羊肉中含有丰富的蛋白质、维生素和矿物元素[1],具有很高的营养价值,但是其典型的特征风味“膻味”是导致羊肉消费量低的主要原因之一[2]。因此,了解羊肉中膻味物质的沉积机制,对于改善羊肉风味,促进肉羊产业发展具有重要意义。沙葱(Allium mongolicum Regel,AMR)是百合科葱属植物,含有多糖、黄酮和精油等多种生物活性物质[3],广泛生长在我国内蒙古西部和西北地区,沙葱及其提取物能有效降低羊肉膻味。本文对沙葱的主要活性成分和羊肉中膻味物质的沉积过程进行了总结,并阐述了沙葱及其提取物降低羊肉膻味的分子机制,以期为认识羊肉“膻味”提供参考。
1 沙葱的主要活性成分目前,本课题组已通过不同的方法将沙葱中多糖、黄酮和精油等物质进行了有效分离并鉴定其成分组成。我们使用热水浸提法[4]将沙葱中多糖组分进行了分离,并对沙葱多糖的分子质量、单糖组成和糖链的主要连接方式进行了测定,发现沙葱多糖是由D-葡萄糖、L-鼠李糖和D-半乳糖构成的分子质量为5.89×104 Da的杂多糖,其糖链的主要连接方式为α-Glc(1→4)、[α-Glc(1→4)-]n和端基α-Rha[5];采用超声波提取法分离了沙葱中的黄酮组分,将该组分再用不同浓度乙醇进行洗脱后用高效液相色谱-质谱联用(HPLC-MS)技术进行鉴定,其结果如表 1所示[6]。热水浸提法和超声波提取法具有过程复杂、耗时较长和成本较高等缺点,为了将沙葱提取物在实际生产中应用,本课题组对其提取过程进行了优化,使用水提法和醇提法对沙葱中活性成分进行分离,主要活性成分如表 2所示[7]。我们对沙葱精油的分离是采用水蒸气蒸馏法,发现其主要成分为二甲基三硫醚、二烯丙基二硫化物、1-甲基-3-烯丙基三硫醚、二甲基四硫醚、二烯丙基三硫醚、甲基烯丙基二硫醚、二-2-丙烯四硫化醚等含硫化合物[8]。
![]() |
表 1 沙葱黄酮经不同浓度乙醇洗脱后的主要成分 Table 1 Major components of flavonoids from Allium mongolicum Regel after eluted with different concentrations of ethanol[6] |
![]() |
表 2 沙葱醇提物和水提物的化合物组成 Table 2 Compound composition of ethanol extract and water extract from Allium mongolicum Regel[7] |
羊肉的膻味主要与其肌肉和脂肪组织中BCFAs的存在有关,特别是与4-甲基辛酸(4-methyloctanoic acid, MOA)、4-乙基辛酸(4-ethyloctanoic acid, EOA)和4-甲基壬酸(4-methylnonanoic acid, MNA)有关[9]。BCFAs还会赋予羊奶或羊奶制品同样的特征风味,与牛奶的风味明显不同[10]。反刍动物瘤胃发酵后产生的丙酸经瘤胃上皮进入门静脉到达肝脏,当丙酸浓度超过肝脏糖异生能力时,肝脏开始合成BCFAs[11-12]。随着肝脏中丙酸的可用供应量增加,肝脏提取循环中丙酸的能力降低(从85%降至75%),因此,内脏组织中丙酸的净出现增加了3倍,随着外周组织中丙酸的增加,产生更多的甲基丙二酰辅酶A,并导致羔羊皮下脂肪和内脏脂肪中的BCFAs含量显著提高[13]。单甲基脂肪酸(MOA和MNA)是甲基丙二酰辅酶A和乙酰辅酶A以丙酸为前体物从头合成的[14-15]。EOA的生物合成途径鲜为人知,它可能遵循MOA和MNA相同的生物合成途径,用丁酸和乙基丙二酰辅酶A代替丙酸和甲基丙二酰辅酶A[16]。甲基丙二酰辅酶A和乙基丙二酰辅酶A分别由乙酰辅酶A羧化酶将丙酰辅酶A和丁酰辅酶A羧化而来,丙酰辅酶A是胸腺嘧啶和缬氨酸的降解产物[17]。此外,瘤胃微生物可参与BCFAs的形成,瘤胃中的缬氨酸、亮氨酸和异亮氨酸在微生物的作用下脱氨所形成的支链挥发性脂肪酸为BCFAs的合成提供了碳架[18];同时,瘤胃微生物的生物氢化作用还可以将甘油三酯降解产生的不饱和脂肪酸异构化为BCFAs[19]。
2.2 吲哚和酚类3-甲基吲哚(粪臭素)和4-甲基苯酚(对苯酚)是放牧羊肉中的主要膻味物质,会产生动物味、谷仓味、粪便味、绵羊味和奶味,对消费者的喜好产生负面影响[20]。该膻味物质的形成主要取决于反刍动物所采食的饲粮,并与饲粮蛋白质溶解和瘤胃降解率的差异有关[21]。蛋白质溶解是动物在咀嚼过程中植物细胞向瘤胃环境释放蛋白质,是蛋白质降解的重要前提[22]。蛋白质降解是瘤胃微生物和植物蛋白质水解共同作用的结果,最终形成氨基酸和多肽[23]。肉羊在放牧过程中采食大量新鲜牧草,与谷物饲粮相比,新鲜牧草中纤维含量高,易发酵碳水化合物含量低,导致碳水化合物代谢能量不足,饲粮中蛋白质在瘤胃内被大量降解(70%~80%)为氨基酸和肽[24-25]。在瘤胃微生物的作用下,氨基酸(主要是色氨酸和酪氨酸)经过转氨基和脱羧作用生成3-甲基吲哚和4-甲基苯酚,最终沉积到脂肪组织[26-27]。Young等[28]报道,羊肉膻味虽然主要由BCFAs引起,但是,通过饲喂牧草衍生出的吲哚和酚类物质能够加剧羊肉膻味。因此,通过抑制肉羊瘤胃中蛋白质的降解或提高其利用率可有效减少放牧羊肉的膻味。
