动物营养学报    2022, Vol. 34 Issue (12): 7616-7627    PDF    
屎肠球菌对仔猪小肠紧密连接蛋白、细胞因子应答以及Toll样受体基因表达的影响
崔百磊1,2 , 王丽2 , 郭乾鹏1 , 黄怡1 , 胡胜兰2     
1. 广西大学动物科学技术学院, 南宁 530004;
2. 广东省农业科学院动物科学研究所, 畜禽育种国家重点实验室, 农业农村部华南动物营养与饲料重点实验室, 广东省畜禽育种与营养研究重点实验室, 岭南现代农业科学与技术广东省实验室茂名分中心, 广州 510640
摘要: 本研究旨在比较屎肠球菌活菌和灭活菌对仔猪小肠紧密连接蛋白、细胞因子应答以及Toll样受体(TLR)基因表达的影响。试验选用健康的杜×长×大新生仔猪9窝,窝产仔数10~11头,随机分为对照组(CON组)、屎肠球菌活菌组(LB组)和屎肠球菌灭活菌组(HB组),每组3窝仔猪。从出生开始至6日龄,CON组、LB组和HB组仔猪分别经口灌服无菌脱脂乳、含屎肠球菌活菌(1×108 CFU/mL)的脱脂乳和含屎肠球菌灭活菌(1×108 CFU/mL)的脱脂乳,口服剂量为10 mL/(头·d)。仔猪于7日龄开始饲喂教槽料,21日龄断奶,并分别于这2个日龄从每窝中选出1头接近平均体重的仔猪屠宰取样,检测小肠黏膜紧密连接蛋白和细胞因子应答基因表达及分泌量,以及Toll样受体基因的表达。结果表明:1)与CON组相比,LB组7日龄仔猪空肠黏膜闭锁小带蛋白-1(ZO-1)基因相对表达量有提高趋势(P=0.08),而回肠黏膜ZO-1基因相对表达量则显著提高(P < 0.05);LB组和HB组21日龄仔猪空肠和回肠黏膜ZO-1基因相对表达量均无显著变化(P>0.05)。2)与CON组相比,仔猪7日龄时,LB组空肠黏膜白细胞介素-8(IL-8)基因相对表达量有降低趋势(P=0.052),白细胞介素-10(IL-10)基因相对表达量呈提高趋势(P=0.063),但肿瘤坏死因子-α(TNF-α)和转化生长因子-β(TGF-β)基因相对表达量均无显著变化(P>0.05);HB组空肠黏膜IL-8基因相对表达量显著降低(P < 0.05),但其他细胞因子基因相对表达量均无显著变化(P>0.05);LB组和HB组回肠黏膜IL-8、IL-10、TNF-αTGF-β基因相对表达量均无显著变化(P>0.05)。与CON组相比,仔猪21日龄时,LB组空肠黏膜IL-8基因相对表达量显著降低(P < 0.05),回肠黏膜IL-8基因相对表达量也显著降低(P < 0.05),且IL-10和TGF-β基因相对表达量显著提高(P < 0.05);HB组空肠黏膜IL-8基因相对表达量显著降低(P < 0.05),TGF-β基因相对表达量显著提高(P < 0.05),但回肠黏膜的4种细胞因子基因相对表达量无显著差异(P>0.05)。3)与CON组相比,LB组7日龄仔猪空肠黏膜TNF-α分泌量有降低趋势(P=0.087),而回肠黏膜IL-10分泌量则显著提高(P < 0.05),且21日龄仔猪空肠黏膜IL-8分泌量显著减少(P < 0.05),对TGF-β的分泌量无显著影响(P>0.05);HB组7日龄仔猪空肠和回肠黏膜细胞因子分泌量均无显著变化(P>0.05)。4)与CON组相比,LB组和HB组7日龄仔猪空肠和回肠黏膜TLR-2、TLR-4、TLR-9基因相对表达量均无显著变化(P>0.05);LB组和HB组21日龄仔猪空肠黏膜TLR-2、TLR-4、TLR-9基因相对表达量也无显著变化(P>0.05),但HB组回肠黏膜TLR-4基因相对表达量显著提高(P < 0.05)。综上所述,屎肠球菌活菌比灭活菌更有利于增强小肠黏膜紧密连接蛋白基因表达,调节细胞因子基因表达和分泌,并稳定小肠黏膜TLR基因表达,从而改善仔猪肠道健康。
关键词: 屎肠球菌    仔猪    紧密连接蛋白    细胞因子    Toll样受体    
Effects of Enterococcus faecium on Expression of Intestinal Tight Junction Proteins, Cytokine Responses and Toll-Like Receptors Genes in Piglets
CUI Bailei1,2 , WANG Li2 , GUO Qianpeng1 , HUANG Yi1 , HU Shenglan2     
1. College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
2. Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
Abstract: The objective of this study was to compare the effects of live and heat-inactivated bacteria of Enterococcus faecium on expression of small intestinal tight junction proteins, cytokine responses, and Toll-like receptor (TLR) genes of piglets. Nice litters (10 to 11 piglets per litter) of healthy neonatal piglets (Duroc×Landrace×Yorkshire) were selected and randomly divided into three groups: control group (CON group), E. faecium group (LB group) and heat-inactivated E. faecium group (HB group), with 3 litters in each group. From birth to 6 days of age, piglets from 3 groups were orally fed sterile skimmed milk, skimmed milk containing E. faecium, and skimmed milk containing heat-inactivated E. faecium (concentration 1×108 CFU/mL), 10 mL/(head·d), respectively. Creep feed was added for piglets from 7 days of age to 21 days of age (weaned day). On 7 and 21 days of age, one piglet from each litter was selected for slaughter sampling to detect small intestine mucosa tight junction protein gene expression, cytokine gene expression and secretion, and gene expression of TLR. The results showed as follows: 1) compared with the CON group, the relative expression level of zonula occludens-1 (ZO-1) gene in jejunal mucosa of 7-day-old piglets in LB group had a trend to improve (P=0.08), while the ZO-1 gene relative expression level in ileal mucosa was significantly increased (P < 0.05); There were no significant changes in relative expression level of ZO-1 gene in the jejunal and ileum of 21-day-old piglets in the LB and HB groups (P>0.05). 2) At 7 days of age, the jejunal mucosal cytokine interleukin (IL)-8 gene relative expression level had a trend to decrease (P=0.052), and the IL-10 gene relative expression level had a trend to increase (P=0.063), however, neither tumor necrosis factor-alpha (TNF-α) nor transforming growth factor-beta (TGF-β) changed significantly (P>0.05). The relative expression level of IL-8 gene in the jejunal mucosa was significantly decreased in the HB group (P < 0.05), however, there was no significant change in the relative expression of any other cytokines (P>0.05). There were no significant changes in IL-8、IL-10、TNF-α and TGF-β gene relative expression levels in the ileal mucosa in both LB and HB groups (P>0.05). At 21 days of age, the jejunal and ileal mucosa IL-8 gene relative expression level was significantly decreased (P < 0.05), and the ileal mucosa cytokine IL-10 and TGF-β gene relative expression levels were significantly increased (P < 0.05). The relative expression level of IL-8 gene in jejunal mucosa in HB group decreased significantly (P < 0.05), the relative expression level of TGF-β gene was significantly increased (P < 0.05), and the relative expression level of 4 cytokines gene in the ileal mucosa was not significantly changed (P>0.05). 3) The secretion of TNF-α in the jejunum mucosa of 7-day-old piglets in LB group had a trend to decrease (P=0.087), while the secretion of IL-10 in the ileal mucosa was significantly increased (P < 0.05), and the content of IL-8 in the jejunal mucosa of 21-day-old piglets was significantly reduced (P < 0.05), which had no significant effect on the content of TGF-β (P>0.05). There were no significant changes in mucosal cytokine secretion in the jejunum and ileum of 7-day-old piglets in the HB group (P>0.05). 4) The relative expression levels of TLR-2, TLR-4 and TLR-9 genes were not significantly changed in jejunal of 7-day-old piglets in LB and HB group (P>0.05), and those of TLR-2, TLR-4 and TLR-9 genes were not significantly changed in jejunum of 21-day-old piglets in LB and HB group (P>0.05), however, the relative expression level of TLR-4 gene was significantly increased in HB group (P < 0.05). All the above-mentioned results indicate that compared with heat-inactivated E. faecium, live bacteria are more efficient to regulate the intestinal health of piglets by enhancing the expression of tight junction, mucosal cytokines, and stable TLR expression.
Key words: Enterococcus faecium    piglets    tight junction    cytokines    Toll-like receptors    

