我国饲料禁抗时代的到来,使动物养殖业面临新的挑战,开发高效、绿色的饲用抗生素替代物已成为养殖业的研究重点。目前,研究最广泛的替抗物包括益生菌、抗菌肽、酶制剂、寡糖、溶菌酶、微量元素和植物提取物等[1-2],植物提取物因其天然、多途径、多靶点、多向调节等优势成为抗生素替代物研究中的热点。Xu等[1]利用荟萃分析研究了饲料添加剂作为潜在抗生素替代品对抑菌、生长性能、肠道形态和免疫的影响,提出不同植物提取物作为断奶仔猪和生长猪的一级、二级和三级替抗产品。葛根素(puerarin)又称二羟基异黄酮,为葛根的主要成分和质量控制标准[3],其结构与雌二醇相似(图 1),具有部分雌激素样作用。现代药理学研究表明,葛根素具有抗氧化、抗炎、抗肿瘤、抗抑郁、抑菌、抗病毒、提高机体免疫力等多种生物学功能[4-7]。葛根素生物学功能的研究揭示了其作为饲料添加剂防控动物疫病、缓解应激、促进动物生长性能的潜能,已有研究显示,饲粮添加葛根素能提高猪、牛、鸡的生长性能与抗病性,但其作用机制与在其他动物养殖生产中的应用还有待进一步研究。本文对葛根素的生物学功能及其在畜禽类生产中的应用进行了系统性综述,为其作为饲料添加剂开发和在动物生产上的应用提供参考。
![]() |
图 1 葛根素与雌二醇的结构式 Fig. 1 Structural formula of puerarin and estradiol |
动物机体在正常生理状态下,存在氧化还原动态平衡,以保持机体的相对稳态,但当动物饲养环境或自身状态发生改变时,这种平衡易被打破,导致机体发生氧化应激[8]。动物氧化应激是疾病发生和生产性能下降的重要原因之一,可引起肠道屏障功能异常、免疫功能降低、动物繁殖效率下降等,补充抗氧化物质是缓解动物体内氧化应激状态、减少氧化损伤最主要措施[9]。过氧化氢(hydrogen peroxide,H2O2)是一种细胞代谢产生的具有强氧化性的产物,丙二醛(malondialdehyde,MDA)为脂质过氧化反应的主要降解产物,H2O2和MDA在体内大量积累会对机体造成损伤[10-11]。超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)等为机体内主要抗氧化酶系,H2O2、MDA、SOD、CAT和GSH-Px已成为评价饲料添加剂抗氧化功能的重要指标。研究显示,葛根素具有明确的抗氧化作用,老年大鼠灌服葛根素后血清和肝脏组织中MDA含量降低,血清和肝脏组织中总抗氧化能力(total antioxidant capacity,T-AOC)和SOD、GSH-Px、CAT活性及脑中T-AOC提高[12]。Li等[13]研究表明,饲粮添加葛根素可提高断奶仔猪肠黏膜GSH-Px、SOD活性和T-AOC;董毅[14]也证实葛根素可降低大肠杆菌感染仔猪空肠的H2O2水平,提高回肠CAT活性,说明葛根素对仔猪氧化应激具有抑制作用,可缓解仔猪氧化应激导致的肠道形态破坏等机体损伤。活性氧自由基(reactive oxygen species,ROS)是机体正常代谢产物,当过量产生且不能及时清除时,会造成机体氧化损伤导致疾病的发生[15-16];研究发现,葛根素也可以通过抑制ROS的产生发挥抗氧化作用[17-18]。另外,研究显示葛根素抗氧化能力与其调控机体氧化还原反应的经典途径——Kelch样ECH关联蛋白1(Kelch like ECH associated protein 1,Keap1)/核因子E2相关因子2(nuclear factor erythroid 2 related factor 2,Nrf2)信号通路有关,上调二相酶及抗氧化酶基因表达[19-20]。施璇[21]研究发现,对于饲喂添加氧化大豆油饲粮的黄羽肉鸡,葛根素能上调其法氏囊和脾脏中Keap1/Nrf2信号通路相关分子表达水平,促进下游抗氧化酶的产生。
1.2 抗炎功能葛根素的抗炎功能与降低机体内肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-6(interleukin-6,IL-6)、白细胞介素-1β(interleukin-1β,IL-1β)、白细胞介素-10(interleukin-10,IL-10)、单核细胞趋化因子-1(monocyte chemoattractant protein-1,MCP-1)等促炎细胞因子和趋化因子水平有关[22-24]。研究显示,葛根素能减少腹泻型肠易激综合征(diarrhea predominant irritable bowel syndrome,IBS-D)大鼠血浆中的TNF-α、IL-1β、IL-6含量与肥大细胞数量,降低IBS-D引起的炎症反应与内脏高敏反应[25]。心肌梗死后心肌纤维化与炎症反应相关,研究表明,葛根素能降低MCP-1表达,抑制心肌梗死后单核细胞/巨噬细胞的募集和活化,降低心肌组织中转化生长因子-β1(transforming growth factor-β1,TGF-β1)的表达,通过抑制炎症反应显著减轻了心肌纤维化[26]。Lee等[6]研究发现,葛根素还可通过降低p38丝裂原活化蛋白激酶(p38 mitogen activated protein kinase,p38MAPK)、胞外信号调节激酶(extracellular signal-regulated kinase,ERK)、c-Jun末端激酶(c-Jun N-terminal kinase,JNK)等蛋白的磷酸化水平抑制皮肤炎症。葛根素的抗炎作用可能与下调Toll样受体(Toll like receptor,TLR)、核因子-κB(nuclear factor kappa-B,NF-κB)信号通路有关。张程美等[27]研究显示,葛根素可下调氧化低密度脂蛋白(oxidized low density lipoprotein,oxLDL)诱导人单核细胞白血病(THP-1)细胞中TLR4/NF-κB信号转导通路,通过抑制细胞内NF-κB和ERK1/2的激活降低oxLDL诱导的组织因子表达[28],发挥抗炎作用。另外,葛根素还可抑制高迁移率族蛋白1(high mobility group protein 1,HMGB1)/TLR4信号通路,降低黄羽肉鸡免疫器官炎症细胞因子水平,缓解氧化大豆油诱发的免疫器官组织炎症反应[21]。
1.3 抗肿瘤功能葛根素对人肝癌细胞[29]、人软骨肉瘤细胞[30]、膀胱癌细胞[31]和卵巢癌细胞[32]等均有抑制作用,其抗肿瘤作用与调控磷脂酰肌醇3-激酶(phosphoinositide 3-kinase,PI3K)/蛋白激酶B(protein kinase B,Akt)等信号通路诱导细胞凋亡与自噬有关。Jiang等[31]研究发现,葛根素能下调哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)/p70核糖体蛋白S6激酶(p70 ribosomal protein S6 kinase,p70S6K)信号通路相关蛋白,促进细胞凋亡,抑制膀胱癌T24和EJ细胞活力。张钰欣等[33]研究显示,葛根素能抑制非小细胞肺癌的生长、侵袭和迁移作用,其机制与上调miR-490降低其下游靶基因E3泛素连接酶DTL(dentideless E3 ubiquitin ligase)的表达、调控PI3K/Akt和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)/ERK1/2信号通路诱导细胞自噬有关[34]。另外,葛根素对铂耐药卵巢癌细胞也表现较好抑制作用[32],通过下调沉默信息调节因子1(silent information regulator 1,SIRT1)和抑制Wnt/β-连环蛋白(β-catenin)信号通路促进细胞凋亡。
