders were randomly assigned into 5 groups with 6 replicates per group and 20 birds per replicate. Broiler breeders in the control group were fed a basal diet (zinc content was 27.81 mg/kg) supplemented with 100 mg/kg zinc sulfate (as zinc), and those in the experimental groups were fed the basal diet supplemented with 25, 50, 75 and 100 mg/kg MHA-Zn (as zinc), respectively. The broiler breeders were fed the treatment diets for 10 weeks after a 2-week adaptation period (fed the basal diet without additional zinc). The results showed as follows: 1) compared with the control group, dietary 75 and 100 mg/kg MHA-Zn significantly increased the laying rate of broiler breeders (P < 0.05); dietary 50, 75 and 100 mg/kg MHA-Zn significantly increased the average egg weight (P < 0.05), and significantly decreased the feed to egg ratio (P < 0.05); different levels of dietary MHA-Zn had a decreasing tendency in broken egg rate of broiler breeders during later laying period (0.05≤P < 0.10). 2) Compared with the control group, different levels of dietary MHA-Zn increased the calcium apparent utilization of broiler breeders during later laying period in some different degrees, and dietary 100 mg/kg MHA-Zn significantly increased the calcium apparent utilization (P < 0.05); dietary MHA-Zn had an increasing tendency in the zinc apparent utilization and serum zinc content (0.05≤P < 0.10). 3) Compared with the control group, dietary 50, 75 and 100 mg/kg MHA-Zn significantly decreased the serum malonaldehyde content of broiler breeders during later laying period (P < 0.05), and dietary 75 and 100 mg/kg MHA-Zn significantly increased the liver superoxide dismutase activity and the total antioxidant capacity (P < 0.05). 4) Compared with the control group, dietary 75 mg/kg MHA-Zn had the best economic benefit. It is concluded that the appropriate MHA-Zn supplementation level in the diet instead of zinc sulfate can improve the production performance and nutrient utilization of broiler breeders during later laying period, and increase the antioxidant capacity in serum and liver. Under these experimental conditions, the optimal MHA-Zn supplementation level for broiler breeders is 75 mg/kg.
Key words: broiler breeders    later laying period    methionine hydroxyl analog chelated zinc    performance    nutrient utilization    antioxidant performance    

产蛋后期的肉种母鸡由于卵巢机能下降、腹脂沉积增加,对疾病和应激的抵抗力减弱,更易受外界因素的影响,常伴随着产蛋率不高、蛋形增大、疫病多发等问题,这提高了养殖难度和养殖成本。锌参与体内300多种酶的组成,这些酶参与蛋白质、脂质、碳水化合物和核酸的代谢。研究表明,锌不仅对鸡的生产性能和蛋品质起到关键作用[1],还可以促进鸡的生长发育[2]、提高抗氧化[3]和免疫性能[4]。在实际生产中,人们在肉种鸡产蛋后期饲粮中超量添加无机锌,试图通过改善其矿物质代谢来改善蛋壳质量的退化,虽然有一定的经济效果[5],但由于粪便锌大幅度增加而带来环境污染问题。蛋氨酸锌作为新一代营养性饲料添加剂,具有生物学效价高、毒副作用小等特点,在畜牧生产中取得良好的应用效果[6-8]。羟基蛋氨酸锌(methionine hydroxyl analog chelated zinc,MHA-Zn)是一种新型的蛋氨酸锌,该物质与锌螯合的氨基酸为羟基蛋氨酸类似物(MHA),其结构式为2-羟基-4-甲硫氨基丁酸盐,具有稳定性好、利用率高、毒性低、适口性好等优点,在饲粮中不仅可以补充锌,而且还可以补充植物蛋白质饲料所缺乏的蛋氨酸[9-10]。现阶段关于MHA-Zn在动物生产中的应用研究不多,且报道的结果不尽一致。研究表明,与硫酸锌相比,MHA-Zn能显著提高肉鸡的生长性能及胫骨锌沉积[10],显著提高蛋鸡蛋壳厚度、蛋壳强度和胫骨强度,显著降低促炎因子白细胞介素-8(IL-8)mRNA的相对表达量[11];能提高锌在小鼠中的利用率,降低锌的外排量[12];然而Savolainen等[13]却发现,与硫酸锌相比,MHA-Zn不仅未能提高鲈鱼的生长性能,还降低了其血清锌含量。目前国内外关于MHA-Zn替代传统硫酸锌对肉种母鸡生产性能等指标的影响及其最佳添加剂量的研究尚未见报道。为此,本试验从环保的减量化思路出发,研究饲粮不同MHA-Zn水平全部代替常规硫酸锌对产蛋后期肉种母鸡生产性能、养分利用率和抗氧化性能的影响,确定肉种鸡后期饲粮中减量化MHA-Zn的作用效果及适宜添加水平,为肉种鸡生产实践中有机锌的应用提供科学依据。