益生菌是一类对宿主有益的活性微生物[1-3]。对肠上皮细胞具有较强的黏附力且定植后能大量繁殖成优势菌群是微生物作为益生菌的重要前提[4-5]。屎肠球菌(Enterococcus faecium)是自然界中常见的一种益生菌,属于肠球菌属,革兰氏阳性,兼性厌氧,一般呈圆形或者椭圆形,无鞭毛及芽孢[6-9]。由于屎肠球菌具有优良的耐酸碱特性,并且可以定植于动物肠道内,因此被作为益生菌广泛用于饲料添加剂中[10-13]。在实际生产中添加适当剂量的屎肠球菌往往可以改善机体健康状态,提高生长性能[14-18]。屎肠球菌与肠道黏膜接触后产生免疫应答可以对动物机体产生免疫刺激作用,进而影响免疫系统和宿主健康[19-21]。研究表明,新生仔猪灌服屎肠球菌EF1可有效抑制小肠黏膜肿瘤坏死因子-α(TNF-α)、γ-干扰素(IFN-γ)和白细胞介素-l(IL-1)等炎症细胞因子的产生,提高相关抗炎细胞因子的分泌,进而促进肠黏膜稳态[19-20, 22]。屎肠球菌HDRsEF1能保护猪小肠上皮细胞(IPEC-J2)细胞膜的完整性,并且能降低IPEC-J2细胞白细胞介素-8(IL-8)的分泌[21, 23]。研究发现,灌喂屎肠球菌能显著提高结肠固有层中免疫球蛋白A(IgA)+细胞和CD11b+IgA+细胞的数量增加[24]。灌服屎肠球菌AL41可显著缓解空肠弯曲杆菌CCM6191攻毒诱导的肉鸡盲肠转化生长因子-β4(TGF-β4)表达降低,同时提高IgA+细胞的免疫应答[25]