2.3 脂肪酸和氨基酸反刍动物体内几乎所有的脂肪都是以甘油三酯的形式存在,脂肪组织中的脂肪酸对羊肉中挥发性风味物质的种类和浓度具有重要影响[29]。有研究表明,硬脂酸(C18 ∶ 0)、油酸(C18 ∶ 1n-9)和亚麻酸(C18 ∶ 3n-3)是羊肉中风味物质的主要前体物[30],与羊肉膻味强度呈正相关,而亚油酸(C18 ∶ 2n-6)则与羊肉膻味强度呈负相关[31]。Nute等[32]研究证实,在肉羊饲粮中添加亚油酸可减少羊肉膻味强度,而增加亚麻酸可增强羊肉膻味强度。这可能是由于饲粮中的亚麻酸进入瘤胃后被瘤胃微生物氢化为硬脂酸,硬脂酸通过血液循环在脂肪组织中沉积,从而导致羊肉膻味增强。此外,脂肪组织中的含硫氨基酸(胱氨酸、半胱氨酸和蛋氨酸)同样是羊肉膻味物质的重要前体物[33]。含硫氨基酸通过热分解产生硫化氢和重要的风味物质[34],而硫化氢和苯酚产生的另一种重要化合物苯硫酚同样影响着羊肉膻味强度[35]。因此,通过调整肉羊饲粮组成或添加饲料添加剂改变羊肉脂肪酸和氨基酸组成是减轻羊肉膻味的有效途径之一。
3 沙葱及其提取物降低羊肉膻味的分子机制 3.1 沙葱及其提取物对肉羊体内膻味物质沉积的影响沙葱是生长在我国内蒙古和西北荒漠化草原上的一种典型百合科葱属植物。蒙古族牧民很早就发现,肉羊在草原上采食沙葱后生长速度加快、羊肉新鲜可口且膻味较小。本课题组对沙葱及其提取物影响羊肉膻味的机理进行了系统性研究。Liu等[36]发现,在肉羊饲粮中添加适量沙葱黄酮后能够显著降低肌内脂肪中MOA含量,对MNA含量有降低趋势。包志碧[37]发现,饲粮中添加沙葱、沙葱水提物和沙葱脂提物均能显著降低肉羊背最长肌中BCFAs(MOA、MNA和EOA)的含量,而对挥发性风味物质含量的影响有所不同,沙葱可显著降低杂环类化合物含量,沙葱水提物可显著降低脂类和杂环类化合物含量,沙葱脂提物可显著降低酸类化合物含量,这可能是由于沙葱、沙葱水提物和沙葱脂提物中发挥作用的活性物质不同所导致。杂环类化合物源于美拉德反应,其中的2-戊基呋喃是肌肉中关键的风味化合物[38];脂类化合物由脂质氧化产生的醇和脂肪酸相互反应产生[39];酸类物质对羊肉膻味影响较大,尤其是短链酸类,其中的不饱和酸类是醛和酮等风味化合物的重要中间产物[40]。Liu等[41]研究了沙葱及其提取物对肉羊体脂中BCFAs沉积和分布的影响,发现BCFAs在肉羊内部脂肪(肾周脂肪、大网膜脂肪)和外部脂肪(背部皮下脂肪、尾脂)的沉积具有一定差异,呈现尾部脂肪>背部皮下脂肪>大网膜脂肪>肾周脂肪的规律,这可能是由于外部脂肪利用丙酸的能力更强,合成更多的BCFAs;沙葱及其提取物不同程度地降低了背部皮下脂肪、大网膜脂肪和肾周脂肪中BCFAs含量,其中沙葱醇提物效果最佳;但是对于尾部脂肪中的BCFAs含量没有显著影响,推测可能是尾部脂肪存在一种独特的脂肪代谢机制。
3.2 沙葱及其提取物对膻味物质候选基因的影响Gunawan等[42]对低膻味和高膻味的印尼肥尾羊肝脏进行转录组测序,确定了连接黏附分子样蛋白(junctional adhesion molecule-like protein,JAML)、细胞色素P450 2A13(cytochrome P450 2A6,CYP2A6)、尿苷5′-二磷酸葡萄糖醛酸转移酶2B18(DUP-glucuronosyltransferase 2B18,UDPGT2B18)、细胞溶质磺基转移酶1C1(sulfotransferase 1C1,SULT1C1)、谷胱甘肽硫转移酶M1(glutathione S-transferase M1,GSTM1)和驱动蛋白家族成员12(kinesin family member 12,KIF12)等6个候选基因。Listyarini等[43]对低膻味和高膻味印度肥尾羊肝脏中的候选基因的表达情况进行了研究,发现CYP2A6和SULT1C1在高膻味肉羊肝脏中过表达,而KIF12的表达被抑制,并推测肝脏组织中积聚的膻味物质可能与粪臭素代谢Ⅰ期的高氧化率和代谢Ⅱ期的共轭降解有关。刘旺景[44]分析了沙葱醇提物对肉羊不同部位脂肪(背部皮下脂肪、尾部脂肪、肾周脂肪和大网膜脂肪)中调控膻味物质候选基因的表达情况,发现沙葱醇提物可不同程度降低4个部位脂肪中候选基因JAML、SULT1C1、UDPGT2B18和GSTM1的表达,但均促进4个部位脂肪中候选基因KIF12的表达。JAML是一种上皮γδ T细胞特异性共刺激分子,在调节跨内皮迁移(TEM)细胞中与其他紧密连接相关的黏附分子结合,从而发挥关键作用[45];JAML通过激活丝裂原活化蛋白激酶(MAPK)通路和细胞因子产生有效的共刺激,导致细胞增殖和肌肉生长[46]。GSTM1是谷胱甘肽硫转移酶(glutathione S-transferases,GSTs)的一种亚型,在结合反应中起重要作用[47];GSTs是一个多功能的酶,主要催化内源性物质、血红素、脂肪酸、氧化过程产物的结合反应,以促进其细胞排泄[48];在大多数情况下,这种结合降低了生物活性,使粪臭素在代谢Ⅱ期过程中溶解度增加,促进其代谢产物通过尿液排出[49]。此外,参与粪臭素代谢Ⅱ期的酶主要是尿苷5′-二磷酸葡萄糖醛酸转移酶(UDPGTs)和细胞溶质磺基转移酶(SULTs)[50]。