动物营养学报    2021, Vol. 33 Issue (6): 3185-3197    PDF    
复合益生菌与黄芪多糖对生长育肥猪免疫和抗氧化功能的影响
张阳1 , 吕慧源2 , 徐盛玉1 , 方正锋1 , 冯斌1 , 车炼强1 , 林燕1 , 卓勇1 , 李健1 , 江雪梅1 , 赵希仑1 , 吴德1     
1. 四川农业大学动物营养研究所, 成都 611130;
2. 北京生泰尔生物科技有限公司, 北京 102600
摘要: 本试验旨在研究复合益生菌与黄芪多糖(APS)对生长育肥猪免疫和抗氧化功能的影响。试验采用2×2双因素试验设计,选取80头健康状况、体重[(33.5±0.8)kg]相近的"杜×长×大"生长猪,根据体重随机分为4组(每组5个重复,每个重复4头猪),分别饲喂基础饲粮(对照组)、基础饲粮+5×108 CFU/kg复合益生菌(复合益生菌组)、基础饲粮+0.1% APS(APS组)、基础饲粮+5×108 CFU/kg复合益生菌+0.1% APS(复合益生菌+APS组)。试验期为84 d。结果表明:1)与对照组相比,饲粮添加复合益生菌显著提高第57天和第85天生长育肥猪血清溶菌酶(LZM)活性(P < 0.05),有提高第29天血清LZM活性的趋势(P=0.068);饲粮添加APS有提高第29天血清LZM活性的趋势(P=0.090)。2)复合益生菌与APS对第29天生长育肥猪外周血CD4+ T淋巴细胞比例存在互作趋势(P=0.075),对第57天外周血CD4+ T淋巴细胞比例以及第29天和第57天外周血CD4+ T淋巴细胞/CD8+ T淋巴细胞(CD4+/CD8+)值存在互作效应(P < 0.01)。主要表现为,第29天,与对照组相比,APS组外周血CD4+ T淋巴细胞比例和CD4+/CD8+值显著降低(P < 0.05);与复合益生菌组相比,复合益生菌+APS组外周血CD4+ T淋巴细胞比例和CD4+/CD8+值无显著差异(P>0.05)。第57天,与对照组相比,APS组外周血CD4+ T淋巴细胞比例和CD4+/CD8+值极显著提高(P < 0.01);与复合益生菌组相比,复合益生菌+APS组外周血CD4+ T淋巴细胞比例和CD4+/CD8+值无显著差异(P>0.05)。3)与对照组相比,饲粮添加复合益生菌显著提高第85天生长育肥猪血清肿瘤坏死因子-α(TNF-α)和干扰素-γ(IFN-γ)含量(P < 0.05),饲粮添加APS有提高第85天血清IFN-γ(P=0.067)和白细胞介素-2(IL-2)(P=0.093)含量的趋势。复合益生菌与APS对第85天血清白细胞介素-6(IL-6)含量存在互作趋势(P=0.055),与对照组相比,APS组第85天血清IL-6含量有降低的趋势(P=0.055);与复合益生菌组相比,复合益生菌+APS组第85天血清IL-6含量无显著差异(P>0.05)。4)复合益生菌与APS对第57天生长育肥猪血清谷胱甘肽过氧化物酶(GSH-Px)活性存在互作效应(P < 0.05),与对照组相比,复合益生菌组第57天血清GSH-Px活性极显著提高(P < 0.01);与APS组相比,复合益生菌+APS组第57天血清GSH-Px活性无显著差异(P>0.05)。5)与对照组相比,饲粮添加复合益生菌极显著提高第85天生长育肥猪血清谷草转氨酶(AST)活性(P < 0.01)。复合益生菌与APS对第29天血清谷丙转氨酶(ALT)活性存在互作效应(P < 0.05),与对照组相比,复合益生菌组第29天血清ALT活性显著提高(P < 0.05);与APS组相比,复合益生菌+APS组第29天血清ALT活性则无显著差异(P>0.05)。综上所述,饲粮添加复合益生菌可提高生长育肥猪的免疫功能,并在细胞因子的调节中发挥免疫增强作用,但对于抗氧化功能的影响则不稳定;饲粮添加APS对生长育肥猪的免疫功能具有一定的提高作用,在细胞因子的调节中主要发挥抗炎作用,在细胞免疫中主要发挥免疫自稳作用,并促进其氧化平衡状态的保持;复合益生菌与APS在生长育肥猪细胞免疫、细胞因子调节、抗氧化等方面均存在一定互作效应,复合益生菌的添加容易引起血液指标大幅度的变化,而APS对于这种大幅度的变化具有抑制作用。
关键词: 复合益生菌    黄芪多糖    生长育肥猪    免疫功能    抗氧化功能    
Effects of Compound Probiotics and Astragalus Polysaccharide on Immunity and Antioxidant Function of Growing-Finishing Pigs
ZHANG Yang1 , LYU Huiyuan2 , XU Shengyu1 , FANG Zhengfeng1 , FENG Bin1 , CHE Lianqiang1 , LIN Yan1 , ZHUO Yong1 , LI Jian1 , JIANG Xuemei1 , ZHAO Xilun1 , WU De1     
1. Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China;
2. Beijing Centre Biology Co., Ltd., Beijing 102600, China
Abstract: This experiment was conducted to study the effects of compound probiotics and Astragalus polysaccharide (APS) on immunity and antioxidant function of growing-finishing pigs. In the experiment, a 2×2 double factor design was used and a total of 80 healthy growing pigs (Duroc×Landrace×Yorkshire) with similar body weight of (33.5±0.8) kg were randomly assigned into 4 groups (5 replicates in each group and 4 pigs in each replicate) on the basis of their initial body weight. They were fed a basal diet (control group), the basal diet supplemented with 5×108 CFU/kg compound probiotics (compound probiotics group), the basal diet supplemented with 0.1% APS (APS group), and the basal diet supplemented with 5×108 CFU/kg compound probiotics and 0.1% APS (compound probiotics+APS group), respectively. The experiment lasted for 84 days. The results showed as follows: 1) compared with the control group, dietary compound probiotics significantly increased the serum lysozyme (LZM) activity of growing-finishing pigs on day 57 and day 85 (P < 0.05), and had a trend to increase serum LZM activity on day 29 (P=0.068). Dietary APS tended to increase serum LZM activity on day 29 (P=0.090). 2) Compound probiotics and APS had an interaction tendency on the proportion of CD4+ T lymphocytes in peripheral blood of growing-finishing pigs on day 29 (P=0.075), and had an interaction effect on the proportion of CD4+ T lymphocytes on day 57 and the ratio of CD4+ T lymphocytes to CD8+ T lymphocytes (CD4+/CD8+) in peripheral blood on day 29 and day 57 (P < 0.01). On day 29, compared with the control group, the proportion of CD4+ T lymphocytes and CD4+/CD8+ ratio in peripheral blood in the APS group were significantly decreased (P < 0.05); compared with the compound probiotics group, there were no significant differences in the proportion of CD4+ T lymphocytes and CD4+/CD8+ ratio in peripheral blood in the compound probiotics+APS group (P>0.05). On day 57, compared with the control group, the proportion of CD4+ T lymphocytes and CD4+/CD8+ ratio in peripheral blood in the APS group were extremely significantly increased (P < 0.01); compared with the compound probiotics group, there were no significant differences in the proportion of CD4+ T lymphocytes and CD4+/CD8+ ratio in peripheral blood in the compound probiotics+APS group (P>0.05). 3) Compared with the control group, dietary compound probiotics significantly increased the contents of tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) in serum of growing-finishing pigs on day 85 (P < 0.05), dietary APS tended to increase serum contents of IFN-γ (P=0.067) and interleukin-2 (IL-2) (P=0.093) on day 85. Compound probiotics and APS had an interaction tendency on serum interleukin-6 (IL-6) content on day 85 (P=0.055). Compared with the control group, the serum IL-6 content in the APS group tended to decrease on day 85 (P=0.055); compared with the compound probiotics group, the serum IL-6 content in the compound probiotics+APS group had no significant difference on day 85 (P>0.05). 4) Compound probiotics and APS had an interaction effect on serum glutathione peroxidase (GSH-Px) activity of growing-finishing pigs on day 57 (P < 0.05). Compared with the control group, the serum GSH-Px activity in the compound probiotics group was extremely significantly increased on day 57 (P < 0.01); compared with the APS group, there was no significant difference in serum GSH-Px activity in the compound probiotics+APS group on day 57 (P>0.05). 5) Compared with the control group, dietary compound probiotics extremely significantly increased the serum aspartate aminotransferase (AST) activity of growing-finishing pigs on day 85 (P < 0.01). Compound probiotics and APS had an interaction effect on serum alanine aminotransferase (ALT) activity on day 29 (P < 0.05). Compared with the control group, the serum ALT activity in the compound probiotics group was significantly increased on day 29 (P < 0.05); compared with the APS group, there was no significant difference in serum ALT activity in the compound probiotics+APS group on day 29 (P>0.05). In conclusion, dietary compound probiotics can improve the immune function of growing-finishing pigs, and play an immune-enhancing role in the regulation of cytokines, but the effect on antioxidant function is unstable. Dietary APS can improve the immune function of growing-finishing pigs to a certain extent, plays an anti-inflammatory role in the regulation of cytokines, plays an immune homeostasis role in cellular immunity, and promotes the maintenance of oxidative balance. Compound probiotics and APS have certain interaction effects on cellular immunity, cytokine regulation, antioxidant and other aspects of growing-finishing pigs. The addition of compound probiotics is likely to cause significant changes in blood indices, while the APS has an inhibitory effect on such significant changes.
Key words: compound probiotics    Astragalus polysaccharide    growing-finishing pigs    immune function    antioxidant function    

