动物营养学报    2021, Vol. 33 Issue (10): 5467-5474    PDF    
植物精油在肉牛生产中的应用及其作用机制
易鑫 , 周振明 , 吴浩     
中国农业大学动物科学技术学院, 动物营养学国家重点实验室, 北京 100193
摘要: 植物精油是从植物中提取的芳香油状液体,具有抗菌、抗氧化及消炎等作用。在全面禁抗的形势下,植物精油可以作为一种替代抗生素的天然饲料添加剂。植物精油在单胃动物上应用较多,但在肉牛上的研究比少,并且作用效果并不一致。本文就植物精油对肉牛生长性能、营养代谢、瘤胃发酵、甲烷产量和牛肉品质的影响及其相关作用机制进行综述,进一步挖掘植物精油在肉牛生产中的应用潜力。
关键词: 植物精油    肉牛    生长性能    瘤胃发酵    牛肉品质    
Application and Mechanism of Plant Essential Oil on Beef Cattle Production
YI Xin , ZHOU Zhenming , WU Hao     
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
Abstract: Plant essential oil is an aromatic oil-like liquid extracted from plants, which has antibacterial, anti-oxidation and anti-inflammatory functions. Therefore, plant essential oil can be used as a natural antibiotic substitute under the circumstance of antibiotic prohibition in feed. There were many case studies with plant essential oil in monogastric animals, but relatively few studies in beef cattle, whose results suffered wants of uniformity.In this paper, the application and related mechanism of plant essential oil on growth performance, nutrition metabolism, rumen fermentation, methane production and beef quality of beef cattle were reviewed, so as to comprehensively understand the scientific application of plant essential oil in beef cattle production.
Key words: plant essential oil    beef cattle    growth performance    rumen fermentation    beef quality    

植物精油是从植物的花、芽、种子、叶、树皮及根等部位通过溶剂浸提、分子蒸馏、蒸汽蒸馏、超临界二氧化碳萃取等方法提取的植物体次级代谢产物[1]。由于次级代谢物源于初级代谢的不同前体,通过不同的代谢途径合成,因此次级代谢物是含有各种成分的混合物,包括酚类、酮类、酯类、醛类、萜类和苯丙素类等。其中最主要的化合物有2类:来源于甲羟戊酸和脱氧核糖酯的萜烯类和来源于莽草酸途径的苯丙素类[2]。近年来,植物精油被引入饲料行业中并得到广泛应用。最初在单胃动物上开展研究,结果表明植物精油能够提高畜禽生长性能以及机体抗氧化和免疫能力[3-6],而后延伸到复胃动物。在肉牛上的研究表明,植物精油具有提高肉牛生长性能、调控瘤胃发酵、降低甲烷(CH4)产量及改善牛肉品质等作用[7-10]。并且,植物精油来源广泛,绿色安全,在肉牛生产中发展潜力巨大,应用前景广阔。本文综述了植物精油在肉牛生产中的应用及其作用机制。

1 植物精油对肉牛生长性能和营养代谢的影响

植物精油是挥发性芳香物质,有研究表明植物精油会对动物适口性产生影响[11-15]。适口性不好的植物精油会降低动物的采食量,适口性好的植物精油则会增加动物的采食量。研究表明,在肉牛饲粮中添加混合植物精油能在不影响饲料转化率的情况下提高采食量[16-17]。Yang等[18]研究了肉桂醛对肉牛的剂量效应,结果发现,饲粮中添加0.40 g/d的肉桂醛有提高肉牛采食量的趋势,而饲粮中添加1.60 g/d的肉桂醛则有降低肉牛采食量的趋势。与此同时,也有结果表明饲粮中添加植物精油对肉牛采食量没有显著影响[19-20]。在目前的管理体制下,莫能菌素作为饲料添加剂逐渐退出肉牛饲养过程。Geraci等[21]研究发现,在肉牛饲粮中添加植物精油与添加莫能菌素的作用效果没有显著差异,表明植物精油可以作为肉牛饲养过程中潜在的抗生素的替代物。

蛋白质是反刍动物饲粮中最昂贵的成分,饲养过程中可以通过减少瘤胃蛋白质降解或增加瘤胃微生物对氮的利用来减少蛋白氮的损失,提高生长性能。反刍动物瘤胃中的氨态氮主要由高产氨菌(hyper ammonia-producing bacteria,HAP)降解饲料中的含氮化合物生成,所有已知的HAP都是革兰氏阳性菌,并且对莫能菌素等离子载体高度敏感[22]。Onel等[9]用瑞士褐牛进行体外产气试验发现,发酵底物中添加月桂油能够降低氨态氮浓度。Ferme等[23]研究发现,在体外瘤胃模拟系统中添加肉桂醛可以减少普雷沃氏菌属(Prevotella)的相对丰度,这是一组已知的HAP。同时,也有其他试验证实了植物精油对普雷沃氏菌属的抑制作用[24-25]。除此之外,还有结果表明植物精油可以通过抑制嗜淀粉瘤胃杆菌(Ruminobacter amylophilus)来减少淀粉和蛋白质等易降解底物的快速降解,从而影响蛋白质分解菌的活性[26]。但是,也有试验结果表明植物精油对肉牛瘤胃氨态氮浓度没有显著影响[16, 20]。导致体内或者体外试验研究结果差异的原因有很多,可能与肉牛品种、饲粮组成、植物精油种类及剂量等有关。