1.4 抑菌与抗病毒功能葛根素能抑制金黄色葡萄球菌、表皮葡萄球菌、大肠杆菌和枯草芽孢杆菌生长,对引起幼畜腹泻的重要病原菌产毒素大肠杆菌(enterotoxic Escherichia coli,ETEC)表现较好的抑制与抗黏附作用[35-36]。刘晓曦[37]研究表明,200 μg/mL葛根素可显著抑制ETEC的生长,显著降低ETEC的菌毛蛋白亚基FaeG mRNA的表达水平,抑制ETEC分泌外毒素。200 μg/mL葛根素预处理猪小肠上皮细胞(IPEC-J2),通过下调细胞特异性细胞黏附分子黏蛋白4(mucin 4,MUC4)和黏蛋白13(mucin 13,MUC13)抑制ETEC黏附,减少其对细胞结构和形态的破坏[38]。葛根素对猪流行性腹泻病毒(porcine epidemic diarrhea virus,PEDV)也有显著抑制作用,在体内和体外均可抑制PEDV复制,并通过调节干扰素和NF-κB信号通路来预防PEDV感染[39]。葛根素还具有防治流感病毒感染与损伤的作用。Wang等[40]研究发现,葛根素能抑制H1N1流感病毒,阻断病毒核蛋白的核输出,阻止感染细胞释放新形成的病毒颗粒。200 mg/(kg BW·d)葛根素对小鼠H1N1流感病毒感染死亡的保护率为70%,有效降低了病毒滴度与肺部炎症[40]。Zeng等[41]研究表明,葛根素能逆转流感病毒感染小鼠肠道和脂肪免疫反应的损害,增加小鼠肺脏和肠黏膜中分泌型免疫球蛋白A(secretory immunoglobulin A,sIgA)的分泌水平,降低肺脏和肠黏膜中TLR、炎性因子与脂肪因子瘦素、内脂素、脂联素的水平。另外,葛根素还具有治疗新型冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)的潜能。Pan等[42]发现,葛根素对SARS-CoV-2感染关键靶点血管紧张素转换酶2(angiotensin converting enzyme 2,ACE2)受体和病毒S蛋白具有双重结合能力。Qin等[43]利用网络药理学和分子对接技术预测葛根素防治SARS-CoV-2可能与调控白细胞介素-17(interleukin 17,IL-17)、TNF-α、MAPK和低氧诱导因子-1(hypoxia inducible factor-1,HIF-1)信号通路抑制细胞坏死和炎症有关。
1.5 其他功能葛根素还具有抗抑郁、调节糖脂代谢、提高机体免疫力、调节胃肠道、改善心脑血管功能等生物学功能[24, 44],以上生物学功能说明葛根素在改善畜牧生产中动物胃肠道功能与应激反应具有巨大潜能。Song等[45]和Gao等[46]研究发现,葛根素可逆转应激小鼠、大鼠的抑郁样行为,改善肠道菌群结构,抑制肠黏膜屏障功能障碍和神经炎症损伤。Zhao等[47]研究显示,葛根素能通过激活ERK、环磷酸腺苷反应元件结合蛋白(cAMP-response element binding protein,CREB)和脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)途径,有效改善保留性神经损伤小鼠的抑郁和疼痛。Zhang等[48]和Hou等[49]证实,葛根素能显著降低糖尿病大鼠血糖水平,改善脂质代谢紊乱,并通过Nrf2/血红素加氧酶-1(heme oxygenase-1,HO-1)与NF-κB信号通路减少氧化应激,干预糖尿病大鼠白内障与脂肪肝的发生发展。另外,葛根素在动物胃肠道功能方面也表现较好的调节作用,有明显的抗腹泻作用[25]。葛根素能够改善肠道菌群结构与肠道屏障功能,通过保护肠道组织结构和神经系统来调节肠道蠕动功能,抑制小鼠结肠五羟色胺含量升高以缓解腹泻[50-51]。
2 葛根素在畜禽生产中的应用 2.1 在猪生产中的应用饲粮添加葛根素能改善猪的肠道功能与生长性能,提高抗病性。董毅[14]研究发现,灌服葛根素可降低ETEC感染仔猪的腹泻率,提高仔猪生长性能、抗氧化能力与肠道免疫功能;葛根素可显著降低ETEC感染仔猪血浆IL-6和TNF-α含量、空肠H2O2水平以及回肠IL-1β和白细胞介素-4(interleukin-4,IL-4)的mRNA相对表达量;显著提高空肠总超氧化物歧化酶(total superoxide dismutase,T-SOD)活性、回肠CAT和T-SOD活性以及空肠免疫相关基因细胞间黏附分子-1(intercellular adhesion molecular-1,ICAM-1)和血管细胞间黏附分子-1(vascular cell adhesion molecular-1,VCAM-1)的mRNA相对表达量;葛根素还能提高仔猪盲肠和结肠乳酸菌数量,以缓解ETEC感染导致的空肠、回肠肠道形态受损。口服葛根素还可预防仔猪感染PEDV腹泻,显著降低了免疫细胞的数量和血液促炎细胞因子的含量,通过增加肠道有益细菌的相对丰度,提高血浆D-木糖和肠型脂肪酸结合蛋白的含量,降低血浆二胺氧化酶活性,减轻仔猪肠道损伤,改善肠道功能[52]。
另外,葛根素在产后母猪催乳方面也有应用。王芳芳等[53]研究发现,在母猪饲粮中添加葛根异黄酮可显著提高乳猪的平均日增重、平均窝重以及母猪平均日采食量、总泌乳量,提高初乳中胰岛素样生长因子-Ⅰ含量,对哺乳全期催乳素和生长激素含量均有显著影响。葛根素还可显著提高母猪血清T-SOD和GSH-Px活性[53],说明对母猪产后应激也有一定抑制作用。葛根素在猪的脂肪代谢方面也具有调控作用。吕香州等[54]研究发现,在细胞诱导液中添加40 μmol/L葛根素能够显著增加松辽黑猪前体脂肪细胞中脂滴和甘油三酯的含量,对成脂标志基因过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor γ,PPARγ)和CCAAT-增强结合蛋白α(CCAAT/enhancer binding protein α,C/EBPα)以及成脂分化基因乙酰辅酶A羧化酶(acetyl CoA carboxylase,ACC)、脂肪酸结合蛋白4(fatty acid-binding protein 4,FABP4)和叉头框蛋白O1(forkhead box protein O1,FOXO1)的mRNA相对表达量均有显著上调作用,表明葛根素对松辽黑猪前体脂肪细胞脂质沉积和成脂分化起到了积极作用。综上所述,葛根素在猪生物学功能调控中表现积极作用,在猪生产中具有重要应用价值。
2.2 在反刍动物生产中的应用饲粮添加葛根素能降低热应激反应,改善生长性能与肉品质。在牛生产中,热应激是牛内分泌紊乱、营养代谢异常和身体组织成分变化的最主要诱因之一,可导致肉牛的生长抑制,影响体内脂肪的沉积。Peng等[55]研究发现,葛根素能干预肉牛热应激反应,增加肉牛肌肉脂肪沉积,改善肉牛的生产性能和肉质;饲粮中添加400 mg/kg葛根素可降低热应激肉牛血清皮质醇含量,提高血清总胆固醇、高密度脂蛋白胆固醇含量和总超氧化物歧化酶活性,增加日增重、干物质摄入量和肌内脂肪含量,降低牛肉剪切力;添加800 mg/kg葛根素时肉牛免疫球蛋白A(immunoglobulin A,IgA)、免疫球蛋白M(immunoglobulin M,IgM)和免疫球蛋白G(immunoglobulin G,IgG)和低密度脂蛋白胆固醇含量显著增加。Chen等[56]研究证实,葛根素可以通过激活PPARγ信号通路,上调脂肪合成和下调促进肌肉脂肪酸氧化相关基因的表达水平,从而调节脂质代谢,促进热应激肉牛胸最长肌肌内脂肪沉积,改善锦江牛的牛肉风味。云巾宴等[57]通过体外试验也证实,在牛前体脂肪细胞培养基中添加10 μmol/L葛根素可显著促进牛脂肪细胞的分化,增加了细胞内的甘油三酯含量,促进PPARγ和C/EBPα的表达。葛根素对肉牛瘤胃微生物蛋白的合成也具有促进作用,可提高瘤胃对干物质、中性洗涤纤维和粗蛋白质的表观消化率[58-59]。另外,饲粮添加葛根素也能降低宰后羊肉的剪切力,提高肌肉嫩度,进而改善羊肉品质[60]。