在我国,由于生产者对动物福利,特别是对生长育肥猪动物福利的重视程度不够,导致其在简陋的饲养环境、粗放的饲养管理、随意的用药与免疫的影响下遭受着多种应激[1-2],这一方面降低其生产性能[3],另一方面降低其免疫防御和调节能力,影响动物健康[4]。为了提高其生长性能、促进其健康,在生长育肥猪饲粮中添加复合益生菌制剂以及黄芪多糖(Astragalus polysaccharide,APS)等动物保健类饲料添加剂成为饲料抗生素禁用后的研究热点。有研究指出,益生菌可促进中草药的吸收利用[5-8],中草药可促进益生菌的增殖代谢[9-10],这奠定了复合益生菌与APS混合使用的理论基础。在国内,李树鹏[11]首次开展将APS与益生菌结合用于家养动物生产的研究,并发现APS和益生菌组成的合生元显著提高了雏鸡的生长性能,但并不比单一添加效果好;APS和益生菌在体内外均具有抑制有害菌的效果,APS在体外试验中对乳酸菌、芽孢杆菌也具有抑制效果;合生元对有害菌的抑制效果比单一添加更为显著。刘明生等[12]通过研究证实了APS与益生菌组成的合生元在鸡上的应用效果。吕鑫[13]和李亚杰[14]在鸡上的研究则验证了APS和益生菌组成的合生元在生产性能、免疫等方面较单一添加的优势。岑路等[15]报道,索比亚益生菌具有显著的防治口蹄疫和提高口蹄疫疫苗保护的作用,同时还可促进仔猪的生长,且添加APS有明显的协同作用。学者们在以鸡为主的家养动物上的研究证实了复合益生菌与APS混合使用时具有较好的应用效果,但目前在生长育肥猪上少有相关研究,且二者互作效应尚未得到证实。弄清二者在动物上的互作效应,是合理使用的前提。笔者前期研究发现,饲粮添加复合益生菌对生长后期的生长育肥猪平均日采食量和料重比有所提高,并降低粪便微生物中厚壁菌门与拟杆菌门的比值和粪中短链脂肪酸含量;饲粮添加APS显著降低生长育肥猪粪便微生物多样性;复合益生菌和APS对生长育肥猪粪便微生物中乳杆菌属和毛螺菌科XPB1014群属相对丰度的互作效应表现为拮抗作用[16]。复合益生菌与APS对于生长育肥猪的生长性能未见互作效应,在粪便微生物上的互作效应也不具有协同作用,那么二者对于免疫和抗氧化功能的影响又是如何?本研究将着重考察复合益生菌与APS对生长育肥猪免疫和抗氧化功能的影响,为复合益生菌和APS的应用提供依据。

