动物营养学报    2021, Vol. 33 Issue (6): 3380-3388    PDF    
不同精粗比饲粮对贵州白山羊肌肉营养组成的影响
卢盛勇1 , 陈胜昌1 , 李景上1 , 李海霞1 , 蔡运策1 , 陈祥2 , 洪磊2     
1. 贵州大学动物科学学院动物营养与饲料研究所, 贵阳 550025;
2. 贵州大学高原山地动物遗传育种与繁殖教育部重点实验室, 贵阳 550025
摘要: 本试验旨在探索不同精粗比饲粮对贵州白山羊背最长肌中常规营养成分、氨基酸、脂肪酸等营养成分含量的影响。试验选择体况健康、体重[(15.96±2.94)kg]相近的育肥阶段白山羊36只,采用单因素随机区组设计,随机分为4组,每组9个重复,每个重复1只羊,分别饲喂精粗比为30:70、40:60、50:50、60:40的饲粮,预试期7 d,正试期60 d。正式期结束后屠宰,每只羊采集背最长肌500 g进行相关指标测定。结果显示:50:50组和60:40组水分含量显著高于30:70组和40:60组(P < 0.05),60:40组粗脂肪含量显著高于30:70组(P < 0.05),30:70组粗蛋白质含量显著高于50:50组和60:40组(P < 0.05)。50:50组精氨酸含量显著低于60:40组(P < 0.05),60:40组必需氨基酸、鲜味氨基酸和总氨基酸含量最高,30:70组甜味氨基酸/总氨基酸最高。40:60组棕榈酸含量显著低于其他组(P < 0.05),30:70组和40:60组硬脂酸含量显著高于50:50组和60:40组(P < 0.05),30:70组棕榈油酸含量显著低于50:50组和60:40组(P < 0.05),30:70组和40:60组油酸含量显著低于60:40组(P < 0.05),30:70组二十碳烯酸含量显著低于60:40组(P < 0.05),30:70组反亚油酸、亚油酸和二十碳三烯酸含量显著低于其他组(P < 0.05),30:70组和40:60组α-亚麻酸含量显著低于50:50组和60:40组(P < 0.05),60:40组二十碳二烯酸含量显著低于其他组(P < 0.05),30:70组饱和脂肪酸含量最高,60:40组单不饱和脂肪酸、不饱和脂肪酸和总脂肪酸含量最高。综上可知,饲粮精粗比为60:40时贵州白山羊肌肉粗脂肪含量高,氨基酸和脂肪酸含量丰富,肌肉的多汁性、风味及品质好,营养价值高。
关键词: 贵州白山羊    精粗比    氨基酸    脂肪酸    
Effects of Diets with Different Concentrate to Roughage Ratios on Muscle Nutritional Composition of Guizhou White Goats
LU Shengyong1 , CHEN Shengchang1 , LI Jingshang1 , LI Haixia1 , CAI Yunce1 , CHEN Xiang2 , HONG Lei2     
1. Animal Nutrition and Feed Research Institute, College of Animal Science, Guizhou University, Guiyang 550025, China;
2. Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
Abstract: The aim of this experiment was to explore the effects of diets with different concentrate to roughage ratios on the contents of nutrients such as routine nutrients, amino acids and fatty acids in the longissimus dorsi of Guizhou white goats. Thirty-six healthy fattening goats with similar body weight[(15.96±2.94) kg] were randomly divided into 4 groups with 9 replicates in each group and 1 goat in each replicate. They were fed diets with concentrate to roughage ratio of 30:70, 40:60, 50:50 and 60:40, respectively. The pre feeding period was 7 days and the formal period was 60 days. All goats were slaughtered after formal period, and 500 g longissimus dorsi was sampled from each goat to determine the relative indexes. The results showed that the moisture content of 50:50 and 60:40 groups was significantly higher than that of 30:70 and 40:60 groups (P < 0.05), the ether extract content of 60:40 group was significantly higher than that of 30:70 group (P < 0.05), and the crude protein content of 30:70 group was significantly higher than that of 50:50 and 60:40 groups (P < 0.05). The arginine content of 50:50 group was significantly lower than that of 60:40 group (P < 0.05), the contents of essential amino acids, delicious amino acids and total amino acids were the highest of 60:40 group, and the sweet amino acids/total amino acids was the highest of 30:70 group. The palmitic acid content of 40:60 group was significantly lower than that in each groups (P < 0.05), the stearic acid content of 30:70 and 40:60 groups was significantly higher than that of 50:50 and 60:40 groups (P < 0.05), the palmitoleic acid content of 30:70 group was significantly lower than that of 50:50 and 60:40 groups (P < 0.05), the oleic acid content of 30:70 and 40:60 groups was significantly lower than that of 60:40 group (P < 0.05), the eicosaccharide dilute acid content of 30:70 group was significantly lower than that of 60:40 group (P < 0.05), the linolelaidic acid, linoleic acid and eicosatrienoic acid contents of 30:70 group was significantly lower than those of other groups (P < 0.05), the α-linolenic acid content of 30:70 and 40:60 groups was significantly lower than that of 50:50 and 60:40 groups (P < 0.05), the eicosarboxylic acid content of 60:40 was significantly lower than that of other groups (P < 0.05), the saturated fatty acids content was the highest of 30:70 group, and the contents of monounsaturated fatty acids, unsaturated fatty acids and total fatty acids were the highest of 60:40 group. Base on the above results, when dietary concentrate to roughage ratio is 60:40, the content of ether extract in muscle of Guizhou white goats is high, the contents of amino acids and fatty acids are rich, the meat is juicy and flavor, the meat quality is good, and the nutritional value is high.
Key words: Guizhou white goats    concentrate to roughage ratio    amino acids    fatty acids    