为了保证益生菌的安全使用,并避免造成公共污染,目前市场上使用的益生菌类制剂除了严格选用保证菌种质量的活菌制剂外,也采用灭活菌制剂。灭活处理的益生菌制剂相较于活菌制剂不需要满足数量的要求就能具有显著的疗效,并且便于运输和储存[26],也能很好解决活菌时会出现的公共安全问题。然而灭活处理的菌种会因理化特性的改变[27],从而影响到其生物学功能,因此对活菌与灭活菌的益生特性进行对比研究是非常有必要的[22]。本课题组前期研究结果表明,屎肠球菌EF1(Enterococcus faecium EF1)活菌和灭活菌均不影响0~21日龄仔猪的体重和平均日增重,活菌组可显著降低仔猪腹泻率[28-29]。因此,在此基础上,本研究拟深入开展屎肠球菌EF1活菌和灭活菌对仔猪肠道紧密连接蛋白、细胞因子应答以及Toll样受体(TLR)基因表达的影响,对比活菌和灭活菌在仔猪体内作用效果差异,以期更全面地了解益生屎肠球菌的益生作用,为屎肠球菌在仔猪养殖中的高效使用提供充分的科学依据和实践基础。

1 材料与方法 1.1 试验材料

屎肠球菌EFI菌株来自浙江大学动物科学学院微生态实验室。

1.2 试验设计

试验选用窝产仔数和体重相近且胎次和出生时间相同的杜×长×大新生健康仔猪9窝,每窝10~11头,随机分成3组,每组3窝仔猪。对照组(CON组)仔猪灌服10%脱脂乳溶液10 mL;活菌组(LB组)仔猪灌服含益生屎肠球菌活菌(1×108 CFU/mL)的10%脱脂乳溶液10 mL;灭活菌组(HB组)仔猪灌服含热灭活屎肠球菌(1×108 CFU/mL)的10%脱脂乳溶液10 mL。每天定时灌服1次,持续6 d。7日龄时饲喂仔猪教槽料,至21日龄断奶。饲养期间严格按照规定进行仔猪的日常管理,仔猪和母猪饲粮均无抗生素。

1.3 样品采集

在7和21日龄时,从每窝中选出1头接近平均体重的仔猪屠宰,取空肠和回肠肠段,去除肠道内容物后,用手术刀片刮取黏膜放入1.5 mL离心管内,液氮暂存,之后放-80 ℃保存备用。

1.4 RNA抽提、cDNA制备和实时荧光定量PCR(RT-PCR)检测

选用RNAiso Plus试剂盒提取空肠、回肠黏膜组织总RNA,测定RNA浓度时吸光度(OD)260/OD280比值在1.8~2.2,表示RNA纯度较高。参考TaKaRa公司PrimeScriptTM RT reagent Kit说明书完成cDNA制备,-80 ℃保存,用于后续基因表达的检测。根据TaKaRa相应试剂盒说明配制反应体系,以反转录的cDNA为模板扩增基因,进行RT-PCR,反应程序为:95 ℃ 30 s→95 ℃ 5 s→54 ℃ 10 s→72 ℃ 30 s(39个循环);熔解曲线95 ℃ 10 s→60 ℃ 5 s→95 ℃ 5 s,基因相对表达量采用2-ΔΔCt法计算,以甘油醛-3-磷酸脱氢酶(GAPDH)作内参,引物序列见表 1

表 1 实时荧光定量PCR引物序列 Table 1 Primer sequences for real-time PCR
1.5 数据分析

采用SPSS 25.0统计软件one-way ANOVA程序进行方差分析,LSD法进行组间多重比较,P < 0.05为差异显著,0.05≤P < 0.10为差异有显著趋势。试验数据用“平均值±标准差”表示。

2 结果 2.1 屎肠球菌对仔猪小肠紧密连接蛋白基因表达的影响

表 2可知,与CON组相比,LB组有提高7日龄仔猪空肠黏膜闭锁小带蛋白-1(ZO-1)基因相对表达量的趋势(P=0.08),且显著提高回肠黏膜ZO-1基因相对表达量(P < 0.05)。