1 材料与方法 1.1 试验材料

复合益生菌制剂购于某公司,有效成分为枯草芽孢杆菌、嗜乳酸杆菌和屎肠球菌,活菌数>5×108 CFU/g。APS来源于某公司,有效成分及含量为:黄芪多糖200 mg/g,黄芩苷22 mg/g,绿原酸2.2 mg/g。

1.2 试验设计

试验采用2×2双因素试验设计,选取80头健康状况、体重[(33.5±0.8) kg]相近的“杜×长×大”生长猪,随机分为4组(每组5个重复,每个重复4头猪),分别饲喂基础饲粮(对照组)、基础饲粮+5×108 CFU/kg复合益生菌(复合益生菌组)、基础饲粮+0.1%APS(APS组)、基础饲粮+5×108 CFU/kg复合益生菌+0.1%APS(复合益生菌+APS组)。试验期为84 d。

1.3 基础饲粮

试验用基础饲粮为参照NRC(2012)25~110 kg营养需要配制的粉状配合饲料,其组成及营养水平同文献[16]

1.4 饲养管理

试验在四川农业大学动物营养研究所动物试验农场进行。圈舍消毒后转入试验猪只,分组分重复关好,同一重复猪只关在同一个圈中。每天饲喂3次(08:00、14:00和20:00),使猪只全期自由采食,充足饮水,给予猪只适宜的生长环境,猪舍定期消毒。

1.5 样品采集

于试验第29天、第57天和第85天清晨每个重复随机选取1头健康的猪,空腹采血5 mL于普通采血管中,采血2 mL于含肝素钠的抗凝管中。普通采血管中血样静置2 h后于3 000 r/min离心10 min,取血清分装于1.5 mL离心管中,于-20 ℃保存待测;含肝素钠的抗凝采血管中血样送检作T淋巴细胞亚群分析。

1.6 指标测定 1.6.1 免疫指标

采用南京建成生物工程研究所生产的试剂盒,结合酶标仪测定第29天、第57天和第85天血清样品中溶菌酶(lysozyme,LZM)的活性。

试验第29天、第57天和第85天清晨采血后,立即将装于肝素钠抗凝管中的血样送至四川农业大学动物营养研究所实验室进行T淋巴细胞亚群(CD3+、CD4+和CD8+)分析。

采用江苏晶美科技有限公司生产的酶联免疫吸附试验(ELISA)试剂盒,结合酶标仪测定血清中白细胞介素-2(interleukin-2, IL-2)、白细胞介素-6(interleukin-6, IL-6)、肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)、干扰素-γ(interferon-γ, IFN-γ)的含量。

1.6.2 抗氧化指标

采用南京建成生物工程研究所生产的试剂盒,结合酶标仪测定血清中脂质过氧化产物丙二醛(malondialdehyde, MDA)的含量以及超氧化物歧化酶(superoxide dismutase, SOD)和谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)、谷丙转氨酶(alanine aminotransferase, ALT)和谷草转氨酶(aspartate aminotransferase, AST)的活性。

1.7 数据统计与分析

使用Excel 2010对数据进行初步整理,采用SAS 9.2中的MIXED模型对数据进行双因素方差分析,包括复合益生菌效应、APS效应及二者互作效应。正态性和方差同质性分别通过Shapiro-Wilk检验和Levene检验进行评估。如果2个因素之间不存在互作效应,进行主效应分析;如果2个因素之间存在互作效应则进行简单主效应分析。结果以平均值(mean)和集合标准误(SEM)的形式表示。以P < 0.01作为极显著性差异,P < 0.05作为显著性差异,0.05≤P < 0.10作为趋势性判断标准。

2 结果与分析 2.1 复合益生菌与APS对生长育肥猪血清LZM活性的影响

表 1可知,饲粮添加复合益生菌显著提高第57天和第85天生长育肥猪血清LZM活性(P < 0.05),有提高第29天血清LZM活性的趋势(P=0.068);饲粮添加APS有提高第29天血清LZM活性的趋势(P=0.090);复合益生菌与APS对血清LZM活性不存在互作效应(P>0.05)。

表 1 复合益生菌与APS对生长育肥猪血清LZM活性的影响 Table 1 Effects of compound probiotics and APS on serum LZM activity of growing-finishing pigs  
2.2 复合益生菌与APS对生长育肥猪外周血T淋巴细胞亚群的影响

表 2可知,复合益生菌与APS对第29天和第57天生长育肥猪外周血CD4+ T淋巴细胞/CD4+ T淋巴细胞(CD4+/CD8+)值、第29天CD3+ T淋巴细胞比例以及第57天CD4+ T淋巴细胞比例存在互作效应(P < 0.01),对第29天CD4+ T淋巴细胞比例存在互作趋势(P=0.075)。第29天,与对照组相比,APS组外周血CD4+ T淋巴细胞比例、CD3+ T淋巴细胞比例以及CD4+/CD8+值显著降低(P < 0.05);与复合益生菌组相比,复合益生菌+APS组外周血CD3+ T淋巴细胞比例、CD4+ T淋巴细胞比例以及CD4+/CD8+值无显著差异(P>0.05)。第57天,与对照组相比,APS组外周血CD4+ T淋巴细胞比例和CD4+/CD8+值极显著提高(P < 0.01);与复合益生菌组相比,复合益生菌+APS组外周血CD4+ T淋巴细胞比例和CD4+/CD8+值无显著差异(P>0.05)。由此可以看出,APS通过影响CD4+ T淋巴细胞比例调节CD4+/CD8+值维持在一定范围,而复合益生菌的添加对APS的调节存在一定的抑制作用。