贵州白山羊是贵州群体数量最大的白山羊品种,具有性成熟早、繁殖力强、适应性强、肉质鲜嫩、膻味轻等特点[1],其主要分布在黔东南、黔东北等地区,存栏量100多万只,是发展贵州畜牧业的重要种质资源。粗饲料能够刺激反刍和咀嚼、维持瘤胃液正常pH等[2]。适宜的精粗比可以改善反刍动物瘤胃微生物区系[3-5],提高生长性能[6-7]。占今舜等[8]研究发现,随着饲粮精粗比的增加,羊腿肌粗脂肪含量升高,且精粗比为70∶30组的粗脂肪含量显著高于精粗比为40∶60组。李妍等[9]研究结果显示,牛肉粗蛋白质和粗脂肪含量随饲粮精粗比的增加而升高。梁大勇[10]研究发现,精粗比为60∶40组饱和脂肪酸含量显著高于精粗比为50∶50和40∶60组,而不饱和脂肪酸和必需脂肪酸含量则显著低于这2组。以上研究说明适宜的饲粮精粗比不仅能促进反刍动物对营养物质的消化吸收,提高生长性能,还能改善肌肉组成。目前关于不同精粗比饲粮对贵州白山羊肌肉氨基酸、脂肪酸和常规营养成分含量影响的研究较少。鉴于此,本研究以贵州白山羊为试验动物,研究不同精粗比饲粮对贵州白山羊肌肉氨基酸、脂肪酸和常规营养成分含量的影响,为贵州白山羊育肥期营养需要提供科学依据。

1 材料与方法 1.1 试验设计及试验动物

试验选择体况健康、体重(15.96±2.94) kg的育肥贵州白山羊36只,采用单因素随机区组设计,随机分为4组,每组9个重复,每个重复1只羊,预试期7 d,正试期60 d。

1.2 饲养管理

每天09:30和17:30各喂料1次,自由饮水,所有试验羊严格按标准化羊场饲养管理措施进行驱虫、消毒和免疫。4个试验组分别饲喂精粗比为30∶70、40∶60、50∶50和60∶40的试验饲粮,精料和粗料按比例搅拌均匀后饲喂。

1.3 试验饲粮

试验羊的精料补充料以我国《肉羊饲养标准》(NY/T 816—2004)为参照,并结合羊场的实际生产配制(表 1)。按每100 kg青贮玉米加1 kg玉米秸秆粉的比例混合作为粗饲料,其营养水平见表 2。不同精粗比饲粮的营养水平见表 3