代谢Ⅱ期结合葡萄糖醛酸化是肝脏消除内源性和外源性分子的另一个主要途径,这些分子被UDGPTs催化,将葡萄糖醛酸转移到底物以增加溶解度。SULT1C1主要参与雄激素和粪臭素的代谢和清除,它能够将类固醇激素和药物结合成更容易排泄的水溶性化合物,其家族成员细胞溶质磺基转移酶2A1(SULT2A1)和细胞溶质磺基转移酶2B1(SULT2B1)在粪臭素代谢过程中同样发挥着重要作用[51]。KIF12是一个编码新型驱动蛋白的基因,是几丁质合酶调节因子4(Chr4)对肾脏和胆道表型影响的主要基础[43]。虽然上述候选基因对肉羊体内膻味物质的沉积做出了一定解释,但是,沙葱及其提取物调控肉羊体内膻味物质沉积的候选基因尚需进一步验证和明确。
3.3 应用组学技术探索沙葱及其提取物降低羊肉膻味机制近年来,组学技术已经被广泛用于探索羔羊肝脏中影响羊肉膻味和品质的因素。Abuzahra等[52]通过对爪哇肥尾羊肝脏转录组进行分析,发现具有高膻味和低膻味肉羊肝脏中的差异基因。An等[53]通过肝脏转录组分析,探讨了发酵构树饲料对绵羊肉品质特征影响的分子调控机制。刘旺景[44]对肉羊肾周脂肪进行了蛋白质组学和代谢组学分析,探讨了沙葱醇提物影响BCFAs合成的机理,经联合分析发现,差异蛋白质和差异代谢物涉及氨基酸代谢通路、脂肪酸代谢通路、外源物质代谢通路和疾病相关通路。丁赫[54]采用宏基因组学和代谢组学技术证实了沙葱是通过改变瘤胃微生物相对丰度来降低羊肉中BCFAs的沉积;进一步对BCFAs与瘤胃微生物物种和差异代谢物进行斯皮尔曼(Spearman)相关性分析后发现,羊肉中EOA含量与厚壁菌门分类下的纤维分解菌的相对丰度呈正相关,MOA和MNA含量与部分产甲烷菌属的相对丰度存在显著相关性;MOA的瘤胃代谢物标志物为D-尿胆素(D-urobilin),MNA的瘤胃代谢物标志物为脱氢伏米叶醇(dehydrovomifoliol)和精氨(Spermine),EOA的瘤胃代谢物标志物为溶血磷脂酰乙醇胺(LysoPE)。
4 小结随着肉羊养殖中舍饲和半舍饲模式的普及,羊肉的膻味程度加重,膻味降低了消费者对羊肉的喜爱程度,并阻碍了肉羊产业的可持续发展。沙葱作为一种天然植物,含有多种活性物质,在改善羊肉膻味方面具有良好的应用潜力。目前,关于沙葱提取物的研究多集中在醇提物和水提物,在沙葱精油方面的研究相对有限,且其对羊肉膻味的影响尚不清晰,需进一步研究。此外,本课题组前期虽然验证了沙葱醇提物对膻味物质沉积的候选基因具有一定调控作用,但是沙葱及其提取物减少肉羊体内膻味物质沉积的候选基因尚未确定,应对其肝脏组织进行转录组分析以明确与羊肉膻味相关的候选基因。
[1] |
KUHNT, KATRIN, DEGEN, et al. Evaluation of the impact of ruminant trans fatty acids on human health: important aspects to consider[J]. Critical Reviews in Food Science and Nutrition, 2016, 56(9/12): 1964-1980. |
[2] |
SINK J D, CAPORASO F. Lamb and mutton flavour: contributing factors and chemical aspects[J]. Meat Science, 1977, 1(2): 119-127. DOI:10.1016/0309-1740(77)90013-4 |
[3] |
DU H, KHAS E, CHEN S, et al. Correlation of the rumen fluid microbiome and the average daily gain with a dietary supplementation of Allium mongolicum Regel extracts in sheep[J]. Journal of Animal Science, 2019(7): 7. DOI:10.3969/j.issn.1007-1733.2019.07.003 |
[4] |
邓凤, 扈瑞平, 敖长金, 等. 沙葱多糖的提取纯化及纯度鉴定[J]. 内蒙古石油化工, 2013, 39(1): 1-3. DEGN F, HU R P, AO C J, et al. Studies on separation, purification, and purity identification of Allium mongolicum Regel polysaccharides[J]. Inner Mongolia Petrochemical Industry, 2013, 39(1): 1-3 (in Chinese). DOI:10.3969/j.issn.1006-7981.2013.01.001 |
[5] |
