琥珀酸,又名丁二酸,是所有需氧生物中三羧酸循环(TCA)的代谢中间体。琥珀酸也是肠道中微生物丙酸合成的关键中间体,是肠道中重要的微生物代谢物[1]。研究表明,肠道菌群也会产生一定数量的琥珀酸[2]。在肠腔中,琥珀酸积累的程度比单链脂肪酸小,单链脂肪酸的浓度通常在1~3 mmol/L(或mmol/kg),但根据物种和样本类型的不同而不同[3]。之前研究认为,微生物产生的琥珀酸会继续被转化为丙酸,积累浓度会很少[4],但饲喂添加琥珀酸饲粮,小鼠盲肠琥珀酸浓度显著升高[5]。
1 琥珀酸对肉质性状的影响肌纤维类型与肌内脂肪是影响肉质性状的重要因素。肌纤维类型影响肉的嫩度、肌内脂肪含量和系水力[6]。肌内脂肪的含量与组成很大程度上决定肉的色泽、嫩度、多汁性和风味[7-8]。研究发现,微生物代谢产生的琥珀酸在单胃动物肌纤维转化过程中发挥重要信号作用[9]。
琥珀酸可通过细胞膜上G蛋白偶联受体91(G-protein-coupled receptor 91,GPR91)诱导细胞内钙离子(Ca2+)浓度升高[10]。胞内Ca2+在肌肉的生长发育、类型转化上起重要作用,是骨骼肌中活化细胞外信号调节激酶1/2(extracellular signal-regulated kinase 1/2,ERK1/2)和促进肌管分化和蛋白合成的重要第二信使[11-12]。Ca2+信号变化对肌肉前体细胞成肌成脂分化过程具有重要调控作用[9]。在小鼠上研究发现,琥珀酸对调控鼠骨骼肌肌纤维类型具有重要调节作用,进而改变肌肉的嫩度[6]。Wang等[13]研究表明,在肌纤维类型转化过程中,琥珀酸经过细胞膜受体GPR91诱导激活磷脂酶-Cβ(phospholipase-Cβ,PLC-β),进而产生1,4,5-三磷酸肌醇(inositol 1, 4, 5-triphosphate,IP3)和二酰基甘油(diacylglycerol,DG)2个第二信使,导致胞内Ca2+浓度增加,进而激活Ca2+/NFAT(细胞核因子)通路,调控肌球蛋白重链(myosin heavy chain,MyHC)的基因表达从而影响肌纤维类型。
研究表明,琥珀酸通过作用于糖异生途径促进肠道葡萄糖异生,提高肝糖原生成[14-16]。在动物机体组织中,琥珀酸通过三羧酸循环变成草酰乙酸,然后在磷酸烯醇式丙酮酸、果糖-1,6-二磷酸酶等作用下异生为葡萄糖,琥珀酸通过糖异生途径,增加肌肉细胞的葡萄糖含量。目前在小鼠和猪的琥珀酸营养研究报道中,添加1%琥珀酸显著降低猪肉滴水损失并且可以通过促进骨骼肌的蛋白合成促进肌肉生长[10];2 mmol/L琥珀酸处理的小鼠C2C12细胞中Ⅰ型和Ⅱa型肌球蛋白重链蛋白表达提高并指出琥珀酸可通过其重要受体GPR91调控小鼠骨骼肌肌纤维类型转变[6]。在鱼上的研究表明,0.15%琥珀酸添加量促使其肌肉脂肪合成相关乙酰辅酶A羧化酶(acetyl-CoA carboxylase,ACC)和脂肪酸合成酶(fatty acid synthase,FAS)基因表达分别上调89.7%和2.2倍[17]。但关于琥珀酸对反刍动物体组织肌内脂肪沉积的研究鲜见报道。
2 琥珀酸对免疫反应的影响近年来,人们已经发现在巨噬细胞中琥珀酸可以活化炎症因子的表达,并促进炎症反应,另外琥珀酸不仅是呼吸链代谢的基质,同时也是炎症、低氧、代谢等信号传递中的“信号分子”,并且可能作为生物标志物在炎症和代谢紊乱中发挥作用[18]。一些研究已经证明琥珀酸在调节肠道炎症和免疫中起着至关重要的作用[19-21]。琥珀酸可在炎性组织中聚集,其作用机制是通过介导促炎细胞因子的表达来调节肠道炎症和纤维化[20]。
2.1 炎症中琥珀酸的信号调节机制琥珀酸可激活巨噬细胞中的缺氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α),并通过琥珀酸受体1(succinate receptor 1,SUCNR1)刺激树突细胞(dendritic cell,DC)[22]。琥珀酸通过介导炎症信号的传递在炎症反应中发挥作用[23]。
2.1.1 琥珀酸和HIF-1α琥珀酸在低氧条件下积聚在细胞内,是对缺氧的代谢特征反应[3]。在缺氧反应中,HIF-1α作为关键传感器起着调控细胞反应的作用,以适应缺氧的条件。在常氧条件下,HIF-1α通过蛋白翻译后的羟基化或者靶向蛋白质经过脯氨酰羟化酶(prolyl hydroxylase domain,PHD)作用后降解2种途径来调节[23]。PHD是依赖氧的,因此氧气浓度降低会阻止HIF-1α的羟基化,并且增强了HIF-1α依赖性基因的表达,使得磷酸戊糖途径激活和ATP快速生成,导致HIF-1α的稳定和活化,这些变化也增加了细胞的生物合成能力[24]。此外,由于PHD脱羟基反应将氧气和α-酮戊二酸转化为琥珀酸和二氧化碳,高水平的琥珀酸可以通过抑制其产物来减缓PHD降解[25]。已有文献报道,琥珀酸能直接抑制巨噬细胞中PHD活性,稳定HIF-1α[26]。巨噬细胞被革兰氏阴性菌分泌的脂多糖(lipopolysaccharide,LPS)激活后,能够增加琥珀酸的含量[27]。通过LPS的刺激,巨噬细胞中三羧酸循环被破坏后,谷氨酰胺合成酶导致向M2极化的巨噬细胞偏向M1表型,其特征是细胞内谷氨酰胺减少和琥珀酸增加[28],另外琥珀酸还可以γ-氨基丁酸(gamma-aminobutyric acid,GABA)分流途径产生,GABA渗透酶将GABA分流与三羧酸循环连接起来,导致琥珀酸的积累[29]。LPS刺激下这2种回补途径均被加强,使琥珀酸增多从而稳定HIF-1α,其下游靶基因表达量也增多以及蛋白的琥珀酰化增加[30]。HIF-1α在肠上皮细胞的炎症反应中被认为是通过提高上皮屏障的作用,降低上皮细胞的凋亡,从而减轻肠道的炎症[31]。因此,免疫疾病的固有免疫反应引发的炎症,可以通过作为炎症信号的琥珀酸得到更好的认识。