2.3 在家禽生产中的应用饲粮补充葛根素能提高鸡的生长性能与抗病性。汪纪仓等[61]研究发现,饲粮添加0.8 g/kg的葛根素能降低腹脂率和腿肌的滴水损失率,改善肉品质。葛根素对肉鸡肝功能、脂类代谢和后期生长性能具有改善作用[62-63]。葛根素能缓解氧化油脂引起的肉鸡生长性能、抗氧化功能和免疫力的下降以及肠道炎症造成的肠道结构、功能的破坏[21, 24, 64]。施璇[21]和余应梅等[24]研究发现,饲粮添加葛根素能提高氧化大豆油饲粮黄羽肉鸡小肠黏膜紧密连接蛋白闭锁小带蛋白-1(zonula occluden-1,ZO-1)的mRNA相对表达量,改善氧化损伤条件下肠道黏膜形态结构,肉鸡抗氧化能力的提高与上调肠内SOD活性和GSH含量、降低免疫器官MDA含量、提高免疫器官T-AOC和SOD活性有关。饲粮添加葛根素也能保护鸡免受败血症支原体(mycoplasma gallisepticum,MG)感染。Niu等[65]研究证明,葛根素显著改善了MG诱导的鸡肺泡壁增厚、肺泡腔狭窄和炎性细胞浸润等病理损伤,有效抑制MG诱导的炎症反应和细胞凋亡,通过抑制TLR6/髓样分化因子88(myeloid differentiation protein 88,MyD88)/NF-κB信号通路的激活,减少TNF-α、IL-1β、IL-6等促炎细胞因子水平。另外,葛根素还能避免跛足,提高胫骨软骨发育不良感染鸡的存活率[66]。葛根素对鸭的生长性能也有促进作用。刘瑞玲[67]研究发现,在樱桃谷鸭的饲粮中添加葛根素,可以增加日增重,降低母鸭生长前期血脂、腹脂率和皮脂率,升高公鸭的腹脂率和皮脂率,使其屠宰率升高3.37%。田青[68]研究证实,饲粮添加5 mg/kg葛根素可以增加樱桃谷鸭骨骼重量、长度、骨矿物质和钙含量,对骨骼生长有利,但大剂量使用葛根素对骨的形成不利,这可能与其雌激素样作用有关。
3 小结与展望葛根素具有抗氧化、抗炎、抗肿瘤、抗微生物等生物学功能,展现出应用广、多效能的优势,在无抗绿色畜牧养殖中具有巨大潜力与应用前景。葛根素不仅对猪、牛、鸡、鸭均有促进生长性能的作用,而且在畜产品肉质改善与动物疾病防治中也有积极作用,特别是在养猪生产中,葛根素除了能够对猪的生长性能与脂肪沉积有促进作用外,对产后母猪母乳质量、产后应激均有改善作用。另外,葛根素有明确的抑制ETEC与PEDV感染、抗应激、抗氧化和改善肠道功能作用,在防控断奶仔猪腹泻方面也有巨大潜能,是一种值得深入研究与开发的抗生素替代物。虽然,葛根素在畜禽生产上的应用已有研究报道,但其作用靶点与调控机制还有待深入研究,应用价值也值得进一步发掘。例如,葛根素兼具催乳与多途径的抗腹泻优势,是母源疗法[69-70]治疗仔猪腹泻的理想化合物,在母猪膳食中添加葛根素是否可以达到防治仔猪黄白痢的作用,也值得探讨与研究。
[1] |
XU B C, FU J, ZHU L Y, et al. Overall assessment of antibiotic substitutes for pigs: a set of meta-analyses[J]. Journal of Animal Science and Biotechnology, 2021, 12(1): 3. DOI:10.1186/s40104-020-00534-2 |
[2] |
易宏波, 唐青松, 侯磊, 等. 断奶仔猪肠道健康分级及其无抗营养策略[J]. 动物营养学报, 2020, 32(10): 4501-4517. YI H B, TANG Q S, HOU L, et al. Antibiotic-free nutritional strategies based on intestinal health grade classification of weaned piglets[J]. Chinese Journal of Animal Nutrition, 2020, 32(10): 4501-4517 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.10.004 |
[3] |
国家药典委员会. 中华人民共和国药典-一部: 2020年版[M]. 北京: 中国医药科技出版社, 2020. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China-A: 2020 edition[M]. Beijing: China Medical Science Press, 2020 (in Chinese). |
[4] |
曹盼, 张樱山, 魏学明, 等. 葛根素药理作用研究新进展[J]. 中成药, 2021, 43(8): 2130-2134. CAO P, ZHANG Y S, WEI X M, et al. New progress in pharmacological action of puerarin[J]. Chinese Traditional Patent Medicine, 2021, 43(8): 2130-2134 (in Chinese). DOI:10.3969/j.issn.1001-1528.2021.08.028 |
[5] |
杨敏, 丁传波, 马葭葭. 葛根素药理活性研究进展[J]. 人参研究, 2021, 33(6): 62-64. YANG M, DING C B, MA J J. Research progress on pharmacological activity of puerarin[J]. Ginseng Research, 2021, 33(6): 62-64 (in Chinese). DOI:10.19403/j.cnki.1671-1521.2021.06.017 |
[6] |
LEE J H, JEON Y D, LEE Y M, et al. The suppressive effect of puerarin on atopic dermatitis-like skin lesions through regulation of inflammatory mediators in vitro and in vivo[J]. Biochemical and Biophysical Research Communications, 2018, 498(4): 707-714. DOI:10.1016/j.bbrc.2018.03.018 |
[7] |
QIU Z K, ZHANG G H, ZHONG D S, et al. Puerarin ameliorated the behavioral deficits induced by chronic stress in rats[J]. Scientific Reports, 2017, 7(1): 6266. DOI:10.1038/s41598-017-06552-x |
[8] |