扈瑞平. 沙葱多糖的分离、纯化和结构鉴定及其生物学活性的研究[D]. 博士学位论. 呼和浩特: 内蒙古农业大学, 2010: 44-70. HU R P. Studies on separation, purification, structural identification and biological activity of Allium mongolicum Regel polysaccharides[D]. Ph. D. Thesis. Hohhot: Inner Mongolia Agricultural University, 2010: 44-70. (in Chinese) |
[6] |
赵春艳. 沙葱中黄酮类化合物的分离纯化、结构鉴定及其对小鼠免疫抗氧化机能影响的研究[D]. 博士学位论文. 呼和浩特: 内蒙古农业大学, 2008: 52-65. ZHAO C Y. Studies on separation, purification and structural characterizations of flavonoids from Allium mongolicum Regel and its effects on immunity and antioxidant function in mice[D]. Ph. D. Thesis. Hohhot: Inner Mongolia Agricultural University, 2008: 52-65. (in Chinese) |
[7] |
DING H, LIU W, ERDENE K, et al. Effects of dietary supplementation with Allium mongolicum Regel extracts on growth performance, serum metabolites, immune responses, antioxidant status, and meat quality of lambs[J]. Animal Nutrition, 2021(7): 530-538. |
[8] |
乌仁张嘎. 沙葱挥发油的提取、成分鉴定及其体外抑菌效果的研究[D]. 硕士学位论文. 呼和浩特: 内蒙古农业大学, 2011: 21-39. WUREN Z G. Studies on extracting process, chemical constituents and antibacterial effects of essential oils from Allium mongolicum Regel[D]. Master Thesis. Hohhot: Inner Mongolia Agricultural University, 2011: 21-39. (in Chinese) |
[9] |
WATKINS P J, ROSE G, SALVATORE L, et al. Age and nutrition influence the concentrations of three branched chain fatty acids in sheep fat from Australian abattoirs[J]. Meat Science, 2010, 86(3): 594-599. DOI:10.1016/j.meatsci.2010.04.009 |
[10] |
SALLES C, SOMMERER N, SEPTIER C, et al. Goat cheese flavor: sensory evaluation of branched-chain fatty acids and small peptides[J]. Journal of Food Science, 2010, 67(2): 835-841. |
[11] |
WONG E, NIXON L N, JOHNSON C B. Volatile medium chain fatty acids and mutton flavor[J]. Journal of Agricultural & Food Chemistry, 1975, 23(3): 495-498. |
[12] |
ASCHENBACH J R, KRISTENSEN N B, DONKIN S S, et al. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough[J]. International Union of Biochemistry and Molecular Biology Life, 2010, 62(12): 869-877. DOI:10.1002/iub.400 |
[13] |
BERTHELOT V, BAS P, SCHMIDELY P, et al. Effect of dietary propionate on intake patterns and fatty acid composition of adipose tissues in lambs[J]. Small Ruminant Research, 2001, 40(1): 29-39. DOI:10.1016/S0921-4488(00)00217-0 |
[14] |