1 材料与方法 1.1 试验设计和饲粮

试验选用56周龄健康状况良好,体重(4.2 kg)、产蛋率(60%)相近的哈伯德肉种母鸡600只,随机分为5组,每组6个重复,每个重复20只鸡。试验开始前做鸡群调整,使得各组产蛋率差异不显著(P>0.05)。预试期2周,各组均饲喂不补充锌的基础饲粮。正试期10周,期间对照组在基础饲粮中添加100 mg/kg硫酸锌,试验组分别在基础饲粮中添加25、50、75和100 mg/kg MHA-Zn(各组锌的有效含量分别为129.80、53.20、80.71、108.60和130.6 mg/kg,以锌元素计)。基础饲粮参照NRC(1994)以及NY/T 33—2004《鸡饲养标准》,并结合《哈伯德肉种鸡饲养手册》配制。基础饲粮组成及营养水平见表 1

表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet (air-dry basis) 
1.2 试验材料和饲养管理

本试验所用MHA-Zn中锌含量16%,蛋氨酸含量80%,由诺伟司国际贸易(上海)有限公司提供。试验于夏季高温环境下进行,试验地点为保定市定兴县河北玖兴农牧发展有限公司肉种鸡养殖基地。种母鸡饲养于3层重叠式笼中,每笼饲养2只。为降低肉种鸡体内的锌沉积,试验前需要进行2周饲喂玉米-豆粕型基础饲粮的锌排空期。试验鸡限制采食、自由饮水,机械清粪,每天光照16 h(03:30—19:30)。每天10:00和15:00准时收集鸡蛋,每5 d进行1次人工授精。每天观察鸡群健康状况,记录死淘鸡数。常规免疫、消毒和饲养管理。以重复为单位,收集试验最后1周的种蛋存放于18 ℃的环境中,常规孵化管理。

1.3 指标测定 1.3.1 生产性能

在试验开始和试验结束时,对每个重复试验鸡空腹测量体重1次,分别作为初始体重和终末体重。试验期间每天记录每个重复的总产蛋数、破蛋数、总蛋重和鸡只死淘数,并计算产蛋率、平均蛋重、料蛋比和破蛋率。

1.3.2 养分利用率

以重复为单位,在试验结束前收集粪便,连续收集3 d,每个重复的粪便量缩减到100 g左右,冷藏保存。最后将收集并混合均匀的粪便分成2份,一份用浓度为10%的盐酸进行固氮,然后将2份粪样分别烘干、粉碎,测定养分利用率,其中粗蛋白质、钙、磷、锌和酸不溶灰分含量的测定参考张丽英[14]主编的《饲料分析及饲料质量检测技术》,养分利用率使用以下公式进行计算:

式中:a代表饲粮中某养分的含量; b代表粪中该养分含量; c代表饲粮中酸不溶灰分含量; d代表粪中酸不溶灰分含量。

1.3.3 血清锌含量和抗氧化指标

在试验第10周末,每个重复选取2只鸡,翅下静脉采血10 mL,静置后3 000 r/min离心10 min,分离后血清放置在-20 ℃冰箱备用。采用硫代巴比妥酸(TBA)法测定血清丙二醛(MDA)含量,采用比色法测定血清超氧化物歧化酶(SOD)活性和总抗氧化能力(T-AOC),采用比色法检测血清锌含量,所用试剂盒购自南京建成生物工程研究所。

1.3.4 肝脏抗氧化指标

在试验第10周末,每个重复选取2只鸡屠宰,取出肝脏,用磷酸盐缓冲液(PBS)清洗后立即放于锡箔纸包好,并置液氮中,随后放置在-80 ℃冰箱内保存,测定肝脏MDA含量、SOD活性和T-AOC,所用试剂盒购自南京建成生物工程研究所。