一些试验结果显示,在肉牛饲粮中添加植物精油能够提高饲料消化率[18, 27]。此外,植物精油能促进肉牛生长,有提高肉牛平均日增重的作用[7, 17, 28]。植物精油除单一使用外,不同的植物精油官能团有所差异,可能会产生协同或是拮抗作用[29-30]。De Souza等[28]研究发现,饲粮中添加丁香酚(1.33 g/d)、百里酚(1.33 g/d)和香草醛(1.33 g/d)混合物能够增加肉牛干物质采食量,提高饲料效率和平均日增重,而且添加丁香酚、百里酚和香草醛混合物(2.00 g/d)和丁香油(2.00 g/d)的效果更为显著,而单独添加迷迭香精油(4.00 g/d)则降低了肉牛的生长性能。另外,植物精油的作用效果也存在剂量效应,在一定范围内随着植物精油剂量的增加产生的作用效果也更明显,但超过一定剂量可能会造成负面影响。Ornaghi等[17]试验表明,饲粮中添加肉桂醛和丁香酚提高了犊牛的平均日增重,且存在线性关系。其他学者也证实肉牛饲粮中添加0.40 g/d的肉桂醛有增加饲料消化率的趋势,而饲粮中添加1.60 g/d的肉桂醛有降低养分消化率的趋势[18]

2 植物精油对肉牛瘤胃发酵的影响

许多研究表明植物精油能改变瘤胃的发酵模式。体外试验发现,在底物中添加茶树油、百里香油和牛至油降低了乙酸比例,增加了丙酸和丁酸比例,降低了乙酸/丙酸[8]。体内试验中也证明在荷斯坦阉牛饲粮中添加植物精油能增加瘤胃丙酸比例,降低瘤胃乙酸/丙酸[20]。Meschiatti等[16]试验结果表明,与饲粮中添加莫能菌素相比,饲粮中添加植物精油混合物有提高肥育内洛牛瘤胃丙酸摩尔百分比的趋势。在肉牛生产中,如果能够增加瘤胃发酵中丙酸盐比例,同时降低乙酸、丁酸盐比例,就能够改善能量状况,提高饲料转化率。

造成这类结果的原因可能是植物精油具有抗菌性,通过影响肉牛瘤胃微生物区系从而导致瘤胃发酵类型的改变。植物精油种类繁多,它们的抗菌活性很可能不是归因于某一特定机制,而在细胞中存在多个靶点,甚至这些靶点并不独立作用,可能存在交互作用。一般来说植物精油具有疏水性,在细菌细胞膜上聚集,通过与细菌膜的相互作用,改变其对氢离子和钾离子等阳离子的渗透率,最终导致细菌死亡[31-32]。Ultee等[33]提出一种质子转移机制,解离的香芹酚通过细胞质膜向细胞质扩散并解离,从而向细胞质释放质子,然后,它通过携带细胞质中的钾离子(或其他阳离子)以未解离的形式返回,钾离子通过细胞质膜运输到外部环境。Ultee等[31]在香芹酚对蜡状芽孢杆菌(Bacillus cereus)作用的试验中也观察到了钾离子流出和氢离子进入的现象,这个机制与离子载体抗生素的作用机制相似。Geraci等[21]在安格斯肉牛饲粮中分别添加莫能菌素和植物精油,结果表明二者在瘤胃发酵方面没有显著差异。