表 1 精料补充料组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the concentrate supplement (air-dry basis)  
表 2 粗饲料的营养水平(风干基础) Table 2 Nutrient levels of the roughage (air-dry basis)  
表 3 不同精粗比饲粮的营养水平(风干基础) Table 3 Nutrient levels of diets with different concentrate to roughage ratios (air-dry basis)  
1.4 样品采集和指标测定

正试期结束后屠宰(禁食12 h、禁水2 h),每只羊采集背最长肌500 g进行相关指标测定。

1.4.1 粗蛋白质、粗脂肪、粗灰分和水分含量的测定

粗脂肪含量参照《肉与肉制品总脂肪含量》(GB/T 9695.7—2008)中方法测定;粗蛋白质含量参照《食品中蛋白质的测定》(GB 5009.5—2010)中方法测定;粗灰分含量采用《肉与肉制品灰分测定》(GB/T 9695.18—88)中的高温炉化法测定;水分含量参照《肉与肉制品水分含量测定》(GB/T 9695.15—2008)中方法测定。

1.4.2 氨基酸和脂肪酸组成测定

参照《食品中氨基酸的测定》(GB 5009.124—2016)测定氨基酸组成,参照《食品中脂肪酸的测定》(GB 5009.168—2016)测定脂肪酸组成。

1.5 统计分析

试验数据采用Excel 2013进行初步整理,应用SAS 9.3软件中的Proc GLM过程进行统计分析,并采用Duncan氏法进行多重比较,差异显著性水平定为P<0.05。试验数据以平均值±标准差(mean±SD)表示。

2 结果 2.1 不同精粗比饲粮对贵州白山羊肌肉常规营养成分含量的影响

表 3可知,50∶50组和60∶40组水分含量显著高于30∶70组和40∶60组(P<0.05)。60∶40组粗脂肪含量显著高于30∶70组(P<0.05)。30∶70组粗蛋白质含量显著高于50∶50组和60∶40组(P<0.05)。30∶70组和40∶60组粗灰分含量显著高于50∶50组和60∶40组(P<0.05)。

2.2 不同精粗比饲粮对贵州白山羊肌肉氨基酸组成的影响

表 4可知,从贵州白山羊肌肉中共检测到16种氨基酸。其中,60∶40组精氨酸含量显著高于50∶50组(P<0.05)。60∶40组总氨基酸含量为19.22%,分别比30∶70组、40∶60组和50∶50组高出0.52%、0.25%和0.83%。60∶40组必需氨基酸含量为7.65%,分别比30∶70组、40∶60组和50∶50组高出0.39%、0.20%、0.08%。50∶50组必需氨基酸/总氨基酸为40.51%,略高于FAO/WHO模式提出的理想蛋白质标准(40%)。各组必需氨基酸/非必需氨基酸均高于FAO/WHO模式提出的理想蛋白质标准(60%)。必需氨基酸中除赖氨酸外,其余氨基酸均以60∶40组含量最高。60∶40组鲜味氨基酸含量分别比30∶70组、40∶60组和50∶50组高出0.12%、0.11%、0.40%,但鲜味氨基酸/总氨基酸以30∶70组最高。30∶70组甜味氨基酸含量分别比40∶60组和50∶50组、60∶40组高出0.44%、0.59%、0.37%,甜味氨基酸/总氨基酸为35.56%,在4组中最高。

表 4 不同精粗比饲粮对贵州白山羊肌肉常规营养成分含量的影响 Table 4 Effects of diets with different concentrate to roughage ratios on muscle routine nutrient contents of Guizhou white goats  
2.3 不同精粗比饲粮对贵州白山羊肌肉脂肪酸组成的影响

表 5可知,从贵州白山羊肌肉中共检测出18种脂肪酸,棕榈酸、硬脂酸、油酸、亚油酸、α-亚麻酸和花生四烯酸含量较多。50∶50组、60∶40组硬脂酸含量显著高于30∶70组和40∶60组(P<0.05)。50∶50组、60∶40组棕榈油酸含量显著高于30∶70组(P<0.05)。30∶70组反亚油酸含量显著低于其余各组(P<0.05)。30∶70组饱和脂肪酸含量分别较40∶60组、50∶50组和60∶40组高出2.096%、1.174%和1.330%。60∶40组单不饱和脂肪酸含量分别较30∶70组、40∶60组和50∶50组高出1.920%、1.328%和0.701%。60∶40组多不饱和脂肪酸含量分别较30∶70组、40∶60组和50∶50组降低0.270%、0.880%和0.319%。60∶40组不饱和脂肪酸含量分别较30∶70组、40∶60组和50∶50组高出1.631%、0.428%和0.360%。总脂肪酸含量以60∶40组最高。