UNO K, NICHOLLS S J. Biomarkers of inflammation and oxidative stress in atherosclerosis[J]. Biomarkers in Medicine, 2010, 4(3): 361-373. DOI:10.2217/bmm.10.57 |
[9] |
储蓄, 张军霞, 王晶. 动物氧化应激及其营养调控措施研究进展[J]. 畜牧兽医学报, 2021, 52(12): 3346-3356. CHU X, ZHANG J X, WANG J. Research progress of animal oxidative stress and its nutritional regulation[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3346-3356 (in Chinese). DOI:10.11843/j.issn.0366-6964.2021.012.003 |
[10] |
CELI P. The role of oxidative stress in small ruminants' health and production[J]. Revista Brasileira de Zootecnia, 2010, 39(Suppl.): 348-363. |
[11] |
张慧群. 血红素的催化性质以及抗氧化性能的研究[D]. 硕士学位论文. 西安: 西北大学, 2015. ZHANG H Q. Research on the catalytic and antioxidant properties of heme[D]. Master's Thesis. Xi'an: Northwest University, 2015. (in Chinese) |
[12] |
李博萍, 刘秀丽, 邱倩. 葛根素对老年大鼠抗氧化作用的研究[J]. 实用临床医药杂志, 2017, 21(7): 1-4, 20. LI B P, LIU X L, QIU Q. Antioxidant activities of puerarin on aged rats[J]. Journal of Clinical Medicine in Practice, 2017, 21(7): 1-4, 20 (in Chinese). |
[13] |
LI M, YUAN D X, LIU Y H, et al. Dietary puerarin supplementation alleviates oxidative stress in the small intestines of diquat-challenged piglets[J]. Animals, 2020, 10(4): 631. DOI:10.3390/ani10040631 |
[14] |
董毅. 凝结芽孢杆菌、葛根素和氧化锌对大肠杆菌感染仔猪肠道功能的保护作用[D]. 硕士学位论文. 武汉: 武汉轻工大学, 2020. DONG Y. The protective effects of Bacillus coagulans, puerarin and zinc oxide on intestinal function of piglets infected with Escherichia coli[D]. Master's Thesis. Wuhan: Wuhan Polytechnic University, 2020. (in Chinese) |
[15] |
MA Q. Role of Nrf2 in oxidative stress and toxicity[J]. Annual Review of Pharmacology and Toxicology, 2013, 53(1): 401-426. DOI:10.1146/annurev-pharmtox-011112-140320 |
[16] |
YANG S S, LIAN G J. ROS and diseases: role in metabolism and energy supply[J]. Molecular and Cellular Biochemistry, 2020, 467(1/2): 1-12. |
[17] |
LIU C M, MA J Q, SUN Y Z. Protective role of puerarin on lead-induced alterations of the hepatic glutathione antioxidant system and hyperlipidemia in rats[J]. Food and Chemical Toxicology, 2011, 49(12): 3119-3127. DOI:10.1016/j.fct.2011.09.007 |
[18] |
CHENG Y, LENG W, ZHANG J S. Protective effect of puerarin against oxidative stress injury of neural cells and related mechanisms[J]. Medical Science Monitor, 2016, 22: 1244-1249. DOI:10.12659/MSM.896058 |
[19] |
MAHER J, YAMAMOTO M. The rise of antioxidant signaling-the evolution and hormetic actions of Nrf2[J]. Toxicology and Applied Pharmacology, 2010, 244(1): 4-15. DOI:10.1016/j.taap.2010.01.011 |
[20] |
OGBORNE R M, RUSHWORTH S A, O'CONNELL M A. Epigallocatechin activates haem oxygenase-1 expression via protein kinase Cdelta and Nrf2[J]. Biochemical and Biophysical Research Communications, 2008, 373(4): 584-588. DOI:10.1016/j.bbrc.2008.06.068 |
[21] |
施璇. 葛根素对饲喂氧化大豆油黄羽肉鸡免疫器官结构和功能的影响[D]. 硕士学位论文. 南昌: 江西农业大学, 2021. SHI X. Effects of puerarin on the structure and function of immune organs in yellow feathered chickens fed with oxidized soybean oil[D]. Master's Thesis. Nanchang: Jiangxi Agricultural University, 2021. (in Chinese) |
[22] |
曾祥伟, 冯倩, 张莹莹, 等. 葛根素对炎症相关疾病研究进展[J]. 中国药理学通报, 2018, 34(1): 8-11. ZENG X W, FENG Q, ZHANG Y Y, et al. Effect of puerarin on inflammation-related diseases[J]. Chinese Pharmacological Bulletin, 2018, 34(1): 8-11 (in Chinese). DOI:10.3969/j.issn.1001-1978.2018.01.003 |