除此以外,细菌耐受植物精油的能力也有所不同,革兰氏阴性菌与革兰氏阳性菌相比存在脂多糖(lipopolysaccharide,LPS)层,这个结构能够让革兰氏阴性菌对亲水分子和疏水分子的渗透都有显著的调节作用[34],导致革兰氏阴性菌对大部分植物精油不敏感。瘤胃中产乙酸、丁酸的多是革兰氏阳性菌,而产丙酸和琥珀酸的则多为革兰氏阴性菌。也有研究显示,百里香酚和香芹酚能够分解革兰氏阴性菌的LPS层结构,增加细胞膜对ATP的通透性[35-36],达到抑制革兰氏阴性菌的作用。体外试验表明,在肉牛肥育饲粮中添加植物精油显著提高了反刍兽半月形单胞菌(Selenomonas ruminantium)的相对丰度[37],在波尔山羊肥育饲粮中添加百里香酚显著提高了链球菌(Streptococcus)的相对丰度[38]。体内试验中,在荷斯坦阉牛饲粮中添加百里香酚,降低了瘤胃产琥珀酸丝状杆菌(Fibrobcater succinogenes)的相对丰度[20],在杂交犊牛饲粮中添加植物精油降低了瘤胃中白色瘤胃球菌(Ruminococcus albus)的相对丰度[39]。反刍兽半月形单胞菌和链球菌是主要的产丙酸菌,白色瘤胃球菌、产琥珀酸丝状杆菌是主要的产乙酸菌。由此推论,植物精油对肉牛瘤胃中挥发性脂肪酸浓度的影响可能是通过改变瘤胃微生物区系所造成的。

在肉牛生产后期,往往通过高精料饲粮达到育肥效果。然而大量添加精料会导致瘤胃酸中毒[40],从而影响肉牛的生长性能,造成饲料转化率降低。牛链球菌(Streptococcus bovis)是引起瘤胃酸中毒的主要菌种,饲喂肉牛高精料饲粮时,牛链球菌生长不再受能量限制,随着其生长速度的增加,细菌内1, 6-二磷酸果糖和丙酮酸浓度可能会增加,这些中间产物会激活乳酸脱氢酶,同时磷酸三糖浓度也可能随之增加,导致丙酮酸甲酸裂解酶活性被抑制,这些变化导致更多的淀粉用于生产乳酸[41]。不能被充分利用的乳酸滞留在瘤胃中,致使瘤胃液pH降低,瘤胃液pH长期低于6.0则会导致瘤胃酸中毒。埃氏巨型球菌(Megasphaera elsdenii)是瘤胃中重要的乳酸利用菌,不仅能够将乳酸发酵为丁酸和通过丙烯酸酯途径生成丙酸[42],还能与乳酸产生菌竞争底物从而抑制产乳酸菌生长,缓解瘤胃pH[43]。Zotti等[44]试验表明,饲粮中添加蓖麻油和腰果壳油能降低肉牛瘤胃乳酸的浓度;进一步研究发现,饲粮中添加植物精油可以显著降低肉牛瘤胃牛链球菌的相对丰度,而且还能显著增加瘤胃埃氏巨型球菌的相对丰度。

3 植物精油对肉牛甲烷产量的影响

产甲烷菌在瘤胃中通过与其他瘤胃微生物相互作用,利用其他微生物发酵产生的氢气(H2)、二氧化碳(CO2)作为底物,还原成甲烷。甲烷的全球升温潜在值是CO2的21~25倍,是主要的温室气体之一,反刍动物生产过程中的温室气体排放量占全球的16%~25%,占人为甲烷排放量的33%[45]。不仅如此,反刍动物摄入的饲料能量有2%~12%以甲烷的形式流失。如果能够有效降低甲烷产量不仅对环境友好,而且能够降低成本。因此,国内外学者对植物精油能否降低肉牛甲烷产量产生了浓厚的兴趣。

Onel等[9]用瑞士褐牛瘤胃液进行体外产气试验,结果表明添加0.05 g/L月桂油能够显著降低甲烷产量。Evans等[46]在以海福特阉牛的瘤胃液进行连续培养,发现添加0.40 g/L百里酚降低了甲烷产量。一般来说,影响甲烷产生的原因有2个,其一是抑制了产甲烷菌和原虫数量,其二是减少了合成甲烷的底物含量。大多数甲烷菌与原生生物无关,但一些纤毛虫存在产氢体,能够吸引部分产甲烷菌作为共生菌[47]。有研究认为产甲烷菌与原生生物的共生关系对甲烷排放有37%的贡献率[48]。研究表明,饲粮中添加植物精油可以降低瘤胃原虫和产甲烷菌的相对丰度[20, 39, 49]。植物精油与细菌通过膜互作,尤其是对革兰氏阳性菌,通过抑制纤维素降解菌从而使得糖发酵的产物由乙酸转变为丙酸,从而减少合成甲烷的底物含量。一些试验结果显示在饲粮中添加植物精油会降低肉牛瘤胃中H2和CO2浓度[46, 50]。与此同时,也有试验表明饲粮中添加植物精油对肉牛瘤胃中甲烷产量没有显著影响[27]。可能的原因在于使用的植物精油的种类和剂量、饲粮的组成和结构等有所差异所导致。