MASSART-LE A M, ROETS E, PEETERS G, et al. Propionate for fatty acid synthesis by the mammary gland of the lactating goat[J]. Journal of Dairy Science, 1983, 66(7): 1445-1454. DOI:10.3168/jds.S0022-0302(83)81958-4 |
[15] |
VLAEMINCK B, FIEVEZ V, CABRITA A R J., et al. Factors affecting odd-and branched-chain fatty acids in milk: a review[J]. Animal Feed Science and Technology, 2006, 131(3-4): 389-417. DOI:10.1016/j.anifeedsci.2006.06.017 |
[16] |
KAFFARNIK S, HEID C, KAYADEMIR Y, et al. High enantiomeric excess of the flavor relevant 4-alkyl-branched fatty acids in milk fat and subcutaneous adipose tissue of sheep and goat[J]. Journal of Agricultural Food and Chemistry, 2015, 63(2): 469-475. DOI:10.1021/jf505452u |
[17] |
DEWULF J P, GERIN I, RIDER M H, et al. The synthesis of branched-chain fatty acids is limited by enzymatic decarboxylation of ethyl-and methylmalonyl-CoA[J]. Biochemical Journal, 2019, 476(16): 2427-2447. DOI:10.1042/BCJ20190500 |
[18] |
KANEDA T. Iso-and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance[J]. Microbiological Reviews, 1991, 55(2): 288. DOI:10.1128/mr.55.2.288-302.1991 |
[19] |
LOPEZ V, LINDSAY R C. Metabolic conjugates as precursors for characterizing flavor compounds in ruminant milks[J]. Journal of Agricultural Food and Chemistry, 1993, 41(3): 446-454. DOI:10.1021/jf00027a019 |
[20] |
ALFONSO M, SANCHEZ A, BERGE F, et al. Meat texture of lambs from different European production systems[J]. Crop & Pasture Science, 2003, 54(6): 551-560. |
[21] |
PRIOLO A, MICOL D, AGABRIEL J. Effects of grass feeding systems on ruminant meat colour and flavour: a review[J]. Animal Research, 2001, 50(3): 185-200. DOI:10.1051/animres:2001125 |
[22] |
MIN B R, MCNABB, et al. Solubilization and degradation of ribulose-1, 5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39; Rubisco) protein from white clover (Trifolium repens) and Lotus corniculatus by rumen microorganisms and the effect of condensed tannins on these processes[J]. Journal of Agricultural Science, 2000, 134(5): 305-317. |
[23] |
KINGSTON-SMITH A H, THEODOROU M K. Post-ingestion metabolism of fresh forage[J]. New Phytologist, 2000, 148(1): 37-55. DOI:10.1046/j.1469-8137.2000.00733.x |
[24] |