1.4 数据统计与分析

数据用Excel 2013进行整理汇总,采用SPSS 20.0统计软件进行一般线性模型(GLM)分析,采用Duncan氏法进行多重比较,结果用平均值和均值标准误表示,以P < 0.05为差异显著,以0.05≤P < 0.10表示有差异显著趋势。

2 结果与分析 2.1 MHA-Zn对产蛋后期肉种母鸡生产性能的影响

表 2可知,与对照组(添加100 mg/kg硫酸锌)相比,饲粮添加不同水平MHA-Zn对产蛋后期肉种母鸡终末体重无显著影响(P>0.05);饲粮添加不同水平MHA-Zn替代硫酸锌对产蛋后期肉种母鸡的产蛋性能均有不同程度的影响。与对照组相比,75和100 mg/kg MHA-Zn添加组产蛋率显著提高(P < 0.05),而25 mg/kg MHA-Zn添加组产蛋率显著降低(P < 0.05);50、75和100 mg/kg MHA-Zn添加组平均蛋重均显著提高(P < 0.05),其中100 mg/kg MHA-Zn添加组最高,增幅达2.02%;饲粮添加不同水平MHA-Zn替代硫酸锌对产蛋后期肉种母鸡料蛋比有显著影响(P < 0.05),其中25 mg/kg MHA-Zn添加组料蛋比显著高于对照组和其他试验组(P < 0.05),75 mg/kg MHA-Zn添加组料蛋比最低,与对照组相比降低2%,但50、75和100 mg/kg MHA-Zn添加组之间料蛋比无显著差异(P < 0.05);饲粮添加不同水平MHA-Zn替代硫酸锌有降低产蛋后期肉种母鸡破蛋率的趋势(0.05≤P < 0.10)。

表 2 MHA-Zn对产蛋后期肉种母鸡生产性能的影响 Table 2 Effects of MHA-Zn on performance of broiler breeders during later laying period
2.2 MHA-Zn对产蛋后期肉种母鸡养分利用率和血清锌含量的影响

表 3可知,与对照组相比,不同水平MHA-Zn添加组产蛋后期肉种母鸡钙表观利用率均有不同程度的升高,其中100 mg/kg MHA-Zn添加组显著提高(P < 0.05),并且饲粮添加不同水平MHA-Zn有提高锌表观利用率的趋势(0.05≤P < 0.10);不同水平MHA-Zn添加组粗蛋白质和磷表观利用率无显著变化(P>0.05);饲粮添加不同水平MHA-Zn有提高产蛋后期肉种母鸡血清锌含量的趋势(0.05≤P < 0.10)。

表 3 MHA-Zn对产蛋后期肉种母鸡养分利用率和血清锌含量的影响 Table 3 Effects of MHA-Zn on nutrient utilization and serum zinc content of broiler breeders during later laying period
2.3 MHA-Zn对产蛋后期肉种母鸡抗氧化性能的影响

表 4可知,与对照组相比,50、75和100 mg/kg MHA-Zn添加组产蛋后期肉种母鸡血清MDA含量显著降低(P < 0.05);75和100 mg/kg MHA-Zn添加组产蛋后期肉种母鸡肝脏SOD活性和T-AOC显著提高(P < 0.05);饲粮添加不同水平MHA-Zn替代硫酸锌对产蛋后期肉种母鸡血清SOD活性、T-AOC以及肝脏MDA含量无显著影响(P>0.05)。

表 4 MHA-Zn对产蛋后期肉种母鸡抗氧化性能的影响 Table 4 Effects of MHA-Zn on antioxidant performance of broiler breeders during later laying period
2.4 MHA-Zn对产蛋后期肉种母鸡经济效益的影响

表 5可知,饲粮添加不同水平MHA-Zn对产蛋后期肉种母鸡经济效益有一定影响。本试验在不考虑生产成本(水、电、设施及人工维护等),仅考虑饲料成本的前提下,MHA-Zn添加水平为75 mg/kg时可获得最大经济效益,每日每只鸡净利润为0.73元,与添加硫酸锌相比增幅达1.39%。

表 5 MHA-Zn对产蛋后期肉种母鸡经济效益的影响 Table 5 Effects of MHA-Zn on economic benefit of broiler breeders during later laying period
3 讨论 3.1 MHA-Zn对产蛋后期肉种母鸡生产性能的影响

