2. 广东省水禽健康养殖重点实验室, 广州 510225;
3. 云南快大多畜牧科技有限公司, 玉溪 653100;
4. 湖南农业大学动物科技学院, 长沙 410128
2. Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China;
3. Yunnan Kuoduo Animal Husbandry Technology Co., Ltd., Yuxi 653100, China;
4. College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
法氏囊作为鸟类特有的中枢免疫器官,是一种与泄殖腔相连的盲憩室形式的肠道相关淋巴组织[1-2]。法氏囊腔通过一条狭窄的法氏囊管与泄殖腔相连,内部含有约10 000个淋巴囊泡[3]。法氏囊囊泡由皮质和髓质构成,囊泡内的微环境为B细胞的多样性及其分化、发育和成熟提供了独特的微环境[4-5]。因此,幼雏法氏囊在中枢和外周免疫系统中发挥主要作用[6]。如何提高幼雏免疫力一直是养殖业的研究重点之一。所以,探究雏鹅法氏囊的免疫调节机制具有非常重要的作用。
Toll样受体4(Toll like receptor 4,TLR4)作为一种典型的模型识别受体,广泛分布在树突状细胞、上皮细胞、血管内皮细胞及单核细胞等中,通过识别外源病原体而发挥重要作用[7-8]。例如在B淋巴细胞中,TLR4通过酪氨酸激酶对B细胞受体的信号转导参与免疫活动;在巨噬细胞中,TLR4识别病原体后,激活下游信号通路核因子-κB(NF-κB),介导免疫反应[9-10]。
脂多糖(lipopolysaccharides,LPS)是革兰氏阴性菌细胞外壁的主要成分,被机体免疫系统识别而发挥作用[11-12]。LPS的刺激能够促使禽类机体炎症的发生,造成机体免疫器官损伤,降低机体免疫水平[13-15]。LPS可以通过TLR4信号通路诱导促炎细胞因子肿瘤坏死因子-α(TNF-α)和白细胞介素-1β(IL-1β)的释放,刺激自由基表达,进而诱导机体损伤[16-17]。因此,LPS常被用于构建研究动物免疫应激模型。白术多糖(polysaccharide of Atractylodes macrocephala Koidz,PAMK)作为传统中药“白术”的重要提取物,具有促进免疫器官的生长发育、维持机体细胞免疫、体液免疫以及黏膜免疫功能的相对稳定等功能[18-21]。本课题组之前的研究发现,PAMK可以通过TLR4-骨髓分化因子88(MyD88)-NF-κB信号通路缓解LPS诱导的小鼠肝炎,刺激小鼠脾脏中细胞因子分泌,从而提高机体免疫力[22-23]。同时,PAMK可以有效改善LPS诱导的雏鹅肠道菌群紊乱[24]。另外,前期试验发现PAMK还可以通过激活T淋巴细胞,维持体液和细胞免疫平衡,进而缓解环磷酰胺诱导的雏鹅免疫抑制[25-26]。除此之外,PAMK在热应激调节过程中也发挥重要作用。前期研究发现PAMK可以通过提高鸡脾脏中超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GPx)活性,降低丙二醛(MDA)含量,进而缓解热应激诱导的鸡脾脏损伤[27]。因此,本试验通过建立LPS诱导的雏鹅法氏囊损伤模型,以探究PAMK在LPS诱导雏鹅法氏囊损伤过程中对法氏囊内免疫细胞因子含量、TLR4信号通路相关基因表达及氧化应激相关指标的调节作用。
1 材料与方法 1.1 主要仪器微孔板分光光度计(Epoch,BioTek Instruments,美国);全自动酶标仪(ELX800,博腾仪器公司,美国);分光光度计(UV-3100,MAPADA公司,中国);实时荧光定量PCR仪(7500,Life Technologies,美国);多功能梯度PCR仪(2720,Life Technologies,美国);全自动化学发光成像系统(上海天能科技有限公司,中国)。
1.2 主要药品和试剂95% PAMK(西安某生物制剂厂,中国);注射用LPS(Sigma,美国);氧化应激指标测试盒(南京建成生物工程研究所,中国);预混型定量用反转录试剂盒(TaKaRa,中国);BCA蛋白浓度测定试剂盒(白鲨,中国);TLR4抗体(爱博泰克,中国);p38丝裂原活化蛋白激酶(p38 MAPK)抗体(Proteintech,美国);重组c-Jun氨基末端激酶(JNK)抗体(Abcam,英国);引物由上海生工生物工程有限公司合成。
1.3 试验设计及处理选取1日龄雏鹅200只(雌雄各占1/2),随机分为4组,分别为对照组、LPS组、PAMK组及PAMK+LPS组,各组饲粮中PAMK含量分别为0、0、400和400 mg/kg。每组5个重复,每个重复10只。预试期3 d,正试期25 d。
在养殖期间保证马冈鹅自由饮水和进食,各组间饲养管理无差异性。LPS组和PAMK+LPS组雏鹅分别于24、26和28日龄腹腔注射浓度为2 mg/kg LPS,对照组和PAMK组分别注射等量生理盐水,28日龄注射1 h后,每组随机选取15只雏鹅采集法氏囊样品。小鹅基础饲粮组成及营养水平见表 1,中鹅基础饲粮组成及营养水平见表 2。
![]() |
表 1 小鹅基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet for goslings (air-dry basis) |
![]() |