表 2 屎肠球菌对7日龄仔猪空肠和回肠黏膜紧密连接蛋白基因表达的影响 Table 2 Effects of E. faecium on expression of tight junction genes in jejunal and ileal mucosa of 7-day-old piglets

表 3可知,21日龄时,与CON组相比,屎肠球菌活菌和灭活菌对空肠回肠黏膜咬合蛋白(Occludin)和ZO-1的基因相对表达量均无显著影响(P>0.05)。

表 3 屎肠球菌对21日龄仔猪空肠和回肠黏膜紧密连接蛋白基因表达的影响 Table 3 Effects of E. faecium on expression of tight junction genes in jejunal and ileal mucosa of 21-day-old piglets
2.2 屎肠球菌对仔猪小肠黏膜细胞因子基因表达的影响

表 4可知,与CON组相比,屎肠球菌活菌处理有降低7日龄仔猪空肠黏膜IL-8基因相对表达量的趋势(P=0.052),白细胞介素-10(IL-10)基因相对表达量呈现提高的趋势(P=0.063);与CON组相比,仔猪灌喂屎肠球菌后降低空肠IL-8基因相对表达量,其中HB组IL-8基因相对表达量显著降低(P < 0.05);屎肠球菌活菌和灭活菌对7日龄仔猪回肠黏膜各细胞因子基因相对表达量无显著影响(P>0.05)。

表 4 屎肠球菌对7日龄仔猪空肠和回肠黏膜细胞因子基因表达的影响 Table 4 Effects of E. faecium on expression of cytokine genes in jejunal and ileal mucosa of 7-day-old piglets

表 5可知,与CON组相比,21日龄仔猪灌喂屎肠球菌后,结果显示活菌可显著降低空肠和回肠黏膜IL-8基因相对表达量(P < 0.05),显著提高回肠黏膜IL-10和转化生长因子-β(TGF-β) 基因相对表达量(P < 0.05);灭活菌处理显著降低空肠黏膜IL-8基因相对表达量(P < 0.05),显著提高TGF-β基因相对表达量(P < 0.05),对回肠黏膜的4种细胞因子基因相对表达量无显著影响(P>0.05)。

表 5 屎肠球菌对21日龄仔猪空肠和回肠黏膜细胞因子基因表达的影响 Table 5 Effects of E. faecium on expression of cytokine genes in jejunal and ileal mucosa of 21-day-old piglets
2.3 屎肠球菌对仔猪小肠黏膜细胞因子分泌量的影响

表 6可知,与CON组相比,7日龄仔猪灌服活菌显著提高回肠黏膜IL-10的分泌量(P < 0.05),有降低空肠肿瘤坏死因子-α(TNF-α)分泌量的趋势(P=0.087);与对照CON组相比,屎肠球菌活菌和灭活菌处理均降低了空肠和回肠黏膜的TNF-α分泌量(P>0.05),提高了TGF-β分泌量(P>0.05)。

表 6 屎肠球菌对7日龄仔猪空肠和回肠黏膜细胞因子分泌量的影响 Table 6 Effects of E. faecium on cytokines secretion in jejunum and ileum mucosa of 7-day-old piglets 

表 7可知,屎肠球菌处理后21日龄仔猪空肠和回肠黏膜的IL-8和TNF-α的分泌量均低于CON组,其中活菌处理显著降低空肠黏膜的IL-8分泌量(P < 0.05);此外,屎肠球菌处理对肠道黏膜IL-10和TGF-β的分泌量均无显著影响(P>0.05)。

表 7 屎肠球菌对21日龄仔猪空肠和回肠黏膜细胞因子分泌量的影响 Table 7 Effects of E. faecium on cytokines secretion in jejunum and ileum mucosa of 21-day-old piglets 
2.4 屎肠球菌对仔猪小肠黏膜TLR基因表达的影响

表 8表 9可知,屎肠球菌活菌和灭活菌对7和21日龄仔猪空肠和TLR基因相对表达量均无显著影响(P>0.05);屎肠球菌处理没有显著影响21日龄仔猪空肠TLR基因相对表达量(P>0.05),但检测回肠相关受体基因相对表达量时发现,灭活菌显著提高回肠TLR-4基因相对表达量(P < 0.05)。

表 8 屎肠球菌对7日龄仔猪空肠和回肠黏膜Toll样受体基因表达的影响 Table 8 Effects of E. faecium on expression of Toll-like receptor genes in jejunal and ileal mucosa of 7-day-old piglets
表 9 屎肠球菌对21日龄仔猪空肠和回肠黏膜Toll样受体基因表达的影响 Table 9 Effects of E. faecium on expression of Toll-like receptor genes in jejunal and ileal mucosa of 21-day-old piglets
3 讨论 3.1 屎肠球菌对仔猪小肠黏膜紧密连接蛋白基因表达的影响