表 5 不同精粗比饲粮对贵州白山羊肌肉氨基酸组成的影响 Table 5 Effects of diets with different concentrate to roughage ratios on muscle amino acid composition of Guizhou white goats  
3 讨论 3.1 不同精粗比饲粮对贵州白山羊肌肉常规营养成分含量的影响

粗脂肪、粗蛋白质和水分是肌肉的主要化学成分。肌肉的水分含量直接影响肉的多汁性,粗灰分含量与肉中矿物质及微量元素的含量有关[11]。本试验结果显示,精粗比为50∶50组、60∶40组的贵州白山羊肌肉水分含量显著高于30∶70组和40∶60组,说明这2组的肌肉多汁性较好。高林青等[2]研究表明,精粗比为60∶40组的湖羊肌肉粗脂肪含量显著高于40∶60组;占今舜等[8]报道,精粗比为70∶30组的湖羊肌肉粗脂肪含量显著高于40∶60组。本试验结果显示,精粗比为60∶40组的贵州白山羊肌肉粗脂肪含量显著高于30∶70组,说明精粗比为60∶40组的肌肉沉脂能力较强,风味和嫩度较好。这可能是因为试验羊摄入的能量随着精料比例的增加而增加,从而使得肌间脂肪的沉积量增加[12]。饲粮粗纤维含量越高,肌肉中蛋白质含量就越高[13],羊肉的粗蛋白质含量一般在15%~20%,肌肉中蛋白质的含量越高,营养价值也越高[14-15]。本试验中,采食不同精粗比饲粮的4组贵州白山羊肌肉粗蛋白质含量均超过20%,且30∶70组粗蛋白质含量显著高于50∶50组和60∶40组,这可能是因为随着精粗比的下降,精料比例减少,瘤胃中丙酸的发酵量也减少,糖原异生作用减弱,导致瘤胃能氮负平衡,机体就会动员血液中的生糖氨基酸合成葡萄糖,致使机体蛋白质沉积量下降[16]

表 6 不同精粗比饲粮对贵州白山羊肌肉脂肪酸组成的影响 Table 6 Effects of diets with different concentrate to roughage ratios on muscle fatty acid composition of Guizhou white goats  
3.2 不同精粗比饲粮对贵州白山羊肌肉氨基酸和脂肪酸组成的影响

氨基酸的种类和含量决定着蛋白质的营养价值,羊肉中氨基酸的种类和含量与动物品种和饲粮类型等有关[17]。Van Boekel[18]研究表明,天冬氨酸和谷氨酸可与还原糖发生美拉德反应产生香味。鲜味氨基酸主要由甘氨酸、谷氨酸、丙氨酸、异亮氨酸和天冬氨酸组成,甜味氨基酸主要由苏氨酸、丙氨酸、甘氨酸、丝氨酸、赖氨酸和脯氨酸组成,芳香族类氨基酸主要由苯丙氨酸和酪氨酸组成,羊肉风味与这3类氨基酸有关,其中鲜味氨基酸是决定羊肉风味的重要物质[19]。本研究结果显示,60∶40组贵州白山羊肌肉精氨酸含量显著高于50∶50组,精氨酸可促进免疫系统分泌白血球内烯素和吞噬细胞等内生性物质,抵抗细胞癌变和病毒感染等,提高免疫力。本试验中,60∶40组贵州白山羊肌肉苏氨酸、谷氨酸、丝氨酸、苯丙氨酸和酪氨酸含量最高,总氨基酸、必需氨基酸和鲜味氨基酸含量也是最高的,说明饲粮精粗比为60∶40时羊肉品质好,味道鲜美,属于优质羊肉。