表 2 中鹅基础饲粮组成及营养水平(风干基础) Table 2 Composition and nutrient levels of the basal diet for medium geese (air-dry basis) |
在试验第25天,用药处理1 h后进行采样。每组随机选取3只雏鹅,采集法氏囊组织样品,保存于10%中性缓冲福尔马林中备用;每个重复随机选取2只雏鹅,采集法氏囊组织样品进行称重,组织样保存于-80 ℃备用。
1.5 法氏囊重量测定在试验第25天,取新鲜雏鹅的法氏囊器官,用生理盐水冲洗2~3次,然后用滤纸擦干表面,进行称重。
1.6 法氏囊组织学观察法氏囊于10%中性缓冲福尔马林中固定48 h后,石蜡包埋,切割成5 μm切片,苏木精-伊红(HE)染色。光学显微镜镜检,采用CaseViewer软件采集图像,分别于200×和400×放大倍数下观察法氏囊组织结构。
1.7 实时荧光定量PCR检测运用Trizol试剂提取各组雏鹅法氏囊中的总RNA。分光光度计检测总RNA质量,然后运用TaKaRa反转录试剂盒将各样品总RNA反转录成cDNA。采用SYBR Green Master Mix PCR试剂盒进行实时荧光定量PCR检测,反应体系为20 μL:SYBR Green Master Mix 10 μL、RNase Free dH2O 7 μL、上下游引物各1 μL、cDNA 1 μL。反应程序:95 ℃预变性5 min,1个循环;95 ℃变性30 s,60 ℃退火30 s,72 ℃延伸30 s,40个循环;72 ℃延伸10 min,1个循环。内参基因为β-肌动蛋白(β-actin),所用引物序列见表 3。每个样本分别同时做目的基因和内参基因,均做3个重复以消除加样误差,记录各基因扩增所需的Ct值,采用2-ΔΔCt法计算目的基因相对表达量。
![]() |
表 3 实时荧光定量PCR引物序列 Table 3 Primer sequences for RT-qPCR |
采用组织快速裂解缓冲液提取各组雏鹅法氏囊组织中的总蛋白,随后运用BCA蛋白浓度测定试剂盒检测各组样品蛋白浓度。十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)分离蛋白,随后将样品转移到聚偏二氟乙烯(PVDF)膜上,5%的脱脂奶粉中封闭2 h后,分别4 ℃孵育TLR4(1 ∶ 2 000)、p38 MAPK(1 ∶ 2 000)、JNK(1 ∶ 1 000)一抗过夜,二抗孵育1 h后,使用全自动化学发光成像系统进行蛋白表达量检测,并通过Image J软件进行量化分析。
1.9 氧化应激指标检测每0.1 g法氏囊组织加0.9 mL磷酸盐缓冲液(PBS),破碎仪破碎后,2 000×g离心5 min后取上清待用。使用试剂盒(南京建成生物工程研究所)检测组织上清中超氧化物歧化酶(SOD)活性和总抗氧化能力(T-AOC)。
1.10 数据分析数据采用SPSS 26.0软件进行单因素方差分析,随后用Tukey法进行多重比较。数据以平均值和均值标准误表示。GraphPad Prism 5.0被用来将数据可视化。P < 0.05代表统计分析差异具有显著性。
2 结果 2.1 PAMK可以缓解LPS诱导的雏鹅法氏囊损伤形态学观察显示,与LPS组相比,PAMK+LPS组的法氏囊器官大小明显上升(图 1-A);称量结果显示,LPS组的法氏囊重量显著低于对照组(P < 0.05),添加PAMK后,法氏囊重量明显上调,但与LPS组相比没有显著差异(P>0.05)(图 1-B)。
![]() |
A:法氏囊形态学观察;B:法氏囊重量;C:法氏囊组织学观察(200×;400×);D:法氏囊囊泡的皮质面积与髓质面积比。黑色箭头指向法氏囊小结皮质区域,红色箭头指向法氏囊小结髓质区域,蓝色箭头指向细胞空泡。数据柱标注不同小写字母表示差异显著(P < 0.05)。下图同。 A: the morphological observation of bursa of Fabricius; B: the weight of bursa of Fabricius; C: the histological observation of bursa of Fabricius (200×; 400×); D: the ratio of cortical area to medullary area of bursal nodules of Fabricius. The black arrow points to the bursa nodules cortex area, the red arrow points to the bursa nodules medulla area, and the blue arrow points to the cell vacuole. Different lowercase letters in the data column indicate significant differences (P < 0.05). The same as below. 图 1 PAMK对LPS诱导的雏鹅法氏囊重量、法氏囊组织学的影响 Fig. 1 Effects of PAMK on weight and histology of bursa of Fabricius in goslings induced by LPS |