表 2 复合益生菌与APS对生长育肥猪外周血T淋巴细胞亚群的影响 Table 2 Effects of compound probiotics and APS on T lymphocyte subsets in peripheral blood of growing-finishing pigs
2.3 复合益生菌与APS对生长育肥猪血清细胞因子含量的影响

表 3可知,饲粮添加复合益生菌极显著提高第85天生长育肥猪血清TNF-α含量(P < 0.01),显著提高第85天血清IFN-γ含量(P < 0.05);饲粮添加APS有提高第85天血清IFN-γ(P=0.067)和IL-2含量(P=0.093)的趋势。复合益生菌与APS对第85天血清IL-6含量存在互作趋势(P=0.055),与对照组相比,APS组第85天血清IL-6含量有降低的趋势(P=0.055);与复合益生菌组相比,复合益生菌+APS组第85天血清IL-6含量无显著差异(P>0.05)。

表 3 复合益生菌与APS对生长育肥猪血清细胞因子含量的影响 Table 3 Effects of compound probiotics and APS on serum cytokine contents of growing-finishing pigs  
2.4 复合益生菌与APS对生长育肥猪血清抗氧化指标的影响

表 4可知,复合益生菌与APS对第57天生长育肥猪血清GSH-Px活性存在互作效应(P < 0.05)。与对照组相比,复合益生菌组第57天血清GSH-Px活性极显著提高(P < 0.01);与APS组相比,复合益生菌+APS组第57天血清GSH-Px活性无显著差异(P>0.05)。

表 4 复合益生菌与APS对生长育肥猪血清抗氧化指标的影响 Table 4 Effects of compound probiotics and APS on serum antioxidant indices of growing-finishing pigs
2.5 复合益生菌与APS对生长育肥猪血清ALT和AST活性的影响

表 5可知,饲粮添加复合益生菌极显著提高第85天生长育肥猪血清AST活性(P < 0.01)。复合益生菌与APS对第29天血清ALT活性存在互作效应(P < 0.05),与对照组相比,复合益生菌组第29天血清ALT活性显著提高(P < 0.05);与APS组相比,复合益生菌+APS组第29天血清ALT活性则无显著差异(P>0.05)。

表 5 复合益生菌与APS对生长育肥猪血清ALT和AST活性的影响 Table 5 Effects of compound probiotics and APS on activities of ALT and AST in serum of growing-finishing pigs  
3 讨论 3.1 复合益生菌与APS对生长育肥猪免疫功能的影响 3.1.1 复合益生菌与APS对生长育肥猪非特异性免疫的影响

LZM是一种专门作用于微生物细胞壁的水解酶,具有溶菌和增强免疫力等作用,血清中LZM活性的提高可增强猪只抗肠道大肠杆菌和轮状病毒的能力,对猪只健康生长具有重要意义[17]。朱博[18]研究发现,饲粮添加0.2%解淀粉芽孢杆菌有提高仔猪血清LZM活性和免疫球蛋白G含量的趋势,分别比空白对照组提高了24.14%和16.12%,比阳性对照组提高了43.99%和13.77%。赵素华等[19]在雏鸡上的研究发现,中高剂量的APS口服液显著提高了21日龄雏鸡血清LZM活性,增强了雏鸡的非特异性免疫力。本研究结果显示,饲粮添加复合益生菌对3个时间点生长育肥猪血清LZM活性均有提高的作用或趋势;饲粮添加APS对第29天血清LZM活性也有提高的趋势;复合益生菌与APS对血清LZM活性不存在互作效应。本试验单独添加的结果与前人研究一致,说明饲粮添加复合益生菌和APS均可提高生长育肥猪的免疫防御能力;而复合益生菌与APS混合添加对生长育肥猪血清LZM活性未发现互作效应的原因暂时不得而知,有待进一步研究。

3.1.2 复合益生菌与APS对生长育肥猪细胞免疫的影响

外周血T淋巴细胞亚群分CD4+辅助/诱导性T淋巴细胞和CD8+抑制性/细胞毒T淋巴细胞。CD4+ T淋巴细胞可协助B淋巴细胞分泌抗体和调节其他T淋巴细胞的免疫应答,CD8+ T淋巴细胞常表现细胞毒活性,是主要的细胞毒效应细胞[20-21]。CD4+ T淋巴细胞和CD8+ T淋巴细胞能够相互作用来维持机体内的免疫平衡,肿瘤、艾滋病等免疫抑制型疾病和类风湿性关节炎等自身免疫性疾病会引起CD4+/CD8+平衡打乱,导致机体免疫反应紊乱[22-23]。猪外周血淋巴细胞的组成和比例与其他动物有所不同,CD8+ T淋巴细胞比例大于CD4+ T淋巴细胞,在分析了多篇文献[24-28]后,笔者认为猪正常CD4+/CD8+值为0.6~1.0;但也有少量文献报道,猪正常CD4+/CD8+值为1~2[29-30],这可能与测定方法和试验猪只间的差异有关。本研究结果显示,APS通过影响CD4+ T淋巴细胞比例调节CD4+/CD8+值维持在一定范围,从而起到对机体细胞免疫的调节作用,而复合益生菌的添加对APS的调节存在一定的抑制作用。

3.1.3 复合益生菌与APS对生长育肥猪细胞因子的影响

IL-2能增强T淋巴细胞的杀伤活性,并可诱导T淋巴细胞分泌IFN-γ、肿瘤坏死因子和集落刺激因子等细胞因子[31];IL-6作为一种促炎因子,通常与TNF-α一起产生,并在病毒感染中扮演重要角色[32-33];IFN-γ由活化的T淋巴细胞和自然杀伤细胞产生,具有免疫调节、抗病毒和抗肿瘤等生物学作用[34];TNF-α作为促炎因子,既可以参与机体炎症反应,又可通过促进B淋巴细胞的增殖分化,产生肿瘤的特异性抗体,发挥体液免疫协助抗肿瘤的作用[35]。本研究中,饲粮添加复合益生菌显著提高第85天生长育肥猪血清中TNF-α和IFN-γ的含量;饲粮添加APS有提高第85天血清IFN-γ和IL-2含量的趋势;复合益生菌与APS对第85天血清IL-6含量存在互作趋势,单独添加APS时,血清IL-6含量有降低趋势。以上结果表明,饲粮添加复合益生菌可以提高生长育肥猪血清中促炎因子的含量,从而实现免疫增强的调节作用,这与前人的研究结果[36-37]一致;饲粮添加APS可降低促炎因子、提高相关抗炎因子IL-2的含量,从而在细胞因子的调节中发挥抗炎作用,与前人研究取得一致结果[38-39];复合益生菌与APS对生长育肥猪细胞因子的调节存在一定的拮抗作用。