[23] |
ZHANG S L, CHEN L, ZHOU Z Y, et al. Effects of puerarin on clinical parameters, vascular endothelial function, and inflammatory factors in patients with coronary artery disease[J]. Medical Science Monitor, 2019, 25: 402-408. DOI:10.12659/MSM.911108 |
[24] |
余应梅, 施璇, 王汝慧, 等. 葛根素对饲喂氧化大豆油黄羽肉鸡生长性能、抗氧化能力和免疫功能的影响[J]. 中国兽医学报, 2021, 41(7): 1407-1413. YU Y M, SHI X, WANG R H, et al. Effects of puerarin on growth performance, antioxidant capacity and immune function of yellow-feathered broilers fed with oxidized soybean oil[J]. Chinese Journal of Veterinary Science, 2021, 41(7): 1407-1413 (in Chinese). |
[25] |
WANG Q S, WANG Y L, ZHANG W Y, et al. Puerarin from Pueraria lobata alleviates the symptoms of irritable bowel syndrome-diarrhea[J]. Food & Function, 2021, 12(5): 2211-2224. |
[26] |
TAO Z W, GE Y B, ZHOU N T, et al. Puerarin inhibits cardiac fibrosis via monocyte chemoattractant protein (MCP)-1 and the transforming growth factor-β1 (TGF-β1) pathway in myocardial infarction mice[J]. American Journal of Translational Research, 2016, 8(10): 4425-4433. |
[27] |
张程美, 王高频. 葛根素对oxLDL诱导的THP-1巨噬细胞TLR4-NF-κB信号转导通路的影响[J]. 中国免疫学杂志, 2019, 35(22): 2705-2710. ZHANG C M, WANG G P. Effect of puerarin on oxLDL-induced TLR4-NF-κB signal transduction pathway in THP-1 macrophages[J]. Chinese Journal of Immunology, 2019, 35(22): 2705-2710 (in Chinese). DOI:10.3969/j.issn.1000-484X.2019.22.004 |
[28] |
DENG H F, WANG X L, SUN H, et al. Puerarin inhibits expression of tissue factor induced by oxidative low-density lipoprotein through activating the PI3K/Akt/eNOS pathway and inhibiting activation of ERK1/2 and NF-κB[J]. Life Sciences, 2017, 191: 115-121. DOI:10.1016/j.lfs.2017.10.018 |
[29] |
胡亚丽, 杨杰, 庞茜茜. 葛根素诱导人肝癌HepG2细胞凋亡与自噬及其分子机制研究[J]. 天津中医药, 2021, 38(11): 1472-1477. HU Y L, YANG J, PANG Q Q. Study of puerarin induce apoptosis and autophagy in human liver cancer HepG2 cells and its molecular mechanism[J]. Tianjin Journal of Traditional Chinese Medicine, 2021, 38(11): 1472-1477 (in Chinese). DOI:10.11656/j.issn.1672-1519.2021.11.22 |
[30] |
HUANG L, CAO J Q, CAO L, et al. Puerarin induces cell apoptosis in human chondrosarcoma cell line SW1353 via inhibition of the PI3K/Akt signaling pathway[J]. Oncology Letters, 2017, 14(5): 5585-5590. |
[31] |
JIANG K H, CHEN H B, TANG K, et al. Puerarin inhibits bladder cancer cell proliferation through the mTOR/p70S6K signaling pathway[J]. Oncology Letters, 2018, 15(1): 167-174. |
[32] |
DUAN J X, YIN M Y, SHAO Y Q, et al. Puerarin induces platinum-resistant epithelial ovarian cancer cell apoptosis by targeting SIRT1[J]. Journal of International Medical Research, 2021, 49(9): 1-14. |
[33] |
张钰欣, 张臻臻, 赵利刚, 等. 葛根素通过miR-490/E3泛素连接酶抑制非小细胞肺癌细胞生长、侵袭和迁移[J]. 中国医学科学院学报, 2022, 44(1): 91-101. ZHANG Y X, ZHANG Z Z, ZHAO L G, et al. Puerarin inhibits the proliferation, invasion, and migration of non-small cell lung cancer cells through regulating miR-490/denticleless E3 ubiquitin protein ligase[J]. Acta Academiae Medicinae Sinicae, 2022, 44(1): 91-101 (in Chinese). |
[34] |
HU Y F, LI X, LIN L, et al. Puerarin inhibits non-small cell lung cancer cell growth via the induction of apoptosis[J]. Oncology Reports, 2018, 39(4): 1731-1738. |