4 植物精油对牛肉品质的影响

植物精油对肉品质的影响主要体现在其抗氧化活性上。肉牛经过屠宰后肌肉的抗氧化能力逐渐降低,氧化反应占主导地位,产生大量自由基,而自由基的产生与抗氧化防御机制之间存在平衡[51],过量的活性氧会导致肉品质包括其营养和感官品质的恶化。植物精油具有抗氧化活性,其中酚类可以消除或减少自由基,酚羟基与金属离子螯合,萜烯类能上调抗氧化酶的活性,减少脂质氧化[52]。Monteschio等[10]研究表明,在肉牛肥育期饲粮中添加植物精油能降低脂肪氧化,改善货架期肉品质。丙二醛(malondialdehyde,MDA)是脂质氧化的终产物,常用来反映肌肉氧化程度,并将其含量作为动物抗氧化能力的重要指标。有试验表明饲粮中添加植物精油能显著降低牛肉MDA含量[10]。Rivaroli等[53]研究发现,在犊牛饲粮中添加3.50 g/d植物精油可减少脂质氧化,然而,饲粮中添加7.00 g/d植物精油对熟化过程中的牛肉具有促进氧化作用。高剂量的植物精油促进氧化可能是由于高剂量下精油能与线粒体相互作用,并对其造成损伤,产生更多的自由基加快脂质氧化[14]。此外,屠宰后牛肉不断氧化会破坏细胞膜,进而使得细胞脆性增加及系水力降低等[54]。Pukrop等[55]的研究结果表明,饲粮中添加植物精油能显著减少牛肉的贮存损失,从而维持系水力。

牛肉的嫩度在一定程度上受到肌纤维结构的影响,有试验表明,在内洛牛肥育饲粮中添加植物精油混合物,能通过增加牛肉肌节长度、可溶性胶原蛋白含量,降低Ⅲ型胶原蛋白含量来改善牛肉嫩度[56]。骨骼肌中Ⅰ型和Ⅲ型胶原蛋白最为丰富,Ⅰ型胶原蛋白与Ⅲ型胶原蛋白的比例会影响肉的嫩度,在烹饪过程中直接受到热量的影响,Ⅲ型胶原蛋白在加热时可能比Ⅰ型胶原蛋白更难溶解[57],并且Ⅲ型胶原蛋白可能参与肌包膜纤维和肌内膜鞘之间边界的形成,这对肉的纹理特性有一定作用[58]。同时,肌肉的嫩度与钙蛋白酶有关,钙蛋白酶是肌原纤维蛋白降解的限速酶,剪切力、肌纤维直径等指标与钙蛋白酶活性显著相关[59-61]。植物精油的抗氧化性可能抑制钙蛋白酶的氧化,从而改善肌肉嫩度。

牛肉包装后贮藏期间,高含量的水分、氧气会促进脂质氧化,也会促进许多致病菌如大肠杆菌(Escherichia coli)、单核增生李斯特菌(Listeria monocytogenes)、肠炎沙门氏菌(Salmonella enteritidis)、鼠伤寒沙门氏菌(Salmonella typhimurium)和肠炎耶尔森菌(Yersinia enteritidis)的滋生。在食品工业中,利用植物精油的抗菌性和抗氧化性,在牛肉包装储存的过程中可有效抑制细菌生长及脂质氧化,而且能够提高牛肉颜色、气味及整体可接受性等感官特性,从而延长牛肉的货架期[62-66]

5 小结

植物精油是一种应用前景广阔的饲料添加剂,能够提高肉牛生长性能,改善瘤胃发酵,减少瘤胃甲烷的产生,改善牛肉品质,而且与莫能菌素相比还具有抗氧化活性的优点。此外,植物精油中活性成分不仅存在协同和拮抗作用,而且种类繁多,因此多种能够促进肉牛生长且具有协同作用的植物精油混合使用更被看好。同时,植物精油的添加剂量更多的是根据体外试验或是测定最低抑菌浓度等方法得到的结果进行确定,可能与体内发挥作用的最佳剂量存在差异。而且研究表明植物精油存在剂量效应,在一定范围内有利于肉牛生产,超过限度则对其有负面影响。未来通过体内试验确定植物精油的最佳组合和最佳剂量对肉牛生产意义深远。