诸多研究结果表明,在动物生产中有机锌比无机锌更具优势[15-18]。高峰等[19]研究表明,有机锌更有利于提高荷斯坦奶牛的产奶量;许甲平等[20]研究表明,饲粮添加40 mg/kg蛋氨酸锌能够显著提高57周龄海兰褐蛋鸡的生产性能;陈娜娜[21]研究表明,在20周龄海兰白蛋鸡饲粮中添加70和140 mg/kg蛋氨酸锌能够显著提高产蛋率和平均日产蛋重,并降低料蛋比;Jahanian等[22]研究表明,在肉鸡饲粮中用25%、50%、75%和100%的蛋氨酸锌替代硫酸锌与氧化锌中的锌含量,可显著提高饲料转化率和屠宰率;王惠云等[23]研究表明,随着MHA-Zn添加水平的不断提高,日产蛋重呈线性增加,这可能是由于MHA-Zn具有更高的生物学利用度,从而提高了鸡蛋中锌的沉积,也可能是因为锌在能量和蛋白质代谢中的重要作用[24]。此外,使用有机锌替代无机锌对饲料转化率没有负面影响[25-26]。本试验结果与上述研究结果基本一致,与对照组(添加100 mg/kg硫酸锌)相比,饲粮添加75和100 mg/kg MHA-Zn可以显著提高产蛋后期母鸡产蛋率和平均蛋重,并且显著降低料蛋比。然而有报道称,在蛋鸡饲粮中添加MHA-Zn对于产蛋性能没有显著影响[27];在产蛋后期蛋鸡饲粮中添加20、40和80 mg/kg的MHA-Zn,与添加80 mg/kg的硫酸锌相比,均未观察到对于产蛋率等生产性能指标有显著影响[11]。对于不同的研究结果,分析其原因可能与试验动物的种类、年龄和试验周期不同,导致对锌的需要量有所不同有关,也可能是由于试验饲粮中锌含量的差异所致。张亚男[28]研究表明,产蛋率、平均日采食量和料蛋比不受锌源和锌添加水平的影响,且发现高锌对生产性能无改善作用。Mayer等[29]建议20周龄的科宝(Cobb)肉种母鸡锌的添加水平为72.28 mg/kg。本试验中,因为饲养试验时期处于夏季高温季节,为了减缓热应激,选择使用的锌添加水平较高。

3.2 MHA-Zn对产蛋后期肉种母鸡养分利用率和血清锌含量的影响

养殖业生产过程中产生的粪便排泄物造成环境污染的同时,还严重威胁着人类健康,尤其是饲料中未被利用的微量元素。微量元素的利用率不仅与饲粮中的添加水平有关,而且取决于其自身的生物学效价。本试验结果表明,MHA-Zn添加组钙和锌的表观利用率均高于对照组,且破蛋率有降低的趋势,这说明MHA-Zn更有利于促进机体对钙和锌的吸收利用。与本研究结果类似,有研究表明,用氨基酸螯合矿物元素替代饲粮中的无机矿物元素可以降低其在粪便中的残留,提高锌的沉积[30-31];同时,用MHA-Zn饲喂肉种鸡可以提高其蛋黄和子代肉鸡胫骨中锌的含量[32];此外,Kinal等[33]研究表明,饲粮添加500 mg/kg蛋氨酸锌在提高奶牛产奶量的同时,还增加了牛奶中锌含量;Min等[27]研究表明,饲粮添加40 mg/kg MHA-Zn可以通过促进老龄蛋鸡钙的沉积,提高蛋壳质量;另有研究表明,锌的利用率随着蛋鸡日龄增长呈下降趋势,饲粮添加40和80 mg/kg MHA-Zn可较大程度上减缓该下降趋势,并且提高钙的利用率[31]