细胞内琥珀酸通过氧化途径增加活性氧(reactive oxygen species,ROS)的生成和蓄积[32],ROS产生和相关代谢途径的改变可以导致促炎巨噬细胞比静息巨噬细胞更具糖酵解性,从而产生更多的ROS并且积累更多的琥珀酸[33]。琥珀酸脱氢酶(succinate dehydrogenase,SDH)是一种参与琥珀酸代谢相关途径的酶,其突变亦可影响炎症过程[27]。研究表明,通过药理学(可将琥珀酸转化为富马酸的酶)或者经SDHB的RNA干扰抑制SDH的远端亚基,增加常氧中ROS的产生,以ROS依赖性方式来稳定HIF-1α,并在体外和体内增加生长速率,而不影响缺氧介导的HIF-1α活化[34]。另外,HIF-1α活性受PHD辅助因子铁离子(Fe2+)的影响,由于Fe2+对氧分子亲和力低,会使HIF-1α稳定并活化,但ROS可将Fe2+氧化成Fe3+,导致HIF-1α的稳定化受到影响[35]。因此,琥珀酸可以通过直接抑制PHD或诱导ROS 2种途径来稳定HIF-1α。
2.1.2 琥珀酸和SUCNR1信号GPR91,也叫SUCNR1,琥珀酸通过作用于细胞膜上SUCNR1从而引起一系列炎症反应[36]。琥珀酸通过其同源受体SUCNR1感测,以细胞和组织依赖性方式激活各种信号通路,具有多种功能效应[37]。SUCNR1在各种细胞和组织中广泛表达,包括巨噬细胞、DC、小肠和大肠、肾脏、肝脏和脂肪组织[38-39]。琥珀酸与细胞中的SUCNRl结合后,由SUCNR1触发的信号包括Gα蛋白亚基(Gα protein subunit)Gαi和Gαq介导的通路,Gαi介导的通路通过腺苷酸环化酶(adenylate cyclase,AC)导致环状磷酸腺苷(cyclic adenosine monophosphate,cAMP)抑制,Gαq导致蛋白激酶C(protein kinase C,PKC)和丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)磷酸化和钙的动员[40]。另外,琥珀酸刺激SUCNR1也会导致一氧化氮和前列腺素(E2)的产生[22],其通过分泌E2和清除细胞外琥珀酸来缓解炎症[41]。
早期研究表明,琥珀酸与Toll样受体(Toll-like receptors,TLRs)协同作用并与SUCNR1联合能促进骨髓细胞中的炎症反应[3]。SUCNR1结合琥珀酸后,可以增强肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)和促炎细胞因子中白细胞介素(interleukin,IL)-1β的表达和释放[42]。琥珀酸也能在细胞外聚集并通过自分泌和旁分泌方式活化SUCNR1,从而促进IL-1β的生成并加重炎症[43]。TLR在非特异性免疫中起着关键作用,琥珀酸与TLR3或TLR7的不同信号通路中具有协同效应,可以通过ERK1/2磷酸化促进细胞因子的生成[44],TLR能识别外来的物质,并能刺激机体产生对免疫细胞的应答。
SUCNR1是介导琥珀酸刺激活性所需的唯一受体,并且SUCNR1必须在DC上表达来发挥这些免疫调节作用。经过琥珀酸处理后,DC能在迁移到淋巴结的过程中,整合抗原和琥珀酸介导的信号,成为有效的抗原呈递细胞[45]。另外,琥珀酸直接诱导DC的趋化性,并与TLR配体协同作用,诱导TNF-α的产生和表达增加[45]。活化的DC分泌各种细胞因子和炎性趋化因子,并上调参与T细胞活化的刺激受体[46]。琥珀酸还可以增强T细胞的抗原驱动反应,这些效应依赖于DC上的SUCNR1表达,因为琥珀酸对DC的T细胞增殖、TNF-α和干扰素-γ(interferon-gamma,IFN-γ)的生成具有一定的剂量依赖性[45]。这些研究证实了在细胞增强抗原递呈功能中琥珀酸的信号传导是必需的。
2.2 琥珀酸对肠道炎症细胞因子的影响肠上皮完整性与免疫反应有关。先前的研究表明,琥珀酸不仅通过激活DC和巨噬细胞来增强Ⅰ型免疫力,而且还通过刺激肠道簇状细胞来启动Ⅱ型免疫反应[21]。调节肠道炎症作用中包括琥珀酸对体内和体外肠道炎症细胞因子的影响。