3.2 复合益生菌与APS对生长育肥猪抗氧化功能的影响

抗氧化酶系统具有清除活性氧自由基的功能,是维持动物健康的重要防线。SOD能催化动物机体内的自由基歧化反应,使得自由基与膜蛋白和膜脂质物质发生二次反应而破坏细胞的稳定性;GSH-Px是一种重要的抗氧化酶类物质,可与SOD协同作用大幅度降低机体活性氧自由基的产生;MDA是脂质过氧化反映的稳定产物,具有很强的生物毒性,能破坏细胞膜的结构,使细胞肿胀、坏死[40],MDA含量越高说明体内过氧化反映越强烈,细胞受到的氧化损伤越强。呼红梅等[41]报道,绿原菌和自制的益生菌(芽孢杆菌、酵母菌)使商品猪血清中抗氧化酶的活性显著提高,明显改善了商品猪的抗氧化功能。国外的相关研究也证实,益生菌可提高抗氧化酶的活性,降低活性氧自由基代谢物进而调节氧化应激[42]。自由基大量累积时,会导致细胞炎症、脂肪浸润,畜禽体内发生氧化应激会导致肝脏损伤,引起肝炎、脂肪肝等多种肝脏疾病[43]。ALT和AST是体内重要的转氨酶,通常将二者在血液中的含量变化作为判断肝脏和心脏健康状况的依据[44-45]。韩乾杰[46]研究表明,APS和人参多糖能够显著缓解脂多糖刺激引起的仔猪肝脏ALT、AST活性和促炎因子含量的升高,并提高机体的抗氧化功能,对肝脏起到保护增益的作用。孟祥宇[47]和白雅绮[48]的研究均表明,复合益生菌制剂对猪血清ALT和AST活性无显著影响。

本研究结果显示,复合益生菌与APS对第57天生长育肥猪血清GSH-Px活性存在互作效应,复合益生菌单独添加时,血清GSH-Px活性显著提高。但反映肝脏功能的指标显示,饲粮添加复合益生菌极显著提高第85天血清AST活性;复合益生菌与APS对第29天血清ALT活性存在互作效应,复合益生菌单独添加时,血清ALT活性显著提高。饲粮添加复合益生菌使第85天血清AST活性以及第29天血清AST活性提高的原因我们不得而知,但可以看出,APS对血清ALT和GSH-Px活性的升高存在一定程度上的抑制,表明APS对于生长育肥猪抗氧化功能的调节也存在一定的维稳作用,而复合益生菌对于生长育肥猪抗氧化功能的影响则存在不稳定性,既可能提高其抗氧化功能,也可能会有所降低,其原因可能是复合益生菌中益生菌定植效果不稳定以及菌群调节影响因素过多导致。益生菌在生产、加工、贮存和运输等过程中易受外界因素的影响而失活[49],而活菌剂进入畜禽体内后,还可能因易受胃中低pH和高胆盐环境影响而失活,真正到达肠道的菌群数量较少且定植能力不稳定[50]

4 结论

① 饲粮添加复合益生菌可提高生长育肥猪的免疫功能,并在细胞因子的调节中发挥免疫增强作用,但对于抗氧化功能的影响则不稳定。

② 饲粮添加APS对生长育肥猪的免疫功能具有一定的提高作用,在细胞因子的调节中主要发挥抗炎作用,在细胞免疫中主要发挥免疫自稳作用,并促进其氧化平衡状态的保持。

③ 复合益生菌与APS在生长育肥猪细胞免疫、细胞因子调节、抗氧化等方面均存在一定互作效应,复合益生菌的添加容易引起血液指标大幅度的变化,而APS对于这种大幅度的变化具有抑制作用。