[35] |
范妤, 郭东艳, 宋强, 等. 葛根素的体外抑菌作用[J]. 陕西中医学院学报, 2013, 36(6): 104-105. FAN Y, GUO D Y, SONG Q, et al. Bacteriostatic of puerarin in vitro[J]. Journal of Shaanxi College of Traditional Chinese Medicine, 2013, 36(6): 104-105 (in Chinese). DOI:10.13424/j.cnki.jsctcm.2013.06.045 |
[36] |
张继红, 罗泽宇, 陶能国, 等. 葛根素提取及其抑菌实验研究[J]. 激光生物学报, 2010, 19(4): 507-510. ZHANG J H, LUO Z Y, TAO N G, et al. Extraction of capsaicin and its anti-micronbial activity[J]. Acta Laser Biology Sinica, 2010, 19(4): 507-510 (in Chinese). DOI:10.3969/j.issn.1007-7146.2010.04.017 |
[37] |
刘晓曦, 张继东, 马云飞, 等. 葛根素、黄芩苷和盐酸小檗碱对肠毒素大肠杆菌(ETEC)生长及毒力相关基因mRNA表达的影响[J]. 中国兽医杂志, 2019, 55(8): 46-48, 52. LIU X X, ZHANG J D, MA Y F, et al. Effect of puerarin, baicalin and berberine hydrochloride on the regulation of enterotoxigenic Escherichia coli growth and its toxin gene expressions[J]. Chinese Journal of Veterinary Medicine, 2019, 55(8): 46-48, 52 (in Chinese). |
[38] |
LIU X X, LIU F H, MA Y F, et al. Effect of puerarin, baicalin and berberine hydrochloride on the regulation of IPEC-J2 cells infected with enterotoxigenic Escherichia coli[J]. Evidence-Based Complementary and Alternative Medicine, 2019, 2019: 7438593. |
[39] |
WU M J, ZHANG Q, YI D, et al. Quantitative proteomic analysis reveals antiviral and anti-inflammatory effects of puerarin in piglets infected with porcine epidemic diarrhea virus[J]. Frontiers in Immunology, 2020, 11: 169. DOI:10.3389/fimmu.2020.00169 |
[40] |
WANG H X, ZENG M S, YE Y, et al. Antiviral activity of puerarin as potent inhibitor of influenza virus neuraminidase[J]. Phytotherapy Research, 2021, 35(1): 324-336. DOI:10.1002/ptr.6803 |
[41] |
ZENG M S, YU W D, WANG H X, et al. Puerarin reduces impairment of intestinal and adipose immune responses to influenza virus infection in mice[J]. Archives of Virology, 2021, 166(9): 2387-2397. DOI:10.1007/s00705-021-05112-z |
[42] |
PAN B Y, FANG S B, ZHANG J, et al. Chinese herbal compounds against SARS-CoV-2:puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor[J]. Computational and Structural Biotechnology Journal, 2020, 18: 3518-3527. DOI:10.1016/j.csbj.2020.11.010 |
[43] |
QIN X Y, HUANG C, WU K, et al. Anti-coronavirus disease 2019 (COVID-19) targets and mechanisms of puerarin[J]. Journal of Cellular and Molecular Medicine, 2021, 25(2): 677-685. DOI:10.1111/jcmm.16117 |
[44] |
ZHANG Y, YANG X, GE X H, et al. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice[J]. Biomedicine & Pharmacotherapy, 2019, 109: 726-733. |
[45] |
SONG X J, WANG W H, DING S S, et al. Puerarin ameliorates depression-like behaviors of with chronic unpredictable mild stress mice by remodeling their gut microbiota[J]. Journal of Affective Disorders, 2021, 290: 353-363. DOI:10.1016/j.jad.2021.04.037 |
[46] |
GAO L N, YAN M C, ZHOU L R, et al. Puerarin alleviates depression-like behavior induced by high-fat diet combined with chronic unpredictable mild stress via repairing TLR4-induced inflammatory damages and phospholipid metabolism disorders[J]. Frontiers in Pharmacology, 2021, 12: 767333. DOI:10.3389/fphar.2021.767333 |
[47] |