2.2.1 体内试验炎症细胞因子的影响猪饲粮添加1%琥珀酸后空肠中的mRNA表达和IL-25及其IL-10蛋白浓度更高[47]。IL-25主要由小鼠肠道黏膜CD4+T细胞产生[48]。此外,小肠中的IL-25也由簇状细胞产生,并激活Ⅱ型先天淋巴细胞(ILC2s)以分泌IL-13,从而引发Ⅱ型免疫反应,包括杯状和簇状细胞增生[49]。研究表明,饲粮中添加琥珀酸能明显促进IL-25的表达,并能诱发空肠Ⅱ型免疫[20]。IL-10作为抗炎细胞因子,可以促进Ⅱ型反应组织修复,主要是由肠道免疫细胞大量产生,包括DC、巨噬细胞、自然杀伤(natural killer,NK)细胞、嗜中性粒细胞和CD4+T细胞[50]。不同的是,在目前的研究中尽管琥珀酸已被证明可以增强骨髓源性巨噬细胞炎症期间IL-1β的产生,但补充琥珀酸并不影响猪空肠中的IL-1β表达[23]。1%的琥珀酸可以通过IL-8的mRNA表达和蛋白质分泌的上调来引起炎症反应,肠上皮细胞分泌的IL-8在中性粒细胞募集中具有重要作用[51]。同样,丁酸也被证明可以在猪小肠上皮细胞(intestinal porcine epithelial cells,IPEC-J2)中诱导IL-8分泌[52]。研究也指出,饲粮添加1%琥珀酸钠可增加空肠中IL-25、IL-10、IL-8和IL-18的mRNA表达水平[47],抗炎和促炎细胞因子水平升高,说明琥珀酸具有促进肠道免疫功能的作用。琥珀酸对炎症细胞因子的调节说明其可以通过激活免疫反应来增强肠道免疫功能。
2.2.2 体外试验炎症细胞因子的影响在体外,琥珀酸处理不影响IL-10的表达,但对IL-18、IL-8和IL-6的表达有一定促进作用。Th(T helper)细胞是一种辅助性细胞,IL-6作为炎性细胞因子参与Th17细胞的发育[53]。研究表明,IL-6在上皮内淋巴细胞中能促进肠道上皮细胞的增生,并能促进黏膜的修复[54]。IL-18在用200和300 mmol/L醋酸处理的无特异性病原体(specific-pathogen-free,SPF)小鼠中增加,有助于维持肠上皮完整性,修复和肠道稳态[55]。肠道中琥珀酸是丙酸的前体物质。研究表明,丙酸上调了肠道中IL-18的表达[56]。短链脂肪酸(short-chain fatty acids, SCFA)在小肠形态和功能方面发挥重要作用[57],尤其是丁酸盐,通过增加IPEC-J2和结直肠腺癌细胞(colorectal adenocarcinoma cells,Caco-2)的跨膜电阻值(trans-epithelial electrical resistance, TEER)来促进上皮完整性[58],丁酸可以在这2种细胞中诱导IL-8的分泌[52]。体外试验中,5 mmol/L琥珀酸可通过IPEC-J2细胞中的TEER来降低其通透性,在体内1%琥珀酸促进了闭锁小带蛋白(ZO)-1和ZO-2的表达[47]。紧密连接蛋白对调节肠上皮通透性具有关键作用,严重的炎症可以使Caco-2细胞中ZO-2表达下调从而导致上皮功能受损[59]。而TEER增加可归因于ZO-1和ZO-2的上调[47]。琥珀酸对紧密连接蛋白的上调和对炎症细胞因子的调节增加表明琥珀酸促进了肠道上皮细胞的紧密完整性。另外研究指出,肠道免疫可以通过琥珀酸同源受体GPR91来调节[19],相关研究亦证明饲粮添加琥珀酸后GPR91的mRNA水平和蛋白浓度在猪空肠显著增加[47],这可能也是导致体内外试验结果不同的原因之一。
3 小结肉品质是动物生产中的重要组成部分,肌纤维类型和肌内脂肪含量在改善肉质性状中起关键作用。因此,了解肌纤维对肉质的影响及琥珀酸对肌纤维的影响和机制,可以为动物肉质调控提供相关理论依据,具有实际意义,但琥珀酸对肌内脂肪的影响仍需进一步研究。近年来,琥珀酸在免疫代谢和炎症反应中的作用也愈加重要,至于体外试验的结果不能完全与体内试验结果一致,研究目前尚待深入,才能获得肯定的结论。琥珀酸作为一个新研究领域,在开发上仍然存在许多限制,不能全面了解这些代谢物在动物体内的作用,是否能广泛运用于动物生产有待进一步探讨。
[1] |
REICHARDT N, DUNCAN S H, YOUNG P, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota[J]. The ISME Journal, 2014, 8(6): 1323-1335. DOI:10.1038/ismej.2014.14 |
[2] |
DE VADDER F, MITHIEUX G. Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate[J]. Journal of Endocrinology, 2018, 236(2): R105-R108. DOI:10.1530/JOE-17-0542 |
[3] |
CONNORS J, DAWE N, VAN LIMBERGEN J. The role of succinate in the regulation of intestinal inflammation[J]. Nutrients, 2018, 11(1): 25. DOI:10.3390/nu11010025 |
[4] |
CUMMINGS J H, POMARE E W, BRANCH W J, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J]. Gut, 1987, 28(10): 1221-1227. DOI:10.1136/gut.28.10.1221 |
[5] |