参考文献
[1]
BURT S. Essential oils: their antibacterial properties and potential applications in foods-a review[J]. International Journal of Food Microbiology, 2004, 94(3): 223-253. DOI:10.1016/j.ijfoodmicro.2004.03.022
[2]
CALSAMIGLIA S, BUSQUET M, CARDOZO P W, et al. Invited review: essential oils as modifiers of rumen microbial fermentation[J]. Journal of Dairy Science, 2007, 90(6): 2580-2595. DOI:10.3168/jds.2006-644
[3]
RIVERA-GOMIS J, PERES RUBIO C, MARTÍNEZ CONESA C, et al. Effects of dietary supplementation of garlic and oregano essential oil on biomarkers of oxidative status, stress and inflammation in postweaning piglets[J]. Animals, 2020, 10(11): 2093. DOI:10.3390/ani10112093
[4]
TAN B F, LIM T, BOONTIAM W. Effect of dietary supplementation with essential oils and a Bacillus probiotic on growth performance, diarrhoea and blood metabolites in weaned pigs[J]. Animal Production Science, 2021, 61(1): 64-71. DOI:10.1071/AN18752
[5]
RAMIREZ S Y, PEÑUELA-SIERRA L M, OSPINA M A. Effects of oregano (Lippia origanoides) essential oil supplementation on the performance, egg quality, and intestinal morphometry of Isa brown laying hens[J]. Veterinary World, 2021, 14(3): 595-602. DOI:10.14202/vetworld.2021.595-602
[6]
窦晓利, 张占军, 范茂盛, 等. 黄芪精油对良凤花鸡生长性能、免疫机能及抗氧化能力的影响[J/OL]. 中国畜牧杂志, 2021: 1-8. (2021-05-07)[2021-06-07]. https://doi.org/10.19556/j.0258-7033.20201019-07.
DOU X L, ZHANG Z J, FAN M S, et al. Effects of Astragalus essential oil on growth performance, immune function and antioxidant capacity of Liangfenghua chicken[J/OL]. Chinese Journal of Animal Science, 2021: 1-8. (2021-05-07)[2021-06-07]. https://doi.org/10.19556/j.0258-7033.20201019-07. (in Chinese)
[7]
FUGITA C A, DO PRADO R M, VALERO M V, et al. Effect of the inclusion of natural additives on animal performance and meat quality of crossbred bulls (Angus×Nellore) finished in feedlot[J]. Animal Production Science, 2018, 58(11): 2076-2083. DOI:10.1071/AN16242
[8]
FANDIÑO I, FERNANDEZ-TURREN G, FERRET A, et al. Exploring additive, synergistic or antagonistic effects of natural plant extracts on in vitro beef feedlot-type rumen microbial fermentation conditions[J]. Animals, 2020, 10(1): 173. DOI:10.3390/ani10010173
[9]
ONEL S E, AKSU T, KARA K, et al. The effects of laurel volatile oil (Laurusnobilis L.) on in vitro ruminal gas production of methane emission, organic acids and protozoa counts alfalfa herbage[J]. Erciyes Vniversitesi Veteriner Fakültesi Dergisi, 2020, 17(3): 283-289.
[10]
MONTESCHIO J, DE SOUZA K A, VITAL A C P, et al. Clove and rosemary essential oils and encapsuled active principles (eugenol, thymol and vanillin blend) on meat quality of feedlot-finished heifers[J]. Meat Science, 2017, 130: 50-57. DOI:10.1016/j.meatsci.2017.04.002
[11]
GORAN J, MARINA V, SUZANA D, et al. Effects of different essential oils on the acceptability and palatability of cereal-based baits for laboratory mice[J]. Pesticidi i Fitomedicina, 2013, 28(2): 111-116. DOI:10.2298/PIF1302111J
[12]
JUGL-CHIZZOLA M, UNGERHOFER E, GABLER C, et al. Testing of the palatability of Thymus vulgaris L. and Origanum vulgare L. as flavouring feed additive for weaner pigs on the basis of a choice experiment[J]. Berliner und Munchener Tierarztliche Wochenschrift, 2006, 119(5/6): 238-243.
[13]
FRANZ C, BASER K H C, WINDISCH W. Essential oils and aromatic plants in animal feeding-a European perspective.A review[J]. Flavour and Fragrance Journal, 2010, 25(5): 327-340. DOI:10.1002/ffj.1967
[14]
BAKKALI F, AVERBECK S, AVERBECK D, et al. Biological effects of essential oils-a review[J]. Food and Chemical Toxicology, 2008, 46(2): 446-475. DOI:10.1016/j.fct.2007.09.106
[15]
CHAPMAN C E, CABRAL R G, ARAGONA K M, et al. Short communication: cinnamaldehyde taste preferences of weaned dairy heifers[J]. Journal of Dairy Science, 2016, 99(5): 3607-3611. DOI:10.3168/jds.2015-10582
[16]