组织学观察结果显示,LPS组法氏囊囊泡排列紊乱,囊内出现大量空泡。另外,与对照组和PAMK组相比,LPS组囊泡的皮质面积与髓质面积比显著降低(P < 0.05)。同时,与LPS组相比,PAMK+LPS组的法氏囊形态学变化明显,主要体现在囊泡内细胞整齐、囊泡内空泡数量明显降低及囊泡的皮质面积与髓质面积比升高(图 1-C,图 1-D)。
2.2 PAMK可以缓解LPS诱导雏鹅法氏囊中细胞因子mRNA表达上调LPS组细胞因子的mRNA相对表达量均不同程度高于对照组,其中IL-6、IL-1β和TNF-α mRNA相对表达量均显著高于对照组(P < 0.05)。PAMK+LPS组IL-10、IL-6、IL-1β和TNF-α的mRNA相对表达量均显著低于LPS组(P < 0.05)。PAMK组IL-6、IL-10和TNF-α mRNA相对表达量显著低于对照组(P < 0.05)(图 2)。
![]() |
图 2 PAMK对LPS诱导的雏鹅法氏囊细胞因子mRNA相对表达量的影响 Fig. 2 Effects of PAMK on mRNA relative expression levels of cytokines of bursa of Fabricius in goslings induced by LPS |
实时荧光定量PCR检测结果显示,LPS组法氏囊TLR4信号通路中TLR4、TRAF6、IKKε、IκBα和JNK的mRNA相对表达量均显著高对照组(P < 0.05)。PAMK+LPS组中TLR4、MyD88、p38 MAPK和IκBα的mRNA相对表达量均显著低于LPS组(P < 0.05)(图 3)。
![]() |
图 3 PAMK对LPS诱导的雏鹅法氏囊TLR4信号通路及其相关基因mRNA相对表达量的影响 Fig. 3 Effects of PAMK on mRNA relative expression levels of TLR4 signaling pathway and related genes of bursa of Fabricius in goslings induced by LPS |
Western blot检测结果显示,LPS组TLR4和JNK的蛋白表达量显著高于对照组(P < 0.05),p38 MAPK的蛋白表达量也一定程度上调,但是差异不显著(P>0.05)。同时,与LPS组相比,添加PAMK能显著降低法氏囊内TLR4和p38 MAPK的蛋白表达量(P < 0.05)(图 4)。
![]() |
图 4 PAMK对LPS诱导的雏鹅法氏囊TLR4信号通路及其相关基因的蛋白表达量的影响 Fig. 4 Effects of PAMK on protein expression of TLR4 signaling pathway and related genes of bursa of Fabricius in goslings induced by LPS |
检测结果显示,与对照组和PAMK组相比,LPS组法氏囊T-AOC和SOD活性均显著降低(P < 0.05)(图 5)。PAMK可以显著缓解LPS诱导的SOD活性降低(P < 0.05);同时,与对照组相比,PAMK组SOD活性也显著升高(P < 0.05)。
![]() |
图 5 PAMK对LPS诱导的雏鹅法氏囊氧化应激指标的影响 Fig. 5 Effects of PAMK on oxidative stress indexes of bursa of Fabricius in goslings induced by LPS |
研究发现,多种多糖都可不同程度提高免疫器官指数,增强其免疫能力,一般认为,免疫器官重量增加意味着机体免疫机能提高[28-31]。本研究发现,PAMK可以有效缓解LPS诱导雏鹅法氏囊重量降低。此外,本试验发现,LPS可以导致雏鹅法氏囊小结结构疏松,排列紊乱,出现大量细胞空泡,髓质区面积相对增大,皮质区面积相对减小。这将诱导B细胞输出减少,法氏囊免疫功能降低[32]。值得注意的是,PAMK可以有效缓解LPS诱导的法氏囊组织结构损伤。这说明PAMK有助于维持雏鹅的免疫能力。
TLR4是在免疫细胞表面上的重要自然免疫受体之一,在炎症发生以及免疫系统激活中发挥重要作用[33-34]。LPS作为TLR4的特异性刺激剂,可通过激活TLR4信号通路调节促炎细胞因子的表达。本试验结果显示,LPS组雏鹅法氏囊中TLR4及其通路相关基因的表达均高于对照组;PAMK可以有效缓解LPS诱导的TLR4 mRNA相对表达量上调,进而调节下游基因p38 MAPK的mRNA相对表达量。同时,本试验发现,PAMK可以显著缓解LPS诱导IL-1β、IL-6和TNF-α的mRNA相对表达量的上升。众所周知,IL-1β是一种有效的促炎细胞因子,IL-1β的释放代表着炎性反应的发生[35-36]。IL-6作为一种典型的维持体内平衡的细胞因子,在机体被感染或发生损伤时会大量释放参与免疫调控[37-38]。同时,作为免疫反应的关键调节因子之一,TNF-α在炎症以及其他疾病的刺激下也能通过介导细胞存活和细胞死亡的途径影响免疫系统的发育和正常功能[39-40]。上述结果表明,PAMK可能通过TLR4信号通路缓解LPS诱导雏鹅法氏囊的炎性细胞因子mRNA相对表达量上升。