DE VADDER F, KOVATCHEVA-DATCHARY P, ZITOUN C, et al. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis[J]. Cell Metabolism, 2016, 24(1): 151-157. DOI:10.1016/j.cmet.2016.06.013 |
[6] |
徐亚琼. 琥珀酸通过GPR91调控骨骼肌有氧氧化和肌纤维类型的转变[D]. 硕士学位论文. 广州: 华南农业大学, 2017. XU Y Q. GPR91 mediates succinate regulation of skeletal muscle oxidative metabolism and muscle fiber type switch[D]. Master's Thesis. Guangzhou: South China Agricultural University, 2017. (in Chinese) |
[7] |
ZAPPATERRA M, DESERTI M, MAZZA R, et al. A gene and protein expression study on four porcine genes related to intramuscular fat deposition[J]. Meat Science, 2016, 121: 27-32. DOI:10.1016/j.meatsci.2016.05.007 |
[8] |
OKEUDO N J, MOSS B W. Interrelationships amongst carcass and meat quality characteristics of sheep[J]. Meat Science, 2005, 69(1): 1-8. DOI:10.1016/j.meatsci.2004.04.011 |
[9] |
邱凯. 胞内钙离子平衡与骨骼肌前体细胞成肌成脂分化的关系研究[D]. 博士学位论文. 北京: 中国农业大学, 2018. QIU K. Studies on the relationship between intracellular calcium ion homeostasis and the myogenic or adipogenic differentiation of precursors in skeletal muscle[D]. Ph. D. Thesis. Beijing: China Agricultural University, 2018. (in Chinese) |
[10] |
梁冰清. 琥珀酸对肌肉生长和猪肉品质的影响[D]. 硕士学位论文. 广州: 华南农业大学, 2018. LIANG B Q. Effects of succinate on muscle growth and pork quality[D]. Master's Thesis. Guangzhou: South China Agricultural University, 2018. (in Chinese) |
[11] |
ESPINOSA A, LEIVA A, PEÑA M, et al. Myotube depolarization generates reactive oxygen species through NAD(P)H oxidase; ROS-elicited Ca2+ stimulates ERK, CREB, early genes[J]. Journal of Cellular Physiology, 2006, 209(2): 379-388. DOI:10.1002/jcp.20745 |
[12] |
MAY C, WEIGL L, KAREL A, et al. Extracellular ATP activates ERK1/ERK2 via a metabotropic P2Y1 receptor in a Ca2+ independent manner in differentiated human skeletal muscle cells[J]. Biochemical Pharmacology, 2006, 71(10): 1497-1509. DOI:10.1016/j.bcp.2006.02.003 |
[13] |
WANG T, XU Y Q, YUAN Y X, et al. Succinate induces skeletal muscle fiber remodeling via SUCNR1 signaling[J]. EMBO Reports, 2021, 22(6): e53027. |
[14] |
WANG K, LIAO M F, ZHOU N, et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids[J]. Cell Reports, 2019, 26(1): 222-235. e5. DOI:10.1016/j.celrep.2018.12.028 |
[15] |