MESCHIATTI M A P, GOUVÊA V N, PELLARIN L A, et al. Feeding the combination of essential oils and exogenous α-amylase increases performance and carcass production of finishing beef cattle[J]. Journal of Animal Science, 2019, 97(1): 456-471. DOI:10.1093/jas/sky415
[17]
ORNAGHI M G, PASSETTI R A C, TORRECILHAS J A, et al. Essential oils in the diet of young bulls: effect on animal performance, digestibility, temperament, feeding behaviour and carcass characteristics[J]. Animal Feed Science and Technology, 2017, 234: 274-283. DOI:10.1016/j.anifeedsci.2017.10.008
[18]
YANG W Z, AMETAJ B N, BENCHAAR C, et al. Dose response to cinnamaldehyde supplementation in growing beef heifers: ruminal and intestinal digestion[J]. Journal of Animal Science, 2010, 88(2): 680-688. DOI:10.2527/jas.2008-1652
[19]
MEYER N F, ERICKSON G E, KLOPFENSTEIN T J, et al. Effect of essential oils, tylosin, and monensin on finishing steer performance, carcass characteristics, liver abscesses, ruminal fermentation, and digestibility[J]. Journal of Animal Science, 2009, 87(7): 2346-2354. DOI:10.2527/jas.2008-1493
[20]
KHORRAMI B, VAKILI A R, MESGARAN M D, et al. Thyme and cinnamon essential oils: potential alternatives for monensin as a rumen modifier in beef production systems[J]. Animal Feed Science and Technology, 2015, 200: 8-16. DOI:10.1016/j.anifeedsci.2014.11.009
[21]
GERACI J I, GARCIARENA A D, GAGLIOSTRO G A, et al. Plant extracts containing cinnamaldehyde, eugenol and capsicum oleoresin added to feedlot cattle diets: ruminal environment, short term intake pattern and animal performance[J]. Animal Feed Science and Technology, 2012, 176(1/4): 123-130.
[22]
ESCHENLAUER S C P, MCKAIN N, WALKER N D, et al. Ammonia production by ruminal microorganisms and enumeration, isolation, and characterization of bacteria capable of growth on peptides and amino acids from the sheep rumen[J]. Applied and Environmental Microbiology, 2002, 68(10): 4925-4931. DOI:10.1128/AEM.68.10.4925-4931.2002
[23]
FERME D, BANJAC M, CALSAMIGLIA S, et al. The effects of plant extracts on microbial community structure in a rumen-simulating continuous-culture system as revealed by molecular profiling[J]. Folia Microbiologica, 2004, 49(2): 151-155. DOI:10.1007/BF02931391
[24]
CARVALHO V M, DIAZ AVILA V A, MATOS A M, et al. PSXI-18 clove oil and cashew nut shell liquid have antibacterial activity against some ruminal Prevotella[J]. Journal of Animal Science, 2019, 97(S3): 407-408.
[25]
MATOS A M, CARVALHO V M, DIAZ AVILA V A, et al. PSXI-19 levels of a blend of clove, castor and cashew oils and microencapsulated active ingredients (eugenol, thymol and vanillin) against some ruminal Prevotella[J]. Journal of Animal Science, 2019, 97: 409.
[26]
WALLACE R J, MCEWAN N R, MCINTOSH F M, et al. Natural products as manipulators of rumen fermentation[J]. Asian-Australasian Journal of Animal Sciences, 2002, 15(10): 1458-1468. DOI:10.5713/ajas.2002.1458
[27]
NANON A, SUKSOMBAT W, YANG W Z. Effects of essential oils supplementation on in vitro and in situ feed digestion in beef cattle[J]. Animal Feed Science and Technology, 2014, 196: 50-59. DOI:10.1016/j.anifeedsci.2014.07.006
[28]
DE SOUZA K A, MONTESCHIO J, MOTTIN C, et al. Effects of diet supplementation with clove and rosemary essential oils and protected oils (eugenol, thymol and vanillin) on animal performance, carcass characteristics, digestibility, and ingestive behavior activities for Nellore heifers finished in feedlot[J]. Livestock Science, 2019, 220: 190-195. DOI:10.1016/j.livsci.2018.12.026
[29]
NOVATO T L P, MARCHESINI P, MUNIZ N, et al. Evaluation of synergism and development of a formulation with thymol, carvacrol and eugenol for Rhipicephalus microplus control[J]. Experimental Parasitology, 2019, 207: 107774. DOI:10.1016/j.exppara.2019.107774
[30]
郝文凤, 田玉红, 董菲, 等. 植物精油协同抑菌的研究进展[J]. 中国调味品, 2020, 45(3): 172-175.
HAO W F, TIAN Y H, DONG F, et al. Research progress on synergistic bacteriostasis of plant essential oil[J]. China Condiment, 2020, 45(3): 172-175 (in Chinese).
[31]