值得注意的是,LPS介导的炎症发生会诱导促炎细胞因子表达量上升,产生过量的自由基以引发氧化应激,从而诱导机体产生损伤[41-43]。前期研究发现,PAMK可以调节雏鹅肝脏组织中MDA含量、SOD和谷胱甘肽过氧化物酶活性等抗氧化指标的变化[44]。但是,关于PAMK对雏鹅法氏囊氧化应激的研究尚未见报道。本试验法氏囊氧化应激指标检测结果显示,LPS显著抑制了法氏囊中SOD的活性。同时,与LPS组相比,PAMK单独或与LPS共同作用都能显著提高法氏囊中SOD活性。SOD作为生物体抗氧化水平的重要指标之一,可以通过多种机制清除自由基以达到抗氧化目的[45-46]。这表明PAMK对LPS诱导的雏鹅法氏囊氧化应激也有一定的缓解作用。
4 结论综上所述,PAMK是通过TLR4/p38 MAPK信号通路调节IL-1β、IL-6和TNF-α的表达,以减轻LPS诱导的雏鹅法氏囊损伤,维持法氏囊组织结构的完整性,从而提高雏鹅法氏囊的免疫应答能力。
[1] |
BARBER M R W, ALDRIDGE J R J, WEBSTER R G, et al. Association of RIG-I with innate immunity of ducks to influenza[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5913-5918. DOI:10.1073/pnas.1001755107 |
[2] |
EKINO S, SONODA K. New insight into the origin of IgG-bearing cells in the bursa of Fabricius[J]. International Review of Cell and Molecular Biology, 2014, 312: 101-137. |
[3] |
EKINO S, ARAKAWA H, SONODA K, et al. The origin of IgG-containing cells in the bursa of Fabricius[J]. Cell and Tissue Research, 2012, 348(3): 537-550. DOI:10.1007/s00441-012-1407-7 |
[4] |
GLICK B. Embryogenesis of the bursa of Fabricius: stem cell, microenvironment, and receptor-paracrine pathways[J]. Poultry Science, 1995, 74(3): 419-426. DOI:10.3382/ps.0740419 |
[5] |
YASUDA M, TANAKA S, ARAKAWA H, et al. A comparative study of gut-associated lymphoid tissue in calf and chicken[J]. The Anatomical Record, 2002, 266(4): 207-217. DOI:10.1002/ar.10062 |
[6] |
KOGUT M H, LEE A, SANTIN E. Microbiome and pathogen interaction with the immune system[J]. Poultry Science, 2020, 99(4): 1906-1913. DOI:10.1016/j.psj.2019.12.011 |
[7] |
ZHOU X K, LI X F, YE Y, et al. MicroRNA-302b augments host defense to bacteria by regulating inflammatory responses via feedback to TLR/IRAK4 circuits[J]. Nature Communications, 2014, 5: 3619. DOI:10.1038/ncomms4619 |
[8] |
MARTINEZ-CHAMORRO A, MORENO A, GÓMEZ-GARCÍA M, et al. Epistatic interaction between TLR4 and NOD2 in patients with Crohn's disease: relation with risk and phenotype in a Spanish cohort[J]. Immunobiology, 2016, 221(9): 927-933. DOI:10.1016/j.imbio.2016.05.015 |
[9] |
SCHWEIGHOFFER E, NYS J, VANES L, et al. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK[J]. Journal of Experimental Medicine, 2017, 214(5): 1269-1280. DOI:10.1084/jem.20161117 |
[10] |
FU J H, LU L, WANG H N, et al. Hirsutella sinensis mycelium regulates autophagy of alveolar macrophages via TLR4/NF-κB signaling pathway[J]. International Journal of Medical Sciences, 2021, 18(8): 1810-1823. DOI:10.7150/ijms.51654 |
[11] |