食品中脂肪酸的含量和组成与人体正常代谢密切相关,单不饱和脂肪酸对降低冠心病发病率、预防动脉粥样硬化有重要作用,多不饱和脂肪酸参与脑和视网膜的发育[20]。在不饱和脂肪酸中,花生四烯酸、亚麻油及α-亚麻油被称为人体必需脂肪酸,只能从食物中获得[21]。油酸是重要的单不饱和脂肪酸,具有降低胆固醇和血糖的作用[22]。羊肉脂肪酸的组成和含量很大程度受到品种、遗传和营养等因素的调控[23]。本试验在贵州白山羊肌肉中共检测出18种脂肪酸,其中棕榈酸、硬脂酸、油酸、亚油酸、α-亚麻酸和花生四烯酸含量较多。60∶40组油酸含量显著高于30∶70组和40∶60组;30∶70组亚油酸含量显著高于其他组;30∶70组和40∶60组硬脂酸含量显著高于50∶50组和60∶40组,这与谢昕廷等[24]的研究结果一致,即饱和脂肪酸含量随着精粗比的增加而降低,不饱和脂肪酸含量则相反,这可能与摄入的粗纤维量有关。肉的多汁性和风味与其脂肪酸含量呈正相关[25]。不饱和脂肪酸含量越高,肌肉的香味和多汁性就越好[26];此外,不饱和脂肪酸对人体健康有重要影响,具有增强机体免疫力、清理血栓及调节血脂等功能[27]。本试验中,60∶40组的单不饱和脂肪酸、不饱和脂肪酸及总脂肪酸含量均为最高,说明饲粮精粗比为60∶40时羊肉的多汁性和风味更好,营养价值更高。