郑银伟[34]研究表明,与饲粮添加70 mg/kg一水硫酸锌组相比,添加70 mg/kg蛋氨酸锌可以显著提高冬毛期貉的血清锌含量;郝丽媛等[35]研究表明,饲粮中添加蛋氨酸锌的试验组犊牛血清锌含量比无机锌组提高9.76%;付志欢等[36]报道,在罗非鱼饲料中添加肠溶性甘氨酸锌比硫酸锌更有利于增加血清锌含量。与上述研究结果一致,本试验研究表明,与硫酸锌添加组(对照组)相比,饲粮添加不同水平MHA-Zn有提高产蛋后期肉种母鸡血清锌含量的趋势,与锌利用率提高的结果相吻合,说明产蛋后期肉种母鸡对MHA-Zn的吸收效果优于硫酸锌,有机锌较无机锌具有更高的生物学效价。

3.3 MHA-Zn对产蛋后期肉种母鸡抗氧化性能的影响

当细胞中产生内源性氧自由基时,就会发生氧化应激,机体通过抗氧化剂的中和作用来抵消或清除其有害作用[37]。锌可以提高机体金属硫蛋白(MT)基因的表达,MT可以消除体内氧自由基,减少MDA的生成,从而提高机体抗氧化能力[38]。微量元素锌还是SOD的重要活性成分,而SOD在机体抗氧化系统中起到重要作用[39]。研究表明,饲粮添加锌可以提高中国蛋鸭血清和肝脏抗氧化能力[40];侯鹏霞等[41]研究表明,在滩湖杂羊饲粮中添加氨基酸锌可以显著提高血清抗氧化能力;Qi等[42]在饲粮中添加80 mg/kg MHA-Zn可以提高57周龄海兰灰蛋鸡血清和肝脏铜锌超氧化物歧化酶(CuZn-SOD)活性以及T-AOC,并且降低血清和肝脏MDA含量;另有研究表明,以60~80 mg/kg蛋氨酸锌替代80 mg/kg硫酸锌,可以对蛋鸡抗氧化性能产生积极影响[43]

本试验中,使用不同水平MHA-Zn替代饲粮中的硫酸锌可以不同程度地降低产蛋后期肉种母鸡血清MDA含量,提高肝脏SOD活性和T-AOC。因为SOD活性高低反映了机体消除氧自由基的能力,所以SOD活性的提高往往伴随着T-AOC的升高。研究表明,锌可提高机体抗氧化能力,但在血浆和肝脏中产生不同的效果[28]。推测是由于二者作用重点不同,肝脏为机体内主要的生物转化器官,而血液则是将营养物质运输到各个器官发挥作用的载体;也可能是由于锌及其他微量元素在血浆和肝脏内的含量不同,例如各试验组铜离子的含量相同,导致SOD活性无法持续升高等。