KOVATCHEVA-DATCHARY P, NILSSON A, AKRAMI R, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella[J]. Cell Metabolism, 2015, 22(6): 971-982. DOI:10.1016/j.cmet.2015.10.001 |
[16] |
PURUSHE J, FOUTS D E, MORRISON M, et al. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche[J]. Microbial Ecology, 2010, 60(4): 721-729. DOI:10.1007/s00248-010-9692-8 |
[17] |
鲁程瑶. 饲源性琥珀酸钠影响鱼类糖稳态及营养代谢的研究[D]. 硕士学位论文. 北京: 中国农业科学院, 2018. LU C Y. Effects of dietary sodium succinate on glucose homeostasis and nutritional metabolism of fish[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese) |
[18] |
曾严, 危当恒, 曾高峰. 琥珀酸与动脉粥样硬化的研究进展[J]. 中国动脉硬化杂志, 2022, 30(1): 83-87. ZENG Y, WEI D H, ZENG G F. Research progress of succinate and atherosclerosis[J]. Chinese Journal of Arteriosclerosis, 2022, 30(1): 83-87 (in Chinese). |
[19] |
MACIAS-CEJA D C, ORTIZ-MASIÁ D, SALVADOR P, et al. Succinate receptor mediates intestinal inflammation and fibrosis[J]. Mucosal Immunology, 2019, 12(1): 178-187. DOI:10.1038/s41385-018-0087-3 |
[20] |
LEI W W, REN W W, OHMOTO M, et al. Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(21): 5552-5557. DOI:10.1073/pnas.1720758115 |
[21] |
NADJSOMBATI M S, MCGINTY J W, LYONS-COHEN M R, et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit[J]. Immunity, 2018, 49(1): 33-41. e7. DOI:10.1016/j.immuni.2018.06.016 |
[22] |
陈蓉, 曹玉敏, 郁鑫鑫, 等. 琥珀酸在免疫代谢中的研究进展[J]. 临床医药文献电子杂志, 2018, 5(42): 194-195. CHEN R, CAO Y M, YU X X, et al. The research progress of succinate in immunometabolism[J]. Journal of Clinical Medical Literature (Electronic Edition), 2018, 5(42): 194-195 (in Chinese). DOI:10.3877/j.issn.2095-8242.2018.42.111 |
[23] |
TANNAHILL G M, CURTIS A M, ADAMIK J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α[J]. Nature, 2013, 496(7444): 238-242. DOI:10.1038/nature11986 |
[24] |
TANNAHILL G M, O'NEILL L A J. The emerging role of metabolic regulation in the functioning of Toll-like receptors and the NOD-like receptor Nlrp3[J]. FEBS Letters, 2011, 585(11): 1568-1572. DOI:10.1016/j.febslet.2011.05.008 |
[25] |
DENKO N C. Hypoxia, HIF1 and glucose metabolism in the solid tumour[J]. Nature Reviews Cancer, 2008, 8(9): 705-713. DOI:10.1038/nrc2468 |
[26] |