参考文献
[1]
李旭骁. 福利状态对生长育肥猪生长性能的影响[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2018.
LI X X.The effect of welfare status on performance of fattening pigs[D].Master's Thesis. Yangling: Northwest A&F University, 2018.(in Chinese)
[2]
薛佳俐. 生长育肥猪福利养殖评价系统的建立[D]. 硕士学位论文. 北京: 中国农业科学院, 2020.
XUE J L.Establishment of evaluation system of fattening pig welfare breeding[D].Master's Thesis.Beijing: Chinese Academy of Agricultural Sciences, 2020.(in Chinese)
[3]
肖克权, 范小丫, 屈圣富, 等. 夏季饲养密度对生长猪生长性能及血清生化、免疫、抗氧化和应激指标的影响[J]. 动物营养学报, 2019, 31(8): 3551-3560.
XIAO K Q, FAN X Y, QU S F, et al. Effects of summer feeding density on growth performance and serum biochemical, immune, antioxidant and stress indexes of growing pigs[J]. Chinese Journal of Animal Nutrition, 2019, 31(8): 3551-3560 (in Chinese).
[4]
苗启翔, 谢彦娇, 唐湘方, 等. 氧化应激的产生及其对畜禽肝脏功能的影响与机制[J]. 动物营养学报, 2019, 31(8): 3496-3504.
MIAO Q X, XIE Y J, TANG X F, et al. Production of oxidative stress and its effect on liver function of livestock and poultry[J]. Chinese Journal of Animal Nutrition, 2019, 31(8): 3496-3504 (in Chinese).
[5]
KIM D H, LEE S W, HAN M J. Biotransformation of glycyrrhizin to 18β-glycyrrhetinic acid-3-O-β-D-glucuronide by Streptococcus LJ-22, a human intestinal bacterium[J]. Biological & Pharmaceutical Bulletin, 1999, 22(3): 320-322.
[6]
陈永强, 徐春, 徐凯, 等. 微生物发酵转化甘草提高其药效的研究[J]. 四川大学学报(自然科学版), 2007, 44(5): 1147-1150.
CHEN Y Q, XU C, XU K, et al. Microbial transformation of liquorice to enhance the pharmaceutical effects[J]. Journal of Sichuan University (Natural Science Edition), 2007, 44(5): 1147-1150 (in Chinese). DOI:10.3969/j.issn.0490-6756.2007.05.048
[7]
马伟光, 毕云, 黄之镨, 等. 雷公藤固态生物转化产物减毒增效作用的实验研究[J]. 中草药, 2010, 41(6): 927-930.
MA W G, BI Y, HUANG Z P, et al. More activity and less toxicity of extracts from solid fermented medicinal plant Tripterygium wilfordii[J]. Chinese Traditional and Herbal Drugs, 2010, 41(6): 927-930 (in Chinese).
[8]
张谦, 刘一尘, 刘应鹏, 等. 益生菌与中草药协同作用及其在畜禽养殖中的应用[J]. 现代牧业, 2018, 2(1): 30-34.
ZHANG Q, LIU Y C, LIU Y P, et al. Characteristics and application of synergistic effect of probiotics and Chinese herbal medicine in livestock and poultry breeding[J]. Modern Animal Husbandry, 2018, 2(1): 30-34 (in Chinese).
[9]
赵兴鑫, 张振红, 赵国先, 等. 中草药益生元对肉鸡肠道微生物和形态结构的影响[J]. 畜牧与兽医, 2011, 43(3): 53-56.
ZHAO X X, ZHANG Z H, ZHAO G X, et al. Effects of Chinese herbal medicine prebiotics on intestinal microflora and morphological structure of broilers[J]. Animal Husbandry & Veterinary Medicine, 2011, 43(3): 53-56 (in Chinese).
[10]
MIMAKI Y, YOKOSUKA A, KURODA M, et al. New bisdesmosidic triterpene saponins from the roots of Pulsatilla chinensis[J]. Journal of Natural Products, 2001, 64(9): 1226-1229. DOI:10.1021/np010252t
[11]
李树鹏. 黄芪多糖益生菌合生元对雏鸡生长和免疫作用的研究[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2005.
LI S P.Effects of synbiotics of Astragalus polysaccharide and profitable microbe on growth performance and immune function of chick[D].Master's Thesis.Yangling: Northwest A&F University, 2005.(in Chinese)
[12]
刘明生, 蒋春茂, 甘辉群, 等. 黄芪多糖和微生态制剂对蛋鸡生产性能和免疫机能的影响[J]. 江苏农业科学, 2018, 46(14): 154-156.
LIU M S, JIANG C M, GAN H Q, et al. Effects of Astragalus polysaccharides and probiotics on production performance and immune function of hens[J]. Jiangsu Agricultural Sciences, 2018, 46(14): 154-156 (in Chinese).
[13]
吕鑫. 黄芪多糖和益生菌对海兰褐蛋鸡生产性能和免疫功能的影响[J]. 饲料博览, 2014(12): 24-28.
LYU X. Effect of Astragalus polysaccharides and probiotics on growth performance and immune function of hy line brown hens[J]. Feed Review, 2014(12): 24-28 (in Chinese). DOI:10.3969/j.issn.1001-0084.2014.12.006
[14]
李亚杰. 益生菌、黄芪多糖微胶囊制剂的研制及其对肉鸡生长性能和免疫功能的影响[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2007.
LI Y J.Manufacture of microcapsule for probiotics and Astragalus polysaccharide and effect on its growth performance and immunological function of chicks[D].Master's Thesis.Yangling: Northwest A&F University, 2007.(in Chinese)
[15]
岑路, 张小利, 陈蕾, 等. 黄芪多糖和索比亚益生菌防制猪口蹄疫的试验[J]. 饲料研究, 2009(1): 37-39.
CEN L, ZHANG X L, CHEN L, et al. Experiment of Astragalus polysaccharides and probiotics from sobia against foot-and-mouth disease in pigs[J]. Feed Research, 2009(1): 37-39 (in Chinese).
[16]
张阳, 吕慧源, 徐盛玉, 等. 复合益生菌与黄芪多糖对生长育肥猪生长性能、血清生化指标和粪便微生物的影响[J]. 动物营养学报, 2021, 33(6): 3542-3553.
ZHANG Y, LYU H Y, XU S Y, et al. Effects of compound probiotics and Astragalus polysaccharide on growth performance, serum biochemical indices and fecal microorganism of growing-finishing pigs[J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3542-3553 (in Chinese).