紧密连接蛋白主要包括ZOs、闭合蛋白(Claudin)和Occludin 3种跨膜蛋[30-31]。其中ZO-1分布于肠细胞内,Claudin和Occludin为跨膜蛋白,3种跨膜蛋白彼此关联,将相邻的2个肠上皮细胞连接起来,形成1个结构性屏障,将抗原物质阻隔在肠上皮细胞之外[32],这也是肠黏膜防御系统中的第1道防线,可见增强紧密连接蛋白的表达有利于维护肠上皮细胞对外界抗原物质的屏障作用。已有研究表明,益生菌对动物肠道黏膜TLR具有调节作用[33-36],孔雨昕等[37]在乌鳢饲料中分别添加108 CFU/g乳酸乳球菌L21、植物乳杆菌W21、粪肠球菌L2饲喂8周后,检测发现试验组乌鳢肠道Claudin-3及ZO-1的mRNA相对表达量显著高于与对照组。研究发现,给仔猪饲喂罗伊氏乳杆菌I5007后,空肠和回肠上皮OccludinZO-1表达显著提高[35],另有研究发现,给断奶仔猪灌服弗氏乳杆菌后,十二指肠、空肠和回肠黏膜的OccludinZO-1基因相对表达量也显著提高[36]。本研究中,灌服屎肠球菌活菌有提高7日龄仔猪空肠黏膜ZO-1基因相对表达量的趋势,并显著提高回肠ZO-1基因相对表达量,与前人的研究结果相似。然而本研究中,屎肠球菌灭活菌对肠道紧密连接蛋白基因相对表达量无显著影响。因此,屎肠球菌活菌在提高肠道紧密连接蛋白表达、维护肠道物理屏障完整性的方面优于灭活菌的作用。

3.2 屎肠球菌对仔猪小肠黏膜细胞因子基因表达和分泌的影响

细胞因子是一类由免疫细胞和某些非免疫细胞经过刺激作用而生成的具有生物活性物质的小分子蛋白[38],细胞因子主要包含IL、IFN、TNF、TGF等[39]。相关研究表明,益生菌作用机体后,有利于促进抗炎因子表达,抑制炎症发生[22, 40-43]。双歧三联活菌治疗处理结肠炎的大鼠后,显著降低脾细胞上清液中的TNF-α的表达水平,显著提高IL-10的表达水平[40]。攻毒大肠杆菌O157 ∶ H7的小鼠灌喂嗜酸乳杆菌和瑞士乳杆菌后,IL-2、IL-4和IL-6表达水平显著提高,缓解了大肠杆菌的感染[41]。断奶仔猪饲粮中添加丁酸梭菌后,血清中抗炎因子IL-2含量显著提高,并且显著降低血清促炎因子IL-6和TNF-α含量[42],丁酸梭菌刺激人外周血单核细胞和树突状细胞也同样观察到抗炎性细胞因子IL-10的表达上调[43]。此外,团队前期研究发现,屎肠球菌活菌较灭活菌可显著提高RAW264.7细胞TNF-α的分泌[22]。本研究中,7日龄仔猪灌服屎肠球菌活菌可在一定程度上降低空肠黏膜IL-8基因相对表达量,提高IL-10基因相对表达量,灭活菌处理后IL-8基因相对表达量显著降低。21日龄仔猪空肠和回肠黏膜在屎肠球菌活菌作用后,IL-8基因相对表达量显著降低,回肠黏膜IL-10和TGF-β基因相对表达量表达显著提高;灭活菌显著降低空肠黏膜IL-8基因相对表达量,同时提高TGF-β基因相对表达量,对回肠黏膜的4种细胞因子基因相对表达量无显著影响。酶联免疫吸附测定(ELISA)发现,活菌处理可降低7日龄仔猪空肠TNF-α的分泌量,提高其回肠黏膜IL-10的分泌量。屎肠球菌活菌处理后,21日龄仔猪空肠IL-8的分泌量显著降低,灭活菌对于空肠和回肠黏膜因子分泌量无显著影响,该结果与基因表达结果基本一致。因此,屎肠球菌的添加可以诱导仔猪肠道黏膜产生免疫应答,提高抗炎因子表达,降低炎症因子分泌,从而保护肠道健康,并且活菌效果优于灭活菌。

3.3 屎肠球菌对仔猪小肠黏膜TLR基因表达的影响

TLR基因在非特异免疫中具有重要作用,可以精准识别突破肠道黏膜屏障的微生物,产生细胞因子和趋化因子,激活免疫应答[44]。研究表明,在饲粮中添加乳酸菌显著提高鸡肠道中TLR-2和TLR-4的表达[45]。健康小鼠灌服益生菌后,TLR基因的表达显著提高[46-48]。断奶仔猪饲喂鼠李糖乳杆菌LR6001达到108 CFU/mL时可显著提高肠道TLR-2和TLR-9的表达量[49]。本研究结果发现,屎肠球菌活菌和灭活菌对7日龄仔猪肠道TLR表达无显著影响,在21日龄仔猪肠道中,活菌和灭活菌对于空肠黏膜TLR基因相对表达量无显著影响,而灭活菌显著提高回肠TLR-4的基因相对表达量,由此可见,屎肠球菌灭活菌对于肠道TLR基因调节作用优于活菌,两者对于TLR基因的分泌均有一定的促进作用,表明益生菌屎肠球菌有利于调节仔猪肠黏膜屏障的应答。