CHU H X, JONES N M. Changes in hypoxia-inducible factor-1 (HIF-1) and regulatory prolyl hydroxylase (PHD) enzymes following hypoxic-ischemic injury in the neonatal rat[J]. Neurochemical Research, 2016, 41(3): 515-522. DOI:10.1007/s11064-015-1641-y |
[27] |
LAMY C, MANSARD C, BLONDEL L, et al. Quantification of succinic acid levels, linked to succinate dehydrogenase (SDH) dysfunctions, by an automated and fully validated liquid chromatography tandem mass spectrometry method suitable for multi-matrix applications[J]. Journal of Chromatography B, 2022, 1189: 123085. DOI:10.1016/j.jchromb.2021.123085 |
[28] |
PALMIERI E M, MENGA A, MARTÍN-PÉREZ R, et al. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis[J]. Cell Reports, 2017, 20(7): 1654-1666. DOI:10.1016/j.celrep.2017.07.054 |
[29] |
NEHELA Y, KILLINY N. 'Candidatus Liberibacter asiaticus' and its vector, Diaphorina citri, augment the tricarboxylic acid cycle of their host via the γ-aminobutyric acid shunt and polyamines pathway[J]. Molecular Plant-Microbe Interactions, 2019, 32(4): 413-427. DOI:10.1094/MPMI-09-18-0238-R |
[30] |
吕思霖. 琥珀酸盐通过激活HIF-1α诱导IL-1β分泌促进炎症[J]. 生理科学进展, 2013, 44(6): 478. LYU S L. Succinate promotes inflammation by activating HIF-1α and inducing IL-1β secretion[J]. Progress in Physiological Sciences, 2013, 44(6): 478 (in Chinese). |
[31] |
COLGAN S P, TAYLOR C T. Hypoxia: an alarm signal during intestinal inflammation[J]. Nature Reviews Gastroenterology & Hepatology, 2010, 7(5): 281-287. |
[32] |
章舒蕾, 梁亚敏, 罗涔方, 等. 琥珀酸通过活性氧途径诱导人脐静脉内皮细胞焦亡[J]. 中国动脉硬化杂志, 2021, 29(1): 42-47. ZHANG S L, LIANG Y M, LUO C F, et al. Succinate induces pyroptosis of human umbilical vein endothelial cells via reactive oxygen species pathway[J]. Chinese Journal of Arteriosclerosis, 2021, 29(1): 42-47 (in Chinese). |
[33] |
O'NEILL L A J, PEARCE E J. Immunometabolism governs dendritic cell and macrophage function[J]. Journal of Experimental Medicine, 2016, 213(1): 15-23. DOI:10.1084/jem.20151570 |
[34] |
GUZY R D, SHARMA B, BELL E, et al. Loss of the SdhB, but not the SdhA, subunit of complex Ⅱ triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis[J]. Molecular and Cellular Biology, 2008, 28(2): 718-731. DOI:10.1128/MCB.01338-07 |
[35] |
KIETZMANN T, GÖRLACH A. Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression[J]. Seminars in Cell & Developmental Biology, 2005, 16(4/5): 474-486. |