[17]
刘宇, 朱战波, 孙秀军, 等. 复合活菌制剂对断奶仔猪生长性能及血清溶菌酶含量的影响[J]. 中国微生态学杂志, 2010, 22(9): 784-787.
LIU Y, ZHU Z B, SUN X J, et al. The effect of compound viable preparation on the growth performance of weaned piglets and the content of serum lysozyme[J]. Chinese Journal of Microecology, 2010, 22(9): 784-787 (in Chinese).
[18]
朱博. 解淀粉芽孢杆菌对仔猪生长性能、抗氧化能力、免疫功能和肠道菌群的影响[D]. 硕士学位论文. 南京: 南京农业大学, 2016.
ZHU B.Effects of Bacillus amyloliquefaciens on growth performance, immune function, antioxidant capacity and intestinal microflora of piglets[D].Master's Thesis.Nanjing: Nanjing Agricultural University, 2016.(in Chinese)
[19]
赵素华, 李灵娟, 王彬, 等. 黄芪多糖口服液对罗曼雏鸡免疫功能的影响[J]. 宿州学院学报, 2015, 30(4): 105-108.
ZHAO S H, LI L J, WANG B, et al. Effect of Astragalus polysaccharide oral liquid on immune function of Roman chicks[J]. Journal of Suzhou University, 2015, 30(4): 105-108 (in Chinese). DOI:10.3969/j.issn.1673-2006.2015.04.030
[20]
程丽平, 肖和平. 三种检测方法联合使用对结核性胸膜炎的诊断价值[J]. 中国防痨杂志, 2016, 38(11): 956-962.
CHENG L P, XIAO H P. Evaluation on combination of three methods for the diagnostic of tuberculous pleurisy[J]. Chinese Journal of Antituberculosis, 2016, 38(11): 956-962 (in Chinese). DOI:10.3969/j.issn.1000-6621.2016.11.013
[21]
严健, 原永明, 张舒, 等. CD3+、CD4+、CD8+ T淋巴细胞亚群在肿瘤患者外周血中检测的临床意义[J]. 检验医学, 2013, 28(10): 901-903.
YAN J, YUAN Y M, ZHANG S, et al. Clinical significance of peripheral blood CD3+, CD4+ and CD8+ T lymphocyte subset determination in patients with tumor[J]. Laboratory Medicine, 2013, 28(10): 901-903 (in Chinese).
[22]
唐佩军, 吴妹英, 王霞芳, 等. T淋巴细胞亚群活化和可溶性白细胞介素2受体在结核性胸膜炎中的作用[J]. 结核病与肺部健康杂志, 2017, 6(2): 122-124.
TANG P J, WU M Y, WANG X F, et al. Role of T lymphocyte subsets activation and sIL-2R in tuberculous pleurisy[J]. Journal of Tuberculosis and Lung Disease, 2017, 6(2): 122-124 (in Chinese). DOI:10.3969/j.issn.2095-3755.2017.02.009
[23]
师越. 恶性肿瘤患者外周血T细胞亚群检测结果回顾性分析[J]. 中国医学检验杂志, 2009(4): 228-229.
SHI Y. Retrospective analysis of T cell subsets in peripheral blood of patients with malignant tumor[J]. Chinese Journal of Medical Laboratory Technology, 2009(4): 228-229 (in Chinese).
[24]
LU X, FU W X, LUO Y R, et al. Genome-wide association study for T lymphocyte subpopulations in swine[J]. BMC Genomics, 2012, 13: 488. DOI:10.1186/1471-2164-13-488
[25]
王湧. 猪转移因子注射液对生长猪免疫功能影响的研究[D]. 硕士学位论文. 雅安: 四川农业大学, 2006.
WANG Y.Study on effects of the pig transfer factor injection on immune function in grow-finishing pig[D].Master's Thesis.Ya'an: Sichuan Agricultural University, 2006.(in Chinese)
[26]
LU X, LIU J F, GONG Y F, et al. Mapping quantitative trait loci for T lymphocyte subpopulations in peripheral blood in swine[J]. BMC Genetics, 2011, 12: 79.
[27]
李华, 杨汉春, 张晓梅, 等. 猪血液和淋巴组织中淋巴细胞亚群表型分布[J]. 农业生物技术学报, 2000, 8(1): 37-40.
LI H, YANG H C, ZHANG X M, et al. Distribution and phenotypic analysis of poreine T lymphcytes in peripheral blood and lymphoid tissues[J]. Journal of Agricultural Biotechnolog, 2000, 8(1): 37-40 (in Chinese). DOI:10.3969/j.issn.1674-7968.2000.01.008
[28]
邵珊, 王贵平, 李春玲, 等. 黄芪多糖和白花蛇舌草多糖对猪繁殖与呼吸综合征灭活疫苗免疫猪T细胞亚群及抗体水平的影响[J]. 中国兽医学报, 2011, 31(8): 1196-1199.
SHAO S, WANG G P, LI C L, et al. Effects of APS and OPS on T subpopulations in the immune response to porcine reproductive and respiratory syndrome inactived virus vaccine[J]. Chinese Journal of Veterinary Science, 2011, 31(8): 1196-1199 (in Chinese).
[29]
王茹. 益生菌E. faecium NCIMB 10415对新生及断奶仔猪生长性能、肠道菌群及免疫功能的影响[D]. 硕士学位论文. 成都: 四川农业大学, 2018.
WANG R.Effects of E. faecium NCIMB 10415 supplementation on growth performance, intestinal microbiota and immune function of neonatal and weaned pigs[D].Master's Thesis.Chengdu: Sichuan Agricultural University, 2018.(in Chinese)
[30]
彭宏刚. 黄芪多糖对生长育肥猪生产性能及免疫力影响的研究[D]. 硕士学位论文. 石河子: 石河子大学, 2016.
PENG H G.Effects of Astragalus polysaccharides on growth performance and immune function in growth-finishing pig[D].Master's Thesis.Shihezi: Shihezi University, 2016.(in Chinese)
[31]
MALEK T R. The main function of IL-2 is to promote the development of T regulatory cells[J]. Journal of Leukocyte Biology, 2003, 74(6): 961-965. DOI:10.1189/jlb.0603272
[32]
RACHMAN A, RINALDI I. Coagulopathy in dengue infection and the role of interleukin-6[J]. Acta medica Indonesiana, 2006, 38(2): 105-108.
[33]
SAKAKIBARA S, TOSATO G. Viral interleukin-6:role in Kaposi's sarcoma-associated herpesvirus-associated malignancies[J]. Journal of Interferon & Cytokine Research, 2011, 31(11): 791-801.
[34]
潘晓梅, 窦永喜, 才学鹏. 猪干扰素-γ的研究进展[J]. 生物技术通报, 2008(6): 36-39.