4 结论

① 饲粮添加MHA-Zn替代硫酸锌能够显著提高产蛋后期肉种母鸡生产性能、钙表观利用率和肝脏抗氧化能力。

② 本试验条件下,饲粮中MHA-Zn最佳添加水平为75 mg/kg。

参考文献
[1]
OLGUN O, YILDIZ A Ö. Effects of dietary supplementation of inorganic, organic or nano zinc forms on performance, eggshell quality, and bone characteristics in laying hens[J]. Annals of Animal Science, 2017, 17(2): 463-476. DOI:10.1515/aoas-2016-0055
[2]
HUANG L, LI X, WANG W C, et al. The role of zinc in poultry breeder and hen nutrition: an update[J]. Biological Trace Element Research, 2019, 192(2): 308-318. DOI:10.1007/s12011-019-1659-0
[3]
NAZ S, IDRIS M, KHALIQUE M A, et al. The activity and use of zinc in poultry diets[J]. World's Poultry Science Journal, 2016, 72(1): 159-167. DOI:10.1017/S0043933915002755
[4]
HUDSON B P, DOZIER III W A, WILSON J L, et al. Reproductive performance and immune status of caged broiler breeder hens provided diets supplemented with either inorganic or organic sources of zinc from hatching to 65 wk of age[J]. Journal of Applied Poultry Research, 2004, 13(2): 349-359. DOI:10.1093/japr/13.2.349
[5]
符臻鸣, 杨海明, 顾海洋, 等. 锌在蛋鸡生产中的研究进展[J]. 家畜生态学报, 2019, 40(11): 6-11, 44.
FU Z M, YANG H M, GU H Y, et al. Research progress on zinc in laying hens production[J]. Journal of Domestic Animal Ecology, 2019, 40(11): 6-11, 44 (in Chinese).
[6]
CHENG T S, GUO Y M. Effects of Salmonella typhymurium lipopolysaccharide challenge on the performance, immune responses and zinc metabolism of laying hens supplemented with two zinc sources[J]. Asian-Australasian Journal of Animal Sciences, 2004, 17(12): 1717-1724. DOI:10.5713/ajas.2004.1717
[7]
RICHARDS J D, ZHAO J M, HARRELL R J, et al. Trace mineral nutrition in poultry and swine[J]. Asian-Australasian Journal of Animal Sciences, 2010, 23(11): 1527-1534. DOI:10.5713/ajas.2010.r.07
[8]
GHEISARI A A, SANEI A, SAMIE A, et al. Effect of diets supplemented with different levels of manganese, zinc, and copper from their organic or inorganic sources on egg production and quality characteristics in laying hens[J]. Biological Trace Element Research, 2011, 142(3): 557-571. DOI:10.1007/s12011-010-8779-x
[9]
BUENTELLO J A, GOFF J B, GATLIN III D M. Dietary zinc requirement of hybrid striped bass, Morone chrysops×Morone saxatilis, and bioavailability of two chemically different zinc compounds[J]. Journal of the World Aquaculture Society, 2009, 40(5): 687-694. DOI:10.1111/j.1749-7345.2009.00288.x
[10]
YI G F, ATWELL C A, HUME J A, et al. Determining the methionine activity of mintrex organic trace minerals in broiler chicks by using radiolabel tracing or growth assay[J]. Poultry Science, 2007, 86(5): 877-887. DOI:10.1093/ps/86.5.877
[11]
齐茜. 羟基蛋氨酸锌对产蛋后期蛋鸡生产性能、蛋品质和免疫相关基因表达的影响[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2019.
QI X.Effect of methionine hydroxy analog chelated zinc on production performance, blood biochemical index and liver metabolism of laying hens[D].Master's Thesis.Yangling: Northwest A & F University, 2019.(in Chinese)
[12]
PREDIERI G, ELVIRI L, TEGONI M, et al. Metal chelates of 2-hydroxy-4-methylthiobutanoic acid in animal feeding: Part 2:further characterizations, in vitro and in vivo investigations[J]. Journal of Inorganic Biochemistry, 2005, 99(2): 627-636. DOI:10.1016/j.jinorgbio.2004.11.011
[13]
SAVOLAINEN L C, GATLIN III D M. Evaluation of sulfur amino acid and zinc supplements to soybean-meal-based diets for hybrid striped bass[J]. Aquaculture, 2010, 307(3/4): 260-265.
[14]
张丽英. 饲料分析及饲料质量检测技术[M]. 3版. 北京: 中国农业大学出版社, 2007: 53-179.
ZHANG L Y. Feed analysis and quality test technology[M]. 3rd ed. Beijing: China Agricultural University Press, 2007: 53-179 (in Chinese).
[15]