ZHAO J, LUO D, LIANG Z H, et al. Plant natural product puerarin ameliorates depressive behaviors and chronic pain in mice with spared nerve injury (SNI)[J]. Molecular Neurobiology, 2017, 54(4): 2801-2812. DOI:10.1007/s12035-016-9870-x |
[48] |
ZHANG D Z, LI M. Puerarin prevents cataract development and progression in diabetic rats through Nrf2/HO-1 signaling[J]. Molecular Medicine Reports, 2019, 20(2): 1017-1024. |
[49] |
HOU B Y, ZHAO Y R, QIANG G F, et al. Puerarin mitigates diabetic hepatic steatosis and fibrosis by inhibiting TGF-β signaling pathway activation in type 2 diabetic rats[J]. Oxidative Medicine and Cellular Longevity, 2018, 2018: 4545321. |
[50] |
吴轶. 葛根素基于黏蛋白调控缓解肠黏膜屏障损伤的机制[D]. 硕士学位论文. 南昌: 南昌大学, 2018. WU Y. Mechanism of puerarin relieving injury of intestinal mucosal barrier based on mucin regulation[D]. Master's Thesis. Nanchang: Nanchang University, 2018. (in Chinese) |
[51] |
李娇娇. 异黄酮调节肠道屏障功能与蠕动功能的作用机制[D]. 博士学位论文. 南昌: 南昌大学, 2021. LI J J. The mechanism of isoflavones in regulating intestinal barrier function and peristaltic function[D]. Ph. D. Thesis. Nanchang: Nanchang University, 2021. (in Chinese) |
[52] |
WU M J, YI D, ZHANG Q, et al. Puerarin enhances intestinal function in piglets infected with porcine epidemic diarrhea virus[J]. Scientific Reports, 2021, 11(1): 6552. DOI:10.1038/s41598-021-85880-5 |
[53] |
王芳芳, 武洪志, 刁华杰, 等. 王不留行黄酮苷和葛根异黄酮对哺乳母猪泌乳性能及血清激素和抗氧化指标的影响[J]. 动物营养学报, 2016, 28(12): 257-267. WANG F F, WU H Z, DIAO H J, et al. Effects of vaccarin and puerain on lactation performance, serum hormone and antioxidant indexes of lactating sows[J]. Chinese Journal of Animal Nutrition, 2016, 28(12): 257-267 (in Chinese). |
[54] |
吕香州, 魏铭宏, 吴思惠, 等. 葛根素对松辽黑猪前体脂肪细胞成脂分化的影响[J]. 中国畜牧兽医, 2021, 48(12): 4422-4428. LV X Z, WEI M H, WU S H, et al. Effect of puerarin on adipogenic differentiation of preadipocytes in Songliao black pig[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(12): 4422-4428 (in Chinese). |
[55] |
PENG T, SHANG H L, YANG M R, et al. Puerarin improved growth performance and postmortem meat quality by regulating lipid metabolism of cattle under hot environment[J]. Animal Science Journal, 2021, 92(1): e13543. |
[56] |
CHEN H, PENG T, SHANG H L, et al. RNA-seq analysis reveals the potential molecular mechanisms of puerarin on intramuscular fat deposition in heat-stressed beef cattle[J]. Frontiers in Nutrition, 2022, 9: 817557. |
[57] |
云巾宴, 于永生, 曹阳, 等. 葛根素对延黄牛原代脂肪细胞分化的影响[J]. 吉林农业大学学报, 2018, 40(2): 223-228. YUN J Y, YU Y S, CAO Y, et al. Effects of puerarin on differentiation of primary bovine adipocytes[J]. Journal of Jilin Agricultural University, 2018, 40(2): 223-228 (in Chinese). |
[58] |
聂春桃, 尚相龙, 杨梓曼, 等. 不同水平葛根素对肉牛瘤胃体外发酵指标及养分降解率的影响[J]. 江西农业大学学报, 2021, 43(6): 1381-1387. NIE C T, SHANG X L, YANG Z M, et al. Effects of puerarian at different levels on rumen fermentation indices and nutrient degradability of beef cattle in vitro[J]. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(6): 1381-1387 (in Chinese). |
[59] |
尚含乐, 宋小珍, 刘博, 等. 葛根素对夏季高温条件下肉牛生产性能及血液生化指标的影响[J]. 江西农业大学学报, 2018, 40(4): 803-809. SHANG H L, SONG X Z, LIU B, et al. Effects of puerarin on production performance and blood biochemical indexes of beef cattle under hot environment[J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(4): 803-809 (in Chinese). |