PAN X M, DOU Y X, CAI X P. The advance in porcine interferon-gamma[J]. Biotechnology Bulletin, 2008(6): 36-39 (in Chinese).
[35]
高世勇, 李丹. 肿瘤坏死因子与癌症相关研究进展[J]. 中国药理学通报, 2020, 36(9): 1209-1213.
GAO S Y, LI D. Research advances in tumor necrosis factor and cancer[J]. Chinese Pharmacological Bulletin, 2020, 36(9): 1209-1213 (in Chinese). DOI:10.3969/j.issn.1001-1978.2020.09.006
[36]
胡兴义, 王开功, 周碧君, 等. 益生菌制剂对早期断奶仔猪生长性能、细胞因子和免疫水平的影响[C]//中国畜牧兽医学会动物微生态学分会第五届第十二次全国学术研讨会论文集. 青岛: 中国畜牧兽医学会动物微生态学分会, 2016: 205.
HU X Y, WANG K G, ZHOU B J, et al.Effects of probiotics on growth performance, cytokines and immune level of early weaned piglets[C]//Proceedings of the 12th ational symposium of the 5th committee of Animal Microecology Branch in Chinese Association of Animal Sicience and Veterinary Medicine.Qingdao: Animal Microecology Branch in Chinese Association of Animal Sicience and Veterinary Medicine, 2016: 205.(in Chinese)
[37]
陆克文. 新型猪用复合益生菌制剂的研制与开发[D]. 博士学位论文. 南京: 南京农业大学, 2011.
LU K W.Development of new combined probiotics praeparatum used in swine[D].Ph.D. Thesis.Nanjing: Nanjing Agricultural University, 2011.(in Chinese)
[38]
李天琦. 香菇多糖和黄芪多糖对感染GPV雏鹅免疫及小肠炎性损伤的作用[D]. 硕士学位论文. 哈尔滨: 东北农业大学, 2019.
LI T Q.Effects of Astragalus and Lentinus polysaccharides on immunity and small intestinal injury of gosling infected by GPV[D].Master's Thesis.Harbin: Northeast Agricultural University, 2019.(in Chinese)
[39]
陈广勇, 韩乾杰, 张玲玲, 等. 黄芪多糖对脂多糖刺激小鼠巨噬细胞形态及免疫功能的影响[J]. 动物营养学报, 2020, 32(9): 4358-4365.
CHEN G Y, HAN Q J, ZHANG L L, et al. Effects of Astragalus polysaccharides on morphology and immune function of lipopolysaccharide-stimulated macrophages in mice[J]. Chinese Journal of Animal Nutrition, 2020, 32(9): 4358-4365 (in Chinese).
[40]
王暖, 黄红莉, 周昊, 等. D-半乳糖致大鼠衰老模型的研究[J]. 浙江临床医学, 2012, 14(2): 129-132.
WANG N, HUANG H L, ZHOU H, et al. Study on aging rat model induced by D-galactose[J]. Zhejiang Clinical Medical Journal, 2012, 14(2): 129-132.
[41]
呼红梅, 林松, 武英, 等. 饲粮添加益生菌对猪生长性能和肉品质的影响[J]. 养猪, 2017(2): 50-53.
HU H M, LIN S, WU Y, et al. Effects of probiotics on growth performance and meat quality of pigs[J]. Swine Production, 2017(2): 50-53 (in Chinese). DOI:10.3969/j.issn.1002-1957.2017.02.021
[42]
JAHNS F, WILHELM A, JABLONOWSKI N, et al. Butyrate modulates antioxidant enzyme expression in malignant and non-malignant human colon tissues[J]. Molecular Carcinogenesis, 2015, 54(4): 249-260. DOI:10.1002/mc.22102
[43]
THEODOTOU M, FOKIANOS K, MONIATIS D, et al. Effect of resveratrol on non-alcoholic fatty liver disease[J]. Experimental and Therapeutic Medicine, 2019, 18(1): 559-565.
[44]
夏鑫, 余曼荣, 黄慧, 等. 葫芦巴渣及提取物对断奶仔猪生长性能、抗氧化功能和血清生化指标的影响[J]. 动物营养学报, 2020, 32(3): 1118-1126.
XIA X, YU M R, HUANG H, et al. Effects of Fenugreek residue and extract on growth performance, antioxidant function and serum biochemical indices of weaned piglets[J]. Chinese Journal of Animal Nutrition, 2020, 32(3): 1118-1126 (in Chinese).
[45]
LIU Y Y, KONG X F, JIANG G L, et al. Effects of dietary protein/energy ratio on growth performance, carcass trait, meat quality, and plasma metabolites in pigs of different genotypes[J]. Journal of Animal Science and Biotechnology, 2015, 6: 36. DOI:10.1186/s40104-015-0036-x
[46]
韩乾杰. 植物多糖对仔猪生长性能、免疫功能和肠道健康的影响研究[D]. 硕士学位论文. 杭州: 浙江农林大学, 2019.
HAN Q J.Effects of plant polysaccharides on growth performance, immune function and intestinal health in weaned piglets[D].Master's Thesis.Hangzhou: Zhejiang A&F University, 2019.(in Chinese)
[47]
孟祥宇. 复合益生菌制剂对猪生产性能和免疫功能以及肉品质的影响[D]. 硕士学位论文. 哈尔滨: 东北农业大学, 2018.
MENG X Y.Effect of dietary compound probiotic preparation on growth performance, immune function and meat quality of pig[D].Master's Thesis.Harbin: Northeast Agricultural University, 2018.(in Chinese)
[48]
白雅绮. 日粮可溶性纤维与益生菌对育肥猪生长性能、氮排放及肠道菌群的影响[D]. 硕士学位论文. 绵阳: 西南科技大学, 2020.
BAI Y Q.Effects of dietary soluble fiber and probiotics on growth performance, nitrogen emissions growth performance, nitrogen emissions and intestinal microflora of finishing pigs[D].Master's Thesis.Mianyang: Southwest University of Science and Technology, 2020.(in Chinese)
[49]
FOLIGNÉ B, DANIEL C, POT B. Probiotics from research to market: the possibilities, risks and challenges[J]. Current Opinion in Microbiology, 2013, 16(3): 284-292. DOI:10.1016/j.mib.2013.06.008
[50]
蔡文涛, 王瑞, 王喜亮, 等. 畜禽中药——益生菌复合微生态制剂的研究进展[J]. 生物工程学报, 2019, 35(6): 972-987.
CAI W T, WANG R, WANG X L, et al. Progress in Chinese medicine—probiotics compound microecological preparations for livestock and poultry[J]. Chinese Journal of Biotechnology, 2019, 35(6): 972-987 (in Chinese).