SKŘIVAN M, SKŘIVANOV V, MAROUNEK M. Effect of various copper supplements to feed of laying hens on Cu content in eggs, liver, excreta, soil, and herbage[J]. Archives of Environmental Contamination and Toxicology, 2006, 50(2): 280-283. DOI:10.1007/s00244-005-1028-1
[16]
BAO Y M, CHOCT M, IJI P A, et al. Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues[J]. Journal of Applied Poultry Research, 2007, 16(3): 448-455. DOI:10.1093/japr/16.3.448
[17]
JAHANIAN R, MOGHADDAM H N, REZAEI A. Improved broiler chick performance by dietary supplementation of organic zinc sources[J]. Asian-Australasian Journal of Animal Sciences, 2008, 21(9): 1348-1354. DOI:10.5713/ajas.2008.70699
[18]
SUNDER G S, PANDA A K, GOPINATH N C S, et al. Effects of higher levels of zinc supplementation on performance, mineral availability, and immune competence in broiler chickens[J]. Journal of Applied Poultry Research, 2008, 17(1): 79-86. DOI:10.3382/japr.2007-00029
[19]
高峰, 江芸, 黄献林. 不同锌源对奶牛产奶量和乳品质的影响[J]. 食品科学, 2005, 26(9): 202-203.
GAO F, JIANG Y, HUANG X L. Effects of different zinc sources on milk yields and milk quality in cows[J]. Food Science, 2005, 26(9): 202-203 (in Chinese).
[20]
许甲平, 鲍宏云, 冯一凡. 蛋氨酸锌对产蛋鸡产蛋性能和非特异性免疫功能的影响[J]. 饲料工业, 2012, 33(20): 58-61.
XU J P, BAO H Y, FENG Y F. Effects of zinc methionine on egg performance and nonspecific immune function of laying hens[J]. Feed Industry, 2012, 33(20): 58-61 (in Chinese).
[21]
陈娜娜. 蛋氨酸锌作为蛋鸡饲料添加剂的安全性评价[D]. 硕士学位论文. 杭州: 浙江大学, 2017.
CHEN N N.Safety evaluation of zinc-methionine as feed additive in laying hens[D].Master's Thesis.Hangzhou: Zhejiang University, 2017.(in Chinese)
[22]
JAHANIAN R, RASOULI E. Effects of dietary substitution of zinc-methionine for inorganic zinc sources on growth performance, tissue zinc accumulation and some blood parameters in broiler chicks[J]. Journal of Animal Physiology and Animal Nutrition, 2015, 99(1): 50-58. DOI:10.1111/jpn.12213
[23]
王惠云, 向阳葵, 段瑞, 等. 不同锌源与水平羟基蛋氨酸锌对蛋鸡产蛋后期生产性能和蛋品质的影响[J]. 饲料研究, 2020, 43(1): 91-95.
WANG H Y, XIANG Y K, DUAN R, et al. Effect of different sources and supplemental levels of hydroxymethionine chelates zinc on the production performance and egg quality in the late stage of laying hens[J]. Feed Research, 2020, 43(1): 91-95 (in Chinese).
[24]
IBS K H, RINK L. Zinc-altered immune function[J]. The Journal of Nutrition, 2003, 133(5): 1452-1456. DOI:10.1093/jn/133.5.1452S
[25]
MACIEL M P, SARAIVA E P, DE FÁTIMA AGUIAR É, et al. Effect of using organic microminerals on performance and external quality of eggs of commercial laying hens at the end of laying[J]. Revista Brasileira de Zootecnia, 2010, 39(2): 344-348. DOI:10.1590/S1516-35982010000200017
[26]
STEFANELLO C, SANTOS T C, MURAKAMI A E, et al. Productive performance, eggshell quality, and eggshell ultrastructure of laying hens fed diets supplemented with organic trace minerals[J]. Poultry Science, 2014, 93(1): 104-113. DOI:10.3382/ps.2013-03190
[27]
MIN Y N, LIU F X, QI X, et al. Effects of methionine hydroxyl analog chelated zinc on laying performance, eggshell quality, eggshell mineral deposition, and activities of Zn-containing enzymes in aged laying hens[J]. Poultry Science, 2018, 97(10): 3587-3593. DOI:10.3382/ps/pey203
[28]
张亚男. 饲粮锌对产蛋后期蛋鸡蛋壳品质及抗氧化机能的影响[D]. 硕士学位论文. 北京: 中国农业科学院, 2013.
ZHANG Y N.Effects of dietary zinc on eggshell quality and antioxidant status of old laying hens[D].Master's Thesis.Beijing: Chinese Academy of Agricultural Sciences, 2013.(in Chinese)
[29]
MAYER A N, VIEIRA S L, BERWANGER E, et al. Zinc requirements of broiler breeder hens[J]. Poultry Science, 2019, 98(3): 1288-1301. DOI:10.3382/ps/pey451
[30]
BOUWHUIS M A, SWEENEY T, MUKHOPADHYA A, et al. Zinc methionine and laminarin have growth-enhancing properties in newly weaned pigs influencing both intestinal health and diarrhoea occurrence[J]. Journal of Animal Physiology and Animal Nutrition, 2017, 101(6): 1273-1285. DOI:10.1111/jpn.12647