[36] |
汪涛, 孙新, 李玲. 琥珀酸在M1型巨噬细胞中积累及其信号传递研究进展[J]. 中南药学, 2020, 18(11): 1858-1862. WANG T, SUN X, LI L. Research progress of succinic acid accumulation and signaling in M1 macrophages[J]. Central South Pharmacy, 2020, 18(11): 1858-1862 (in Chinese). |
[37] |
FERNÁNDEZ-VELEDO S, CEPERUELO-MALLAFRÉ V, VENDRELL J. Rethinking succinate: an unexpected hormone-like metabolite in energy homeostasis[J]. Trends in Endocrinology and Metabolism, 2021, 32(9): 680-692. DOI:10.1016/j.tem.2021.06.003 |
[38] |
DIEHL J, GRIES B, PFEIL U, et al. Expression and localization of GPR91 and GPR99 in murine organs[J]. Cell and Tissue Research, 2016, 364(2): 245-262. DOI:10.1007/s00441-015-2318-1 |
[39] |
HE W H, MIAO F J P, LIN D C H, et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors[J]. Nature, 2004, 429(6988): 188-193. DOI:10.1038/nature02488 |
[40] |
GILISSEN J, JOURET F, PIROTTE B, et al. Insight into SUCNR1 (GPR91) structure and function[J]. Pharmacology & Therapeutics, 2016, 159: 56-65. |
[41] |
PERUZZOTTI-JAMETTI L, BERNSTOCK J D, VICARIO N, et al. Macrophage-derived extracellular succinate licenses neural stem cells to suppress chronic neuroinflammation[J]. Cell Stem Cell, 2018, 22(3): 355-368. e13. DOI:10.1016/j.stem.2018.01.020 |
[42] |
LI L, DONG Y L, LIU T, et al. Increased succinate receptor GPR91 involved in the pathogenesis of Mooren's ulcer[J]. International Journal of Ophthalmology, 2018, 11(11): 1733-1740. |
[43] |
LITTLEWOOD-EVANS A, SARRET S, APFEL V, et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis[J]. Journal of Experimental Medicine, 2016, 213(9): 1655-1662. DOI:10.1084/jem.20160061 |
[44] |
SARAIVA A L, VERAS F P, PERES R S, et al. Succinate receptor deficiency attenuates arthritis by reducing dendritic cell traffic and expansion of Th17 cells in the lymph nodes[J]. The FASEB Journal, 2018, 32(12): 6550-6558. DOI:10.1096/fj.201800285 |
[45] |
RUBIC T, LAMETSCHWANDTNER G, JOST S, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity[J]. Nature Immunology, 2008, 9(11): 1261-1269. DOI:10.1038/ni.1657 |
[46] |
SALLUSTO F, SCHAERLI P, LOETSCHER P, et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation[J]. European Journal of Immunology, 1998, 28(9): 2760-2769. DOI:10.1002/(SICI)1521-4141(199809)28:09<2760::AID-IMMU2760>3.0.CO;2-N |