前期试验表明,给新生仔猪灌服屎肠球菌后,在整个哺乳期(1~21日龄)益生菌处理组均有效降低了仔猪腹泻率,且活菌组效果更显著[29],表明屎肠球菌作用新生仔猪后影响了肠道的通透性,缓解了肠道的炎性症状,对于紧密连接蛋白、炎症细胞因子及TLR基因表达测定结果进一步表明,屎肠球菌通过提高肠道紧密连接蛋白基因表达,抑制炎症因子IL-8和TNF-α基因的表达,促进抗炎因子IL-10和TGF-β基因的表达,有效改善了仔猪肠道健康状况。相关研究表明,在受损的肠道上皮中,TLR-4和TLR-9具有拮抗作用,TLR-9的表达可以促进分子抑制信号白细胞介素-1相关激酶M(IRAK-M)的产生,减轻由TLR-4表达后产生的一系列炎症反应的伤害[50-51],本试验中,肠道TLR基因在屎肠球菌作用后几乎没有产生显著影响,但灭活菌提高了TLR-4基因相对表达量,可能会诱发仔猪肠道炎症反应,进而体现了屎肠球菌活菌对仔猪肠道产生的健康保护作用。

4 结论

屎肠球菌活菌和灭活菌对仔猪均有益生作用。本研究使用浓度为1×108 CFU/mL屎肠球菌活菌较其热灭活菌更有利于促进仔猪小肠紧密连接蛋白基因表达,抑制促炎细胞因子并提高抗炎细胞因子表达和分泌,稳定TLR基因的表达,从而改善仔猪肠道健康。