EGAN A R, ULYATT M J. Quantitative digestion of fresh herbage by sheep[J]. Journal of Agricultural Science, 1980, 94(1): 47-56. DOI:10.1017/S002185960002788X |
[25] |
YOUNG O A, LANE G A, PRIOLO A, et al. Pastoral and species flavour in lambs raised on pasture, lucerne or maize[J]. Journal of the Science of Food & Agriculture, 2010, 83(2): 93-104. |
[26] |
WATKINS P J, KEARNEY G, ROSE G, et al. Effect of branched-chain fatty acids, 3-methylindole and 4-methylphenol on consumer sensory scores of grilled lamb meat[J]. Meat Science, 2014, 96(2): 1088-1094. DOI:10.1016/j.meatsci.2012.08.011 |
[27] |
WATKINS P J, FRANK D, SINGH T K, et al. Sheepmeat flavor and the effect of different feeding systems: a review[J]. Journal of Agricultural & Food Chemistry, 2013, 61(15): 3561-3579. |
[28] |
YOUNG O A, JL BERDAGUÉ, VIALLON C, et al. Fat-borne volatiles and sheepmeat odour[J]. Meat Science, 1997, 45(2): 183-200. DOI:10.1016/S0309-1740(96)00100-3 |
[29] |
YAKAN A, N VNAL. Meat production traits of a new sheep breed called bafra in turkey 1. Fattening, slaughter, and carcass characteristics of lambs[J]. Tropical Animal Health & Production, 2010, 42(4): 751-759. |
[30] |
ZHANG C, ZHANG H, LIU M, et al. Effect of breed on the volatile compound precursors and odor profile attributes of lamb meat[J]. Foods, 2020, 9(9): 1178. DOI:10.3390/foods9091178 |
[31] |
SANUDO C, ENSER M E, CAMPO M M. Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain[J]. Meat Science, 2000, 54(4): 339-346. DOI:10.1016/S0309-1740(99)00108-4 |
[32] |
NUTE G R, RICHARDSON R I, WOOD J D, et al. Effect of dietary oil source on the flavour and the colour and lipid stability of lamb meat[J]. Meat Science, 2007, 77(4): 547-555. DOI:10.1016/j.meatsci.2007.05.003 |
[33] |
WERKHOFF P, BRUENING J, EM BE RGER R, et al. Isolation and characterization of volatile sulfur-containing meat flavor components in model systems[J]. Journal of Agricultural & Food Chemistry, 1990, 38(3): 777-791. |
[34] |
ELMORE J S, MOTTRAM D S. Formation of 2-alkyl-(2H)-thiapyrans and 2-alkylthiophenes in cooked beef and lamb[J]. Journal of Agricultural & Food Chemistry, 2000, 48(6): 2420. |
[35] |