ULTEE A, KETS E P, SMID E J. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus[J]. Applied and Environmental Microbiology, 1999, 65(10): 4606-4610. DOI:10.1128/AEM.65.10.4606-4610.1999
[32]
SHEN S X, ZHANG T H, YUAN Y, et al. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane[J]. Food Control, 2015, 47: 196-202. DOI:10.1016/j.foodcont.2014.07.003
[33]
ULTEE A, BENNIK M H J, MOEZELAAR R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus[J]. Applied and Environmental Microbiology, 2002, 68(4): 1561-1568. DOI:10.1128/AEM.68.4.1561-1568.2002
[34]
DENYER S P. Mechanisms of action of antibacterial biocides[J]. International Biodeterioration & Biodegradation, 1995, 36(3/4): 227-245.
[35]
HELANDER I M, ALAKOMI H L, LATVA-KALA K, et al. Characterization of the action of selected essential oil components on gram-negative bacteria[J]. Journal of Agricultural and Food Chemistry, 1998, 46(9): 3590-3595. DOI:10.1021/jf980154m
[36]
DORMAN H J D, DEANS S G. Antimicrobial agents from plants: antibacterial activity of plant volatile oils[J]. Journal of Applied Microbiology, 2000, 88(2): 308-316. DOI:10.1046/j.1365-2672.2000.00969.x
[37]
KIM H, JUNG E, LEE H G, et al. Essential oil mixture on rumen fermentation and microbial community-an in vitro study[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(6): 808-814. DOI:10.5713/ajas.18.0652
[38]
YU J K, CAI Y L, ZHANG J C, et al. Effects of thymol supplementation on goat rumen fermentation and rumen microbiota in vitro[J]. Microorganisms, 2020, 8(8): 1160. DOI:10.3390/microorganisms8081160
[39]
KUMAR A, KAMRA D N, AGARWAL N, et al. Impact of feeding essential oils on feed fermentation and rumen microbial profile in crossbred cattle calves[J]. The Indian Journal of Animal Sciences, 2017, 87(5): 604-609.
[40]
CONEGLIAN S M, CASTAÑEDA SERRANO R D, BARRETO CRUZ O T, et al. Effects of essential oils of cashew and castor on intake, digestibility, ruminal fermentation and purine derivatives in beef cattle fed high grain diets[J]. Semina: Ciências Agrárias, 2019, 40(5): 2057-2070. DOI:10.5433/1679-0359.2019v40n5p2057
[41]
RUSSELL J R, HINO T. Regulation of lactate production in Streptococcus bovis: a spiraling effect that contributes to rumen acidosis[J]. Journal of Dairy Science, 1985, 68(7): 1712-1721. DOI:10.3168/jds.S0022-0302(85)81017-1
[42]
COUNOTTE G H M, PRINS R A, JANSSEN R H A M, et al. Role of Megasphaera elsdenii in the fermentation of DL-[2-13C]lactate in the rumen of dairy cattle[J]. Applied and Environmental Microbiology, 1981, 42(4): 649-655. DOI:10.1128/aem.42.4.649-655.1981
[43]
HENNING P H, HORN C H, STEYN D G, et al. The potential of Megasphaera elsdenii isolates to control ruminal acidosis[J]. Animal Feed Science and Technology, 2010, 157(1/2): 13-19.
[44]
ZOTTI C A, SILVA A P, CARVALHO R, et al. Monensin and a blend of castor oil and cashew nut shell liquid used in a high-concentrate diet abruptly fed to Nellore cattle[J]. Journal of Animal Science, 2017, 95(9): 4124-4138.
[45]
COBELLIS G, TRABALZA-MARINUCCI M, YU Z T. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: a review[J]. The Science of the Total Environment, 2016, 545/546: 556-568. DOI:10.1016/j.scitotenv.2015.12.103
[46]
EVANS J D, MARTIN S A. Effects of thymol on ruminal microorganisms[J]. Current Microbiology, 2000, 41(5): 336-340. DOI:10.1007/s002840010145
[47]
JANSSEN P H, KIRS M. Structure of the archaeal community of the rumen[J]. Applied and Environmental Microbiology, 2008, 74(12): 3619-3625. DOI:10.1128/AEM.02812-07
[48]
SZUMACHER-STRABEL M, CIESLAK A. Potential of phytofactors to mitigate rumen ammonia and methane production[J]. Journal of Animal and Feed Sciences, 2010, 19(3): 319-337. DOI:10.22358/jafs/66296/2010
[49]
CARDOZO P W, CALSAMIGLIA S, FERRET A, et al. Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet[J]. Journal of Animal Science, 2006, 84(10): 2801-2808. DOI:10.2527/jas.2005-593
[50]
SAJADIAN M, MESGARAN M D, VAKILI S A. The effects of various essential oils of medical plant seeds and spices on digestion characteristics and population changes of ruminal anaerobic fungi in in vitro condition[J]. Iranian Journal of Applied Animal Science, 2017, 7(2): 211-220.