王梦竹, 贾军峰, 崔一喆, 等. 脂多糖诱导的肠屏障蛋白及其信号通路研究进展[J]. 动物营养学报, 2020, 32(5): 2060-2065. WANG M Z, JIA J F, CUI Y Z, et al. Research progress on lipopolysaccharide-induced intestinal barrier signaling pathway[J]. Chinese Journal of Animal Nutrition, 2020, 32(5): 2060-2065 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.05.014 |
[12] |
AKIRA S, TAKEDA K. Toll-like receptor signalling[J]. Nature Reviews Immunology, 2004, 4(7): 499-511. DOI:10.1038/nri1391 |
[13] |
闫伟, 施寿荣, 杨海明, 等. L-精氨酸对脂多糖刺激仔鹅生长发育的影响[J]. 动物营养学报, 2010, 22(4): 1071-1075. YAN W, SHI S R, YANG H M, et al. Effects of L-arginine on growth and development of lipopolysaccharide challenged goslings[J]. Chinese Journal of Animal Nutrition, 2010, 22(4): 1071-1075 (in Chinese). DOI:10.3969/j.issn.1006-267x.2010.04.038 |
[14] |
阳金金, 杨芷, 杨雨, 等. 甜菜碱对脂多糖刺激仔鹅生长性能、器官指数、血清生化指标及脾脏炎性因子表达的影响[J]. 动物营养学报, 2021, 33(4): 2044-2054. YANG J J, YANG Z, YANG Y, et al. Effects of betaine on growth performance, organ indices, serum biochemical parameters and spleen inflammatory factor mRNA expression of geese challenged by lipopolysaccharide[J]. Chinese Journal of Animal Nutrition, 2021, 33(4): 2044-2054 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.04.024 |
[15] |
邢波建, 景一明, 王权锜, 等. LPS诱导下鹅TLR15及相关免疫因子的表达分析[J]. 中国预防兽医学报, 2020, 42(7): 701-705. XING B J, JING Y M, WANG Q Q, et al. Expression analysis of goose TLR15 gene and related immune factors in different tissues induced by LPS[J]. Chinese Journal of Preventive Veterinary Medicine, 2020, 42(7): 701-705 (in Chinese). |
[16] |
YANG H H, HUA C, YANG X L, et al. Pterostilbene prevents LPS-induced early pulmonary fibrosis by suppressing oxidative stress, inflammation and apoptosis in vivo[J]. Food & Function, 2020, 11(5): 4471-4484. |
[17] |
EL-SHOURA E A M, SHARKAWI S M Z, MESSIHA B A S, et al. Perindopril mitigates LPS-induced cardiopulmonary oxidative and inflammatory damage via inhibition of renin angiotensin system, inflammation and oxidative stress[J]. Immunopharmacology and Immunotoxicology, 2019, 41(6): 630-643. DOI:10.1080/08923973.2019.1688346 |
[18] |
曹楠, 杨舒展, 胡春燕, 等. 白术多糖对岭南黄鸡生长性能、屠宰性能及免疫器官发育的影响[J]. 动物营养学报, 2022, 34(1): 205-214. CAO N, YANG S Z, HU C Y, et al. Effects of polysaccharide of Atractylodes macrocephala Koidz on growth performance, slaughter performance and immune organ development of Lingnan yellow chickens[J]. Chinese Journal of Animal Nutrition, 2022, 34(1): 205-214 (in Chinese). DOI:10.3969/j.issn.1006-267x.2022.01.020 |