KIM H J, LINDSAY R C. Volatile alkylphenols and thiophenol in species-related characterizing flavors of red meats[J]. Journal of Food Science, 2010, 56(5): 1197-1202. |
[36] |
LIU W, DING H, ERDENE K, et al. Effects of flavonoids from Allium mongolicum Regel as a dietary additive on meat quality and composition of fatty acids related to flavor in lambs[J]. Canadian Journal of Animal Science, 2018, 99(3): 1-9. |
[37] |
包志碧. 沙葱及其提取物对羊肉品质和风味物质组成的影响[D]. 硕士学位论文. 呼和浩特: 内蒙古农业大学, 2019: 21-34. BAO Z B. Effect of Allium mongolicum Regel and its extracts on meat quality and flavor components in mutton sheep[D]. Master's Thesis. Hohhot: Inner Mongolia Agricultural University, 2019: 21-34. (in Chinese) |
[38] |
WASSERIWAN A E. Symposium on meat flavor chemical basis for meat flavor: a review[J]. Journal of Food Science, 2010, 44(1): 6-11. |
[39] |
周洁, 王立, 周惠明. 肉品风味的研究综述[J]. 肉类研究, 2003(2): 3. ZHOU J, WANG L, ZHOU H M. Study summary of the meat flavor[J]. Meat Research, 2003(2): 3 (in Chinese). DOI:10.3969/j.issn.1001-8123.2003.02.001 |
[40] |
刘勇. 犊牦牛肉用品质, 脂肪酸及挥发性风味物质研究[D]. 硕士学位论文. 兰州: 甘肃农业大学, 2010: 18-24. LIU Y. Study on meat quality, fatty acids, volatile flavor compounds of yak calf[D]. Master's Thesis. Lanzhou: Gansu Agricultural University, 2010: 18-24. (in Chinese) |
[41] |
LIU W, AO C J. Effect of dietary supplementation with Allium mongolicum Regel extracts on growth performance, carcass characteristics, and the fat color and flavor-related branched-chain fatty acids concentration in ram lambs[J]. Animal Bioscience, 2021(34): 1134-1145. |
[42] |
ASEP G, JAKARIA, KASITA L, et al. Transcriptome signature of liver tissue with divergent mutton odour and flavour using RNA deep sequencing[J]. Gene, 2018, 676: 86-94. DOI:10.1016/j.gene.2018.06.086 |
[43] |
LISTYARINI K, JAKARIA, FURQON A, et al. Expression of CYP2A6, KIF12, and SULT1C1 in liver of sheep with divergent sheepmeat flavour and odour[J]. IOP Conference Series Earth and Environmental Science, 2018, 157. |
[44] |
刘旺景. 沙葱提取物对肉羊体脂4-烷基支链脂肪酸代谢的影响及其机理研究[D]. 博士学位论文. 呼和浩特: 内蒙古农业大学, 2020: 32-75. LIU W J. Effects of Allium mongolicum Regel extracts on metabolism of 4-alkyl branched-chain fatty acids of body fat and its mechanism in lambs[D]. Ph. D. Thesis. Hohhot: Inner Mongolia Agricultural University, 2020: 32-75. (in Chinese) |