参考文献
[1]
WANG H Y, LEE I S, BRAUN C, et al. Effect of probiotics on central nervous system functions in animals and humans: a systematic review[J]. Journal of Neurogastroenterology and Motility, 2016, 22(4): 589-605. DOI:10.5056/jnm16018
[2]
张海龙, 李晓, 王彩莲, 等. 益生菌对胃肠道黏膜屏障的调控机制研究进展[J]. 动物营养学报, 2022, 34(4): 2087-2096.
ZHANG H L, LI X, WANG C L, et al. Research progress on regulation mechanism of probiotics on gastrointestinal mucosal barrier[J]. Chinese Journal of Animal Nutrition, 2022, 34(4): 2087-2096 (in Chinese). DOI:10.3969/j.issn.1006-267x.2022.04.004
[3]
郭芹, 王安如, 苏华荔. 益生菌与肠黏膜互作的分子机制研究进展[J]. 中国微生态学杂志, 2014, 26(3): 351-353.
GUO Q, WANG A R, SU H L. Progress in studying the molecular mechanism of the interaction between probiotics and intestinal mucosa[J]. Chinese Journal of Microecology, 2014, 26(3): 351-353 (in Chinese). DOI:10.13381/j.cnki.cjm.201403028
[4]
王斐, 徐树杰, 李响, 等. 益生菌在猪上的应用效果和作用机理研究进展[J]. 动物营养学报, 2021, 33(11): 6044-6056.
WANG F, XU S J, LI X, et al. Research progress on application effects and mech anism of probiotics in pigs[J]. Chinese Journal of Animal Nutrition, 2021, 33(11): 6044-6056 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.11.006
[5]
胡玢. 紫薯益生菌酸奶的研制[D]. 硕士学位论文. 邯郸: 河北工程大学, 2017.
HU B. The development of the purple potato probiotic yogurt[D]. Master's Thesis. Handan: Hebei University of Engineering, 2017. (in Chinese)
[6]
鄂晓迪, 李梦梅, 施寿荣, 等. 屎肠球菌在家禽生产中的应用及安全性研究进展[J]. 中国家禽, 2022, 44(5): 95-103.
E X D, Li M M, SHI S R, et al. Progress in the application and safety of Enterococcus faecium in poultry production[J]. Poultry in China, 2022, 44(5): 95-103 (in Chinese).
[7]
王卫卫, 张安荣, 陈志敏, 等. 屎肠球菌对肉鸡生长性能和血清生化指标的影响[J]. 饲料工业, 2021, 42(11): 38-43.
WANG W W, ZHANG A R, CHEN Z M, et al. Effects of Enterococcus faecium on growth performance and serum biochemical indices of broilers[J]. Feed Industry, 2021, 42(11): 38-43 (in Chinese). DOI:10.13302/j.cnki.fi.2021.11.007
[8]
欧秀玲, 蔡扩军, 徐敏, 等. 屎肠球菌益生作用研究概述[J]. 新疆畜牧业, 2021, 36(2): 4-6.
OU X L, CAI K J, XU M, et al. Overview of the probiotic effects of Enterococcus faecium[J]. Xinjiang Animal Husbandry, 2021, 36(2): 4-6 (in Chinese). DOI:10.16795/j.cnki.xjxmy.2021.2.001
[9]
彭众, 董丽, 喻礼怀. 屎肠球菌的作用机制及其在动物生产中应用的研究进展[J]. 中国饲料, 2018(17): 18-22.
PENG Z, DONG L, YU L H. Progress in the mechanism of action of Enterococcus faecium and its application in animal production[J]. China Feed, 2018(17): 18-22 (in Chinese). DOI:10.15906/j.cnki.cn11-2975/s.20181703
[10]
CAPCAROVA M, HASCIK P, KOLESAROVA A, et al. The effect of selected microbial strains on internal milieu of broiler chickens after peroral administration[J]. Research in Veterinary Science, 2011, 91(1): 132-137. DOI:10.1016/j.rvsc.2010.07.022
[11]
夏锴, 陈振强, 王蕾. 屎肠球菌饲用效果及作用机理[J]. 粮食与饲料工业, 2016(5): 44-47.
XIA K, CHEN Z Q, WANG L. Feeding effects of Enterococcus faeciumis and its mechanism of action[J]. Cereal & Feed Industry, 2016(5): 44-47 (in Chinese).
[12]
沈中艳, 赵述淼, 梁运祥. 耐胃肠道环境及肠道病原菌拮抗的猪源乳酸菌的分离与筛选[J]. 华中农业大学学报, 2007, 26(3): 348-352.
SHEN Z Y, ZHAO S M, LIANG Y X. Screening of lactic acid bacteria strains for pig additives and the study of its probiotic properties in vitro[J]. Journal of Huazhong Agricultural University, 2007, 26(3): 348-352 (in Chinese). DOI:10.3321/j.issn:1000-2421.2007.03.018
[13]
周波, 刘凤华, 崔德凤, 等. 屎肠球菌素E9的产生和特性研究[J]. 中国兽药杂志, 2011, 45(2): 16-19.
ZHOU B, LIU F H, CUI D F, et al. Study on the properties of enterocin E9 from Enterococcus faecium E9[J]. Chinese Journal of Veterinary Drug, 2011, 45(2): 16-19 (in Chinese).
[14]
HUANG L, LUO L, ZHANG Y, et al. Effects of the dietary probiotic, Enterococcus faecium NCIMB11181, on theintestinal barrier and system immune status in Escherichia coli O78 challenged broiler chickens[J]. Probiotics Andantimicrobial Proteins, 2019, 11(3): 946-956. DOI:10.1007/s12602-018-9434-7
[15]
陈振强. 屎肠球菌在断奶仔猪日粮中的应用效果研究[D]. 硕士学位论文. 武汉: 武汉轻工大学, 2014.
CHEN Z Q. Study on the effects of enterococcus faecium application in weaned piglets diets[D]. Master's Thesis. Wuhan: Wuhan University of Light Industry, 2014. (in Chinese)
[16]
刘扬科, 李希. 日粮中添加屎肠球菌对断奶仔猪生产性能及腹泻率的影响[J]. 饲料与畜牧, 2013(4): 65-66.
LIU Y K, LI X. Effect of dietary Enterococcus faecium on production performance and diarrhea rate of weaned piglets[J]. Feed and Animal Husbandry, 2013(4): 65-66 (in Chinese).
[17]
丁爽, 郭春华, 张正帆, 等. 产乳酸菌素屎肠球菌B13对断奶仔猪生长性能、养分消化率、血清免疫指标及粪便微生物菌群的影响[J]. 畜牧兽医学报, 2017, 48(10): 1902-1911.