[60] |
胡亦清, 郭贝贝, 杨明睿, 等. 植物多糖和葛根素对舍饲山羊生产性能、血清生化指标和肉品质的影响[J]. 动物营养学报, 2020, 32(12): 5788-5794. HU Y Q, GUO B B, YANG M R, et al. Effects of plant polysaccharide and puerarin on growth performance, serum biochemical indices and meat quality of captive goats[J]. Chinese Journal of Animal Nutrition, 2020, 32(12): 5788-5794 (in Chinese). |
[61] |
汪纪仓, 孙真真, 李思涵, 等. 葛根素对肉鸡生长性能、屠宰性能、肉品质、免疫器官指数及血清抗氧化指标的影响[J]. 黑龙江畜牧兽医, 2020(17): 115-120. WANG J C, SUN Z Z, LI S H, et al. Effects of puerarin on growth performance, slaughter performance, meat quality, immune organ index and serum antioxidant indexes of broilers[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(17): 115-120 (in Chinese). |
[62] |
张丽娟, 马志鹏, 张敏, 等. 葛根素和复合植物精油对肉鸡生长性能、血清生化指标和肠道形态的影响[J]. 饲料工业, 2021, 42(14): 14-19. ZHANG L J, MA Z P, ZHANG M, et al. Effects of puerarin and compound plant essential oil on growth performance, serum biochemical indices and intestinal morphology of broiler chickens[J]. Feed Industry, 2021, 42(14): 14-19 (in Chinese). |
[63] |
马志鹏. 饲料中添加不同添加剂对白羽肉鸡的生长性能、血清生化指标影响的研究[D]. 硕士学位论文. 武汉: 武汉轻工大学, 2020. MA Z P. Effects of different nutrients added in feed on growth performance and serum biochemical indexes of white feather broilers[D]. Master's Thesis. Wuhan: Wuhan Polytechnic University, 2020. (in Chinese) |
[64] |
余应梅, 施璇, 欧阳经鑫, 等. 葛根素对饲喂氧化大豆油肉鸡小肠黏膜屏障功能及抗氧化能力的影响[J]. 畜牧兽医学报, 2021, 52(12): 3512-3523. YU Y M, SHI X, OUYANG J X, et al. Effects of puerarin on intestinal barrier function and antioxidant capacity of broilers fed with oxidized soybean oil[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3512-3523 (in Chinese). |
[65] |
NIU L M, LUO R L, ZOU M Y, et al. Puerarin inhibits Mycoplasma gallisepticum (MG-HS)-induced inflammation and apoptosis via suppressing the TLR6/MyD88/NF-κB signal pathway in chicken[J]. International Immunopharmacology, 2020, 88: 106993. |
[66] |
WAQAS M, QAMAR H, ZHANG J L, et al. Puerarin enhance vascular proliferation and halt apoptosis in thiram-induced avian tibial dyschondroplasia by regulating HIF-1α, TIMP-3 and BCL-2 expressions[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110126. |
[67] |
刘瑞玲. 异黄酮对樱桃谷鸭生长性能、屠宰性能及脂肪代谢的影响[D]. 硕士学位论文. 兰州: 甘肃农业大学, 2006. LIU R L. Effect of the isoflavones on the growth performance and slaughter performance and lipid metabolism of cherry valley duck[D]. Master's Thesis. Lanzhou: Gansu Agricultural University, 2006. (in Chinese) |
[68] |
田青. 葛根素对21日龄樱桃谷鸭钙磷代谢的影响[J]. 养殖与饲料, 2008(6): 5-8. TIAN Q. Effects of puerarin on calcium and phosphorus metabolism of 21 day old Cherry Valley ducks[J]. Animals Breeding and Feed, 2008(6): 5-8 (in Chinese). |
[69] |
武彩红, 邱树磊, 刘剑华, 等. 日粮中添加复方中药对母猪免疫和仔猪腹泻的影响[J]. 中国饲料, 2021(18): 33-36. WU C H, QIU S L, LIU J H, et al. Effect of dietary supplementation with compound traditional Chinese medicine on the immune function of sows and diarrhea of piglets[J]. China Feed, 2021(18): 33-36 (in Chinese). |
[70] |
刘智慧. 仔猪腹泻的辨证论治及泰山磐石散饲喂母猪对仔猪腹泻的影响[D]. 硕士学位论文. 哈尔滨: 东北农业大学, 2020. LIU Z H. The syndrome differentiation and treatment of piglet diarrhea and effects of Taishan Panshi powder feeding sow on piglet diarrhea[D]. Master's Thesis. Harbin: Northeast Agricultural University, 2020. (in Chinese) |