4 结论

在本试验条件下,饲粮精粗比为60∶40时贵州白山羊肌肉粗脂肪含量高,氨基酸和脂肪酸含量丰富,肉的多汁性、风味及品质好,营养价值高。

参考文献
[1]
安清明, 王星, 黄永震, 等. 贵州白山羊ADIPOQ基因生物信息及组织表达特异性分析[J]. 中国畜牧杂志, 2020, 56(8): 84-90.
AN Q M, WANG X, HUANG Y Z, et al. Bioinformatics and differential expression analysis of ADIPOQ gene in Guizhou white goat[J]. Chinese Journal of Animal Science, 2020, 56(8): 84-90 (in Chinese).
[2]
高林青, 占今舜, 胡耀, 等. 不同精粗比全混合日粮对湖羊生长性能、血清激素浓度和屠宰性能的影响[J]. 动物营养学报, 2019, 31(4): 1676-1684.
GAO L Q, ZHAN J S, HU Y, et al. Effects of total mixed ration with different concentration-roughage ratios on growth performance, serum hormone concentrations and slaughter performance of Hu sheep[J]. Chinese Journal of Animal Nutrition, 2019, 31(4): 1676-1684 (in Chinese).
[3]
NUGROHO D, SUNARSO S, SEVILLA C C, et al. The effects of dietary neutral detergent fiber ratio from forage and concentrate on the dietary rumen degradability and growth performance of Philippine native goats[J]. International Journal of Science and Engineering, 2014, 6(1): 75-80.
[4]
PETRI R M, FORSTER R J, YANG W, et al. Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage[J]. Journal of Applied Microbiology, 2012, 112(6): 1152-1162. DOI:10.1111/j.1365-2672.2012.05295.x
[5]
BENCHAAR C, LETTAT A, HASSANAT F, et al. Eugenol for dairy cows fed low or high concentrate diets: effects on digestion, ruminal fermentation characteristics, rumen microbial populations and milk fatty acid profile[J]. Animal Feed Science and Technology, 2012, 178(3/4): 139-150.
[6]
侯鹏霞, 朱学荣, 何永珍, 等. 不同精粗比日粮对滩寒杂羊生产性能及血液生化指标的影响[J]. 畜牧与饲料科学, 2018, 39(6): 24-26.
HOU P X, ZHU X R, HE Y Z, et al. effect of forage-to-concentrate ratio in diets of hybrids of Tan sheep×small-tailed Han sheep on reproductive performance and blood biochemical parameters[J]. Animal Husbandry and Feed Science, 2018, 39(6): 24-26 (in Chinese).
[7]
郝怀志, 白滨, 董俊, 等. 不同精粗比日粮对肉用绵羊的生产性能影响[J]. 畜牧兽医杂志, 2016, 35(6): 7-9, 12.
HAO H Z, BAI B, DONG J, et al. Effect of different dietary forage to concentrate ratios on the growth performance of mutton sheep[J]. Chinese Journal of Animal Science, 2016, 35(6): 7-9, 12 (in Chinese).
[8]
占今舜, 杨群, 钟小军, 等. 不同精粗比饲粮对湖羊肉品质、血液指标和肠道发育的影响[J]. 草业科学, 2019, 36(12): 3166-3174.
ZHAN J S, YANG Q, ZHONG X J, et al. Effects of total mixed rations with different concentration-roughage ratios on meat quality, serum indices, and intestinal tract development in Hu sheep[J]. Pratacultural Science, 2019, 36(12): 3166-3174 (in Chinese). DOI:10.11829/j.issn.1001-0629.2019-0176
[9]
李妍, 李晓蒙, 李秋凤, 等. 不同营养水平日粮对奶公牛直线育肥性能的影响[J]. 草业学报, 2016, 25(1): 273-279.
LI Y, LI X M, LI Q F, et al. Nutrition effects on growth of Holstein bulls[J]. Acta Prataculturae Sinica, 2016, 25(1): 273-279 (in Chinese).
[10]
梁大勇. 日粮精粗比对荷斯坦青年公牛生长和肉质的影响[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2009.
LIANG D Y. Effect of different levels of concentrate to forage ration on growth and meat quality of Holstein young-bull[D]. Master's Thesis. Yangling: Northwest A&F University, 2009. (in Chinese)
[11]
沙玉柱, 徐振飞, 刘秀, 等. 陇东黑山羊肉品质及脂肪酸特征研究[J]. 中国畜牧杂志, 2019, 55(10): 67-70.
SHA Y Z, XU Z F, LIU X, et al. Study on meat quality and fatty acid characteristics of Longdong black goat[J]. Chinese Journal of Animal Science, 2019, 55(10): 67-70 (in Chinese).
[12]
晁雅琳, 刘博, 寇启芳, 等. 胍基乙酸对舍饲滩羊生长性能、屠宰性能、脂肪沉积及肌肉营养成分的影响[J]. 动物营养学报, 2019, 31(1): 388-394.
CHAO Y L, LIU B, KOU Q F, et al. Effects of guanidine acetic acid on growth performance, slaughter performance, fat deposition and nutritional components in muscle of stabling Tan sheep[J]. Chinese Journal of Animal Nutrition, 2019, 31(1): 388-394 (in Chinese).
[13]
邢荷岩. 不同粗纤维水平饲粮对深县猪生长育肥期生产性能、血清生化指标和肉质性状的影响研究[D]. 硕士学位论文. 保定: 河北农业大学, 2018.