[31]
刘凤霞. 羟基蛋氨酸螯合锌对产蛋后期蛋鸡生产性能、免疫功能及矿物质代谢的影响[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2018.
LIU F X.Effect of methionine hydroxy analog chelated zinc on production performance, immune function, mineral deposit and metabolism of hens at late laying stage[D].Master's Thesis.Yangling: Northwest A & F University, 2018.(in Chinese)
[32]
高静. 肉种鸡日粮中添加锌和硒对子代骨骼肌发育的促进作用及其机制[D]. 博士学位论文. 北京: 中国农业大学, 2015.
GAO J.The improvement of maternal zinc and selenium supplementation on the skeletal muscle development of their offspring and the mechanism[D].Ph.D. Thesis.Beijing: China Agricultural University, 2015.(in Chinese)
[33]
KINAL S, TWARDO N ′ J, BEDNARSKI M, et al. The influence of administration of biotin and zinc chelate (Zn-methionine) to cows in the first and second trimester of lactation on their health and productivity[J]. Polish Journal of Veterinary Sciences, 2011, 14(1): 103-110.
[34]
郑银伟. 螯合锌对貉(Nyctereutes procyonoides)生产性能与血液生化指标的影响[D]. 硕士学位论文. 哈尔滨: 东北林业大学, 2015.
ZHENG Y W.Influence of chelating zinc on production performances and blood biochemical indices of raccoon dogs (Nyctereutes procyonoides)[D].Master's Thesis.Harbin: Northeast Forestry University, 2015.(in Chinese)
[35]
郝丽媛, 马峰涛, 孙鹏. 饲粮添加蛋氨酸锌或氧化锌对新生犊牛锌代谢的影响[J]. 动物营养学报, 2020, 32(8): 3725-3731.
HAO L Y, MA F T, SUN P. Effects of dietary supplementation of zinc methionine or zinc oxide on zinc metabolism of newborn calves[J]. Chinese Journal of Animal Nutrition, 2020, 32(8): 3725-3731 (in Chinese).
[36]
付志欢, 林雪, 舒绪刚, 等. 不同锌源对吉富罗非鱼生长性能、血清生化指标、血清和肝胰脏中微量元素含量的影响[J]. 动物营养学报, 2019, 31(8): 3690-3698.
FU Z H, LIN X, SHU X G, et al. Effects of different zinc sources on growth performance, serum biochemical indices and trace element contents in serum and hepatopancreas of genetic improvement of farmed tilapia[J]. Chinese Journal of Animal Nutrition, 2019, 31(8): 3690-3698 (in Chinese).
[37]
FINKEL T, HOLBROOK N J. Oxidants, oxidative stress and the biology of ageing[J]. Nature, 2000, 408(6809): 239-247. DOI:10.1038/35041687
[38]
ANDREWS G K, GEISER J. Expression of the mouse metallothionein-Ⅰ and -Ⅱ genes provides a reproductive advantage during maternal dietary zinc deficiency[J]. The Journal of Nutrition, 1999, 129(9): 1643-1648. DOI:10.1093/jn/129.9.1643
[39]
WANG L, PIAO X L, KIM S W, et al. Effects of Forsythia suspensa extract on growth performance, nutrient digestibility, and antioxidant activities in broiler chickens under high ambient temperature[J]. Poultry Science, 2008, 87(7): 1287-1294. DOI:10.3382/ps.2008-00023
[40]
CHEN W, WANG S, ZHANG H X, et al. Optimization of dietary zinc for egg production and antioxidant capacity in Chinese egg-laying ducks fed a diet based on corn-wheat bran and soybean meal[J]. Poultry Science, 2017, 96(7): 2336-2343. DOI:10.3382/ps/pex032
[41]
侯鹏霞, 李毓华, 马吉锋, 等. 氨基酸锌对滩湖杂羊生长性能、血清激素、免疫及抗氧化指标的影响[J]. 动物营养学报, 2020, 32(9): 4242-4250.
HOU P X, LI Y H, MA J F, et al. Effects of amino acid zinc on growth performance, serum hormone, immune and antioxidant indexes of Tan×Hu sheep[J]. Chinese Journal of Animal Nutrition, 2020, 32(9): 4242-4250 (in Chinese).
[42]
QI X, MA S X, LIU X, et al. Effects of the methionine hydroxyl analogue chelate zinc on antioxidant capacity and liver metabolism using 1H-NMR-based metabolomics in aged laying hens[J]. Animals, 2019, 9(11): 898. DOI:10.3390/ani9110898
[43]
LI L L, GONG Y J, ZHAN H Q, et al. Effects of dietary Zn-methionine supplementation on the laying performance, egg quality, antioxidant capacity, and serum parameters of laying hens[J]. Poultry Science, 2019, 98(2): 923-931. DOI:10.3382/ps/pey440