[45] |
GUO Y L, BAI R, CHEN X J, et al. Role of junctional adhesion molecule-like protein in mediating monocyte transendothelial migration[J]. Arterioscler Thromb Vasc Biol, 2009, 29(1): 75-83. DOI:10.1161/ATVBAHA.108.177717 |
[46] |
WITHERDEN D A, VERDINO P, RIEDER S E, et al. The junctional adhesion molecule JAML is a costimulatory receptor for epithelial γδ T cell activation[J]. Science, 2010, 329(5996): 1205-1210. DOI:10.1126/science.1192698 |
[47] |
LISTOWSKY I, ABRAMOVITZ M, HOMMA H, et al. Intracellular binding and transport of hormones and xenobiotics by glutathiones-transferases[J]. Drug Metabolism Reviews, 1988, 19(3-4): 305-318. DOI:10.3109/03602538808994138 |
[48] |
BABOL J, SQUIRES E J, LUNDSTRM K. Relationship between metabolism of androstenone and skatole in intact male pigs[J]. Journal of Animal Science, 1999, 77(1): 84-92. DOI:10.2527/1999.77184x |
[49] |
DIAZ G J, SKORDOS K W, YOST G S, et al. Identification of phase Ⅰ metabolites of 3-methylindole produced by pig liver microsomes[J]. Drug Metabolism & Disposition, 1999, 27(10): 1150-1156. |
[50] |
AGERGAARD N, LAUE A. Absorption from the gastrointestinal tract and liver turnover of skatole[J]. Colloques de l'INRA (France), 1993. |
[51] |
WILSON L A, REYNS G E, DARRAS V M, et al. cDNA cloning, functional expression, and characterization of chicken sulfotransferases belonging to the SULT1B and SULT1C families[J]. Archives of Biochemistry & Biophysics, 2004, 428(1): 64-72. |
[52] |
ABUZAHRA M, JAKARIA, LISTYARINI K, et al. Variant discovery in the sheepmeat odour and flavour in Javanese fat tailed sheep using RNA sequencing[J]. Iop Conference, 2018, 157. |
[53] |
AN X, ZHANG S, LI T, et al. Transcriptomics analysis reveals the effect of Broussonetia papyrifera L. fermented feed on meat quality traits in fattening lamb[J]. Peer J, 2020, 6508494. |
[54] |
丁赫. 基于瘤胃微生物宏基因和代谢组学解析沙葱降低羊肉中4-烷基支链脂肪酸沉积的机理[D]博士学位论文. 呼和浩特: 内蒙古农业大学, 2021: 23-45. DING H. Elucidating the mechanism of Allium mongolicum Regel decrease the 4-alkyl branched chain fatty acids in mutton by rumen microbiomics and metabonomics[D]. Ph. D. Thesis. Hohhot: Inner Mongolia Agricultural University, 2021: 23-45. (in Chinese) |