XING H Y. Effects of dietary fiber levels on the production performance, serum biochemical indexes and meat quality of Shenxian pigs during growing and fattening stage[D]. Master's Thesis. Baoding: Hebei Agricultural University, 2018. (in Chinese)
[14]
字品文, 江炎庭, 相德才, 等. 云南黑山羊羊肉品质的研究[J]. 中国草食动物科学, 2017, 37(5): 21-25.
ZI P W, JIANG Y T, XIANG D C, et al. Study on meat quality traits for Yunnan black goat[J]. China Herbivore Science, 2017, 37(5): 21-25 (in Chinese).
[15]
蒋婧, 王高富. 6月龄酉阳本地白山羊公羔的屠宰性能、肉质理化特性及肉品质特性研究[J]. 畜禽业, 2015(8): 56-59.
JIANG J, WANG G F. Study on slaughter trait, physicochemical property and meat quality of 6-month-old Youyang indigenous white goat male kids[J]. Livestock and Poultry Industry, 2015(8): 56-59 (in Chinese).
[16]
张强. 不同精粗比日粮对泌乳期奶山羊血浆葡萄糖浓度与生产性能的影响[J]. 中国兽医杂志, 2015, 51(7): 53-54.
ZHANG Q. Effects of different lactation diets on serum glucose concentration and lactation performance of dairy goats[J]. Chinese Journal of Veterinary Medicine, 2015, 51(7): 53-54 (in Chinese).
[17]
侯川川, 马莲香, 邱家凌, 等. 饲粮类型对育肥湖羊肌肉脂肪酸和氨基酸组成的影响[J]. 中国畜牧杂志, 2019, 55(12): 106-110.
HOU C C, MA L X, QIU J L, et al. Effects of dietary types on fatty acids and amino acids composition in muscle of fattening Hu sheep[J]. Chinese Journal of Animal Science, 2019, 55(12): 106-110 (in Chinese).
[18]
VAN BOEKEL M A J S. Formation of flavour compounds in the Maillard reaction[J]. Biotechnology Advances, 2006, 24(2): 230-233.
[19]
张磊, 武泽众, 周占琴, 等. 延安地区杂交肉羊屠宰性能和肉品质分析[J]. 畜牧与兽医, 2020, 52(5): 29-33.
ZHANG L, WU Z Z, ZHOU Z Q, et al. The slaughter performance and meat quality of sheep hybridized with different combinations in the Yan'an area[J]. Animal Husbandry & Veterinary Medicine, 2020, 52(5): 29-33 (in Chinese).
[20]
刘亚娜. 牦牛肉营养特性及其影响因素研究[D]. 硕士学位论文. 兰州: 甘肃农业大学, 2016.
LIU Y N. Research on nutritional characteristics and effects factors for yak meat[D]. Master's Thesis. Lanzhou: Gansu Agricultural University, 2016. (in Chinese)
[21]
李琪, 张娴. 多不饱和脂肪酸的生理功能概述[J]. 食品安全导刊, 2019(18): 55.
LI Q, ZHANG X. Overview of physiological functions of polyunsaturated fatty acids[J]. China Food Safety Magazine, 2019(18): 55 (in Chinese).
[22]
ZHANG S G, LIU T, BROWN M A, et al. Comparison of longissimus dorsi fatty acids profiles in Gansu black yak and Chinese yellow cattle steers and heifers[J]. Korean Journal for Food Science of Animal Resources, 2015, 35(3): 286-290.
[23]
CHIOFALO B, SIMONELLA S, DI GRIGOLI A, et al. Chemical and acidic composition of Longissimus dorsi muscle of Comisana lambs fed with Trifolium subterraneum and Lolium multiflorum[J]. Small Ruminant Research, 2010, 88(2/3): 89-96.
[24]
谢昕廷, 彭忠利, 高彦华, 等. 日粮类型及精粗比对舍饲育肥牦牛肉氨基酸和脂肪酸含量的影响[J]. 食品工业科技, 2019, 40(12): 18-25.
XIE X T, PENG Z L, GAO Y H, et al. Effects of diet type and concentrate-to-forage ration of diet feed on contents of amino acid and fatty acid of house-feeding yak meat[J]. Science and Technology of Food Industry, 2019, 40(12): 18-25 (in Chinese).
[25]
曹忻, 张丽, 张文涛, 等. 不同尾型绵羊生产性能、屠宰性能、肉品质和脂肪酸组成的比较[J]. 西北农业学报, 2020, 29(1): 1-10.
CAO X, ZHANG L, ZHANG W T, et al. Growth and slaughter performance, meat quality, and fatty acid of sheep with distinct tail types[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(1): 1-10 (in Chinese).
[26]
王鑫, 苑洪霞, 许厚强, 等. 黔北麻羊与波尔山羊杂交后代屠宰及肉质性能比较分析[J]. 黑龙江畜牧兽医, 2017(11): 123-126.
WANG X, YUAN H X, XU H Q, et al. Comparative analysis on slaughter and meat quality of crossbred progenies of Qianbei Ma sheep and Boer goat[J]. Heilongjiang Animal Science and Veterinary Medicine, 2017(11): 123-126 (in Chinese).
[27]
刘旺景, 张佐忠, 李英, 等. 反刍动物肉和乳产品脂肪酸组成的特点及调控研究进展[J]. 动物营养学报, 2019, 31(3): 1001-1008.
LIU W J, ZHANG Z Z, LI Y, et al. Research progress in characteristics and regulation of fatty acid composition of meat and milk products in ruminants[J]. Chinese Journal of Animal Nutrition, 2019, 31(3): 1001-1008 (in Chinese).