[19] |
SUN W J, MENG K, QI C H, et al. Immune-enhancing activity of polysaccharides isolated from Atractylodis macrocephalae Koidz[J]. Carbohydrate Polymers, 2015, 126: 91-96. DOI:10.1016/j.carbpol.2015.03.034 |
[20] |
XU D N, TIAN Y B. Selenium and polysaccharides of Atractylodes macrocephala Koidz play different roles in improving the immune response induced by heat stress in chickens[J]. Biological Trace Element Research, 2015, 168(1): 235-241. DOI:10.1007/s12011-015-0351-2 |
[21] |
XIE F, SAKWIWATKUL K, ZHANG C R, et al. Atractylodis macrocephalae Koidz polysaccharides enhance both serum IgG response and gut mucosal immunity[J]. Carbohydrate Polymers, 2013, 91(1): 68-73. DOI:10.1016/j.carbpol.2012.07.083 |
[22] |
LI B X, LI W Y, TIAN Y B, et al. Polysaccharide of Atractylodes macrocephala Koidz enhances cytokine secretion by stimulating the TLR4-MyD88-NF-κB signaling pathway in the mouse spleen[J]. Journal of Medicinal Food, 2019, 22(9): 937-943. DOI:10.1089/jmf.2018.4393 |
[23] |
GUO S X, LI W Y, CHEN F Y, et al. Polysaccharide of Atractylodes macrocephala Koidz regulates LPS-mediated mouse hepatitis through the TLR4-MyD88-NF-κB signaling pathway[J]. International Immunopharmacology, 2021, 98: 107692. DOI:10.1016/j.intimp.2021.107692 |
[24] |
LI W Y, XIANG X L, LI B X, et al. PAMK relieves LPS-induced enteritis and improves intestinal flora disorder in goslings[J]. Evidence-Based Complementary and Alternative Medicine, 2021, 2021: 9721353. |
[25] |
LI W Y, XIANG X L, CAO N, et al. Polysaccharide of Atractylodes macrocephala Koidz activated T lymphocytes to alleviate cyclophosphamide-induced immunosuppression of geese through novel_mir2/CD28/AP-1 signal pathway[J]. Poultry Science, 2021, 100(7): 101129. DOI:10.1016/j.psj.2021.101129 |
[26] |
LI W Y, GUO S X, XU D N, et al. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) relieves immunosuppression in cyclophosphamide-treated geese by maintaining a humoral and cellular immune balance[J]. Molecules, 2018, 23(4): 932. DOI:10.3390/molecules23040932 |
[27] |
XU D N, LI W Y, HUANG Y M, et al. The effect of selenium and polysaccharide of Atractylodes macrocephala Koidz (PAMK) on immune response in chicken spleen under heat stress[J]. Biological Trace Element Research, 2014, 160(2): 232-237. DOI:10.1007/s12011-014-0056-y |