[47] |
LI X, MAO M Y, ZHANG Y N, et al. Succinate modulates intestinal barrier function and inflammation response in pigs[J]. Biomolecules, 2019, 9(9): 486. |
[48] |
OWYANG A M, ZAPH C, WILSON E H, et al. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract[J]. Journal of Experimental Medicine, 2006, 203(4): 843-849. |
[49] |
GERBE F, SIDOT E, SMYTH D J, et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites[J]. Nature, 2016, 529(7585): 226-230. |
[50] |
SARAIVA M, O'GARRA A. The regulation of IL-10 production by immune cells[J]. Nature Reviews Immunology, 2010, 10(3): 170-181. |
[51] |
FUSUNYAN R D, QUINN J J, OHNO Y, et al. Butyrate enhances interleukin (IL)-8 secretion by intestinal epithelial cells in response to IL-1β and lipopolysaccharide[J]. Pediatric Research, 1998, 43(1): 84-90. |
[52] |
KLINGSPOR S, BONDZIO A, MARTENS H, et al. Enterococcus faecium NCIMB 10415 modulates epithelial integrity, heat shock protein, and proinflammatory cytokine response in intestinal cells[J]. Mediators of Inflammation, 2015, 2015: 304149. |
[53] |
PARK H, LI Z X, YANG X X O, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nature Immunology, 2005, 6(11): 1133-1141. |
[54] |
KUHN K A, MANIERI N A, LIU T C, et al. IL-6 stimulates intestinal epithelial proliferation and repair after injury[J]. PLoS One, 2014, 9(12): e114195. |
[55] |
MACIA L, TAN J, VIEIRA A T, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J]. Nature Communications, 2015, 6(1): 6734. |
[56] |
ZHANG Y N, YU K F, CHEN H Z, et al. Caecal infusion of the short-chain fatty acid propionate affects the microbiota and expression of inflammatory cytokines in the colon in a fistula pig model[J]. Microbial Biotechnology, 2018, 11(5): 859-868. |
[57] |
DIAO H, JIAO A R, YU B, et al. Gastric infusion of short-chain fatty acids can improve intestinal barrier function in weaned piglets[J]. Genes & Nutrition, 2019, 14: 4. |
[58] |
YAN H, AJUWON K M. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway[J]. PLoS One, 2017, 12(6): e0179586. |
[59] |
PICHE T, BARBARA G, AUBERT P, et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators[J]. Gut, 2009, 58(2): 196-201. |