[51]
MODZELEWSKA-KAPITUŁA M, TKACZ K, NOGALSKI Z, et al. Addition of herbal extracts to the Holstein-Friesian bulls' diet changes the quality of beef[J]. Meat Science, 2018, 145: 163-170. DOI:10.1016/j.meatsci.2018.06.033
[52]
冯栋梁, 刁蓝宇, 邹彩霞, 等. 植物精油的生物学活性及其在动物生产中的应用[J]. 动物营养学报, 2018, 30(11): 4334-4341.
FENG D L, DIAO L Y, ZOU C X, et al. Biological activity of plant essential oil and its application in animal production[J]. Chinese Journal of Animal Nutrition, 2018, 30(11): 4334-4341 (in Chinese). DOI:10.3969/j.issn.1006-267x.2018.11.008
[53]
RIVAROLI D C, GUERRERO A, VELANDIA VALERO M, et al. Effect of essential oils on meat and fat qualities of crossbred young bulls finished in feedlots[J]. Meat Science, 2016, 121: 278-284. DOI:10.1016/j.meatsci.2016.06.017
[54]
樊路杰, 窦鸣乐, 王小宇, 等. 宰后肌肉抗氧化能力与肉品质的关系[J]. 动物营养学报, 2018, 30(5): 1676-1680.
FAN L J, DOU M L, WANG X Y, et al. Relationship between antioxidant capacity of postmortem muscle and meat quality[J]. Chinese Journal of Animal Nutrition, 2018, 30(5): 1676-1680 (in Chinese). DOI:10.3969/j.issn.1006-267x.2018.05.010
[55]
PUKROP J R, CAMPBELL B T, SCHOONMAKER J P. Effect of essential oils on performance, liver abscesses, carcass characteristics and meat quality in feedlot steers[J]. Animal Feed Science and Technology, 2019, 257: 114296. DOI:10.1016/j.anifeedsci.2019.114296
[56]
MONTESCHIO J O, VARGAS-JUNIOR F M, ALMEIDA F L A, et al. The effect of encapsulated active principles (eugenol, thymol and vanillin) and clove and rosemary essential oils on the structure, collagen content, chemical composition and fatty acid profile of Nellore heifers muscle[J]. Meat Science, 2019, 155: 27-35. DOI:10.1016/j.meatsci.2019.04.019
[57]
BURSON D E, HUNT M C. Heat-induced changes in the proportion of types Ⅰ and Ⅲ collagen in bovine Longissimus dorsi[J]. Meat Science, 1986, 17(2): 153-160. DOI:10.1016/0309-1740(86)90061-6
[58]
BAILEY A J. The role of collagen in the development of muscle and its relationship to eating quality[J]. Journal of Animal Science, 1985, 60(6): 1580-1587. DOI:10.2527/jas1985.6061580x
[59]
KAUR L, HUI S X, BOLAND M. Changes in cathepsin activity during low-temperature storage and sous vide processing of beef brisket[J]. Food Science of Animal Resources, 2020, 40(3): 415-425. DOI:10.5851/kosfa.2020.e21
[60]
WEN P C, YANG Q N, ZHANG W B, et al. Comparison of tenderness and calpains activity of yak meat in different ages during postmortem aging[J]. Kafkas Vniversitesi Veteriner Fakültesi Dergisi, 2020, 26(2): 239-246.
[61]
CHANG Y S, WU S Y, STROMER M H, et al. Calpain activation and proteolysis in postmortem goose muscles[J]. Animal Science Journal, 2020, 91(1): e13423.
[62]
NAVIKAITE-SNIPAITIENE V, IVANAUSKAS L, JAKSTAS V, et al. Development of antioxidant food packaging materials containing eugenol for extending display life of fresh beef[J]. Meat Science, 2018, 145: 9-15. DOI:10.1016/j.meatsci.2018.05.015
[63]
XI B, GAO Y Q, GUO T F, et al. Study on preservation of chilled beef with natural essential oil nanocapsules[J]. Journal of Chemistry, 2020, 2020: 1-9.
[64]
RUBAB M, CHELLIAH R, SARAVANAKUMAR K, et al. Phytochemical characterization, and antioxidant and antimicrobial activities of white cabbage extract on the quality and shelf life of raw beef during refrigerated storage[J]. RSC Advances, 2020, 10: 41430-41442. DOI:10.1039/D0RA06727J
[65]
XAVIER L O, SGANZERLA W G, ROSA G B, et al. Chitosan packaging functionalized with Cinnamodendron dinisii essential oil loaded zein: a proposal for meat conservation[J]. International Journal of Biological Macromolecules, 2021, 169: 183-193. DOI:10.1016/j.ijbiomac.2020.12.093
[66]
MEHDIZADEH T, TAJIK H, LANGROODI A M, et al. Chitosan-starch film containing pomegranate peel extract and Thymus kotschyanus essential oil can prolong the shelf life of beef[J]. Meat Science, 2020, 163: 108073. DOI:10.1016/j.meatsci.2020.108073