[28] |
华诗卉, 周柏汝, 张延龙, 等. 黄芪、紫锥菊、当归等中药组方对鸡免疫功能的影响[J]. 饲料工业, 2021, 42(13): 24-27. HUA S H, ZHOU B R, ZHANG Y L, et al. Effects of Chinese herbal formulae such as Radix Astragali, echinacea, angelica on immune function of chickens[J]. Feed Industry, 2021, 42(13): 24-27 (in Chinese). DOI:10.13302/j.cnki.fi.2021.13.005 |
[29] |
梁小瑞, 贾诚, 王丹阳, 等. 三味补益类中药水提物对鸡肠道形态结构和免疫功能的影响[J]. 黑龙江畜牧兽医, 2021(4): 110-115, 158. LIANG X R, JIA C, WANG D Y, et al. The effect of water extracts of three tonic Chinese medicine on intestinal morphological structure and immune function of chicken[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021(4): 110-115, 158 (in Chinese). DOI:10.13881/j.cnki.hljxmsy.2020.03.0918 |
[30] |
张嘉琪, 申红, 张雪, 等. 蝇蛆粉联合黄芪多糖对黄羽肉鸡生长性能、屠宰性能和免疫器官指数的影响[J]. 饲料研究, 2020, 43(8): 31-35. ZHANG J Q, SHEN H, ZHANG X, et al. Effect of combined fly maggot powder with Astragalus polysaccharides on growth performance, carcass traits and immune organ index of yellow-feather broiler chickens[J]. Feed Research, 2020, 43(8): 31-35 (in Chinese). DOI:10.13557/j.cnki.issn1002-2813.2020.08.008 |
[31] |
蔡治华, 龚争, 程郁昕, 等. 大蒜素对AA肉鸡免疫器官生长发育的影响[J]. 安徽科技学院学报, 2018, 32(4): 20-24. CAI Z H, GONG Z, CHENG Y X, et al. Effects of allicin on AA broiler's growth and development of immune organs[J]. Journal of Anhui Science and Technology University, 2018, 32(4): 20-24 (in Chinese). DOI:10.19608/j.cnki.1673-8772.2017.0524 |
[32] |
ANSARI A R, LI N Y, SUN Z J, et al. Lipopolysaccharide induces acute bursal atrophy in broiler chicks by activating TLR4-MAPK-NF-κB/AP-1 signaling[J]. Oncotarget, 2017, 8(65): 108375-108391. DOI:10.18632/oncotarget.19964 |
[33] |
黄蓉, 倪加加, 高毅. 肠道菌群-脂多糖-Toll样受体4轴与肝细胞癌的关系[J]. 临床肝胆病杂志, 2018, 34(6): 1325-1328. HUANG R, NI J J, GAO Y. The association between the intestinal microbiota-lipopolysaccharide-Toll-like receptor 4 axis and hepatocellularcarcinoma[J]. Journal of Clinical Hepatology, 2018, 34(6): 1325-1328 (in Chinese). DOI:10.3969/j.issn.1001-5256.2018.06.041 |
[34] |
SCHWABE R F, SEKI E, BRENNER D A. Toll-like receptor signaling in the liver[J]. Gastroenterology, 2006, 130(6): 1886-1900. DOI:10.1053/j.gastro.2006.01.038 |
[35] |
LOPEZ-CASTEJON G, BROUGH D. Understanding the mechanism of IL-1β secretion[J]. Cytokine & Growth Factor Reviews, 2011, 22(4): 189-195. |
[36] |
DINARELLO C A. Biologic basis for interleukin-1 in disease[J]. Blood, 1996, 87(6): 2095-2147. DOI:10.1182/blood.V87.6.2095.bloodjournal8762095 |
[37] |
TANAKA T, NARAZAKI M, KISHIMOTO T. Interleukin (IL-6) immunotherapy[J]. Cold Spring Harbor Perspectives in Biology, 2018, 10(8): a028456. DOI:10.1101/cshperspect.a028456 |
[38] |
YE R S, LIU Z W. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway[J]. Experimental and Molecular Pathology, 2020, 113: 104350. DOI:10.1016/j.yexmp.2019.104350 |
[39] |
ZELOVÁ H, HOŠEK J. TNF-α signalling and inflammation: interactions between old acquaintances[J]. Inflammation Research, 2013, 62(7): 641-651. DOI:10.1007/s00011-013-0633-0 |
[40] |
WEBSTER J D, VUCIC D. The balance of TNF mediated pathways regulates inflammatory cell death signaling in healthy and diseased tissues[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 365. DOI:10.3389/fcell.2020.00365 |
[41] |
DING Y, ZHENG Y J, HUANG J D, et al. UCP2 ameliorates mitochondrial dysfunction, inflammation, and oxidative stress in lipopolysaccharide-induced acute kidney injury[J]. International Immunopharmacology, 2019, 71: 336-349. DOI:10.1016/j.intimp.2019.03.043 |
[42] |
LI Y, CHEN X, ZHANG H, et al. 4-octyl itaconate alleviates lipopolysaccharide-induced acute lung injury in mice by inhibiting oxidative stress and inflammation[J]. Drug Design Development and Therapy, 2020, 14: 5547-5558. DOI:10.2147/DDDT.S280922 |
[43] |
TANG J, XU L Q, ZENG Y W, et al. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-κB signaling pathway[J]. International Immunopharmacology, 2021, 91: 107272. DOI:10.1016/j.intimp.2020.107272 |
[44] |
罗祖友, 吴季勤, 吴谋成. 植物多糖的抗氧化与抗病毒活性[J]. 湖北民族学院学报(自然科学版), 2007, 25(1): 77-81. LUO Z Y, WU J Q, WU M C. The antioxidative and antiviral activities of plant polysaccharides[J]. Journal of Hubei Institute for Nationalities (Natural Science Edition), 2007, 25(1): 77-81 (in Chinese). |
[45] |
FRIDOVICH I. Superoxide radical and superoxide dismutases[J]. Annual Review of Biochemistry, 1995, 64: 97-112. DOI:10.1146/annurev.bi.64.070195.000525 |
[46] |
YU G Y, WANG G P, HE C Q. Comparison of physiological responses to oxidative and heavy metal stress in seedlings of rice paddy, Oryza sativa L.[J]. Journal of Environmental Sciences, 2000, 12(4): 458-462. |