DING S, GUO C H, ZHANG Z F, et al. Effects of Enterococcus faecium B13 yielding bacteriocin on growth performance, nutrient digestibility, serum immune indexes and fecal microbiota of weaned piglets[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(10): 1902-1911 (in Chinese). DOI:10.11843/j.issn.0366-6964.2017.10.013
[18]
文静, 孙建安, 周绪霞, 等. 屎肠球菌对仔猪生长性能、免疫和抗氧化功能的影响[J]. 浙江农业学报, 2011, 23(1): 70-73.
WEN J, SUN J A, ZHOU X X, et al. Effects of Enterococcus faecium on growth performance, immune and antioxidant function of piglets[J]. Acta Agriculturae Zhejiangensis, 2011, 23(1): 70-73 (in Chinese).
[19]
UCHINAKA A, AZUMA N, MIZUMOTO H, et al. Anti-inflammatory effects of heat-killed Lactobacillus plantarum L-137 on cardiac and adipose tissue in rats with metabolic syndrome[J]. Scientific Reports, 2018, 8(1): 8156. DOI:10.1038/s41598-018-26588-x
[20]
HUANG Y, LI Y L, HUANG Q, et al. Effect of orally administered Enterococcus faecium EF1 on intestinal cytokines and chemokines production of sucking piglets[J]. Pakistan Veterinary Journal, 2012, 32(l1): 81-84.
[21]
田中元. 屎肠球菌HDRsEf1调节IPEC-J2细胞炎症反应机制研究[D]. 硕士学位论文. 武汉: 华中农业大学, 2016.
TIAN Z Y. Studies on the inflammation regulation mechanism of Enterococcus facium HDRsEf1 for IPEC-J2 cells[D]. Master's Thesis. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[22]
任亚雪, 郭乾鹏, 李媛媛, 等. 屎肠球菌活菌和热灭活菌对RAW264.7细胞肿瘤坏死因子-α/白细胞介素-10平衡以及丝裂原活化蛋白激酶信号通路的影响[J]. 动物营养学报, 2020, 32(9): 4345-4357.
REN Y X, GUO Q P, LI Y Y, et al. Effect of live Enterococcus faecium and heat-inactivated bacteria on TNF-α/IL-10 balance and mitogen-activated protein kinase signaling in RAW264.7 cells[J]. Chinese Journal of Animal Nutrition, 2020, 32(9): 4345-4357 (in Chinese).
[23]
TIAN Z Y, LIU X F, DAI R, et al. Enterococcus faecium HDRsEf1 protects the intestinal epithelium and attenuates ETEC-induced IL-8 secretion in enterocytes[J]. Mediators of Inflammation, 2016, 2016: 7474306.
[24]
HENDRICKX A P A, VAN DE KAMER D, WILLEMS R J L. Primary murine mucosal response during cephalosporin-induced intestinal colonization by Enterococcus faecium[J]. Microbiology Open, 2018, 7(5): e00602.
[25]
LETNICKÁ A, KARAFFOVÁ V, LEVKUT M, et al. Influence of oral application of Enterococcus faecium AL41 on TGF-β4 and IL-17 expression and immunocompetent cell distribution in chickens challenged with Campylobacter jejuni[J]. Acta Veterinaria Hungarica, 2017, 65(3): 317-326.
[26]
朱秀敏, 曹萌. 灭活益生菌的研究进展[J]. 中国微生态学杂志, 2010, 22(2): 175-178.
ZHU X M, CAO M. Advances in inactivating probiotics[J]. Chinese Journal of Microecology, 2010, 22(2): 175-178.
[27]
MARKOWICZ C, KUBIAK P, GRAJEK W, et al. Inactivation of Lactobacillus rhamnosus GG by fixation modifies its probiotic properties[J]. Canadian Journal of Microbiology, 2016, 62(1): 72-82.
[28]
郭乾鹏. 益生屎肠球菌活菌和热灭活菌调节仔猪小肠黏膜紧密连接蛋白、细胞因子以及相关的Toll样受体的研究[D]. 硕士学位论文. 南宁: 广西大学, 2017.
GUO Q P. Effects of Enterococcus faecium alive or heated on the regulation of intestinal mucosal tight junction protein, cytokines and related Toll-like receptors in piglets[D]. Master's Thesis. Nanning: Guangxi University, 2017. (in Chinese)
[29]
李媛媛, 郭乾鹏, 梁世忠, 等. 热灭活屎肠球菌及其活菌对仔猪腹泻率、消化酶活性和脏器指数的影响[J]. 黑龙江畜牧兽医, 2018(15): 1-5, 10.
LI Y Y, GUO Q P, LIANG S Z, et al. Effects of heat-inactivated Enterococcus faecium and its live bacteria on diarrhea rate, digestive enzyme activity, and organ index in piglets[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018(15): 1-5, 10 (in Chinese).
[30]
FUKATA M, ARDITI M. The role of pattern recognition receptors in intestinal inflammation[J]. Mucosal Immunology, 2013, 6(3): 451-463.
[31]
王希, 廖吕钊, 江荣林. 肠上皮细胞紧密连接蛋白的结构功能及其调节[J]. 浙江医学, 2018, 40(8): 895-898.
WANG X, LIAO L Z, JIANG R L. The structural function of intestinal epithelial tight junction proteins and their regulation[J]. Zhejiang Medical Journal, 2018, 40(8): 895-898 (in Chinese).
[32]
SWAMY M, JAMORA C, HAVRAN W, et al. Epithelial decision makers: in search of the 'epimmunome'[J]. Nature Immunology, 2010, 11(8): 656-665.
[33]
UKENA S N, SINGH A, DRINGENBERG U, et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity[J]. PLoS One, 2007, 2(12): e1308.
[34]
ZYREK A A, CICHON C, HELMS S, et al. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair[J]. Cellular Microbiology, 2007, 9(3): 804-816.
[35]
YANG F J, WANG A N, ZENG X F, et al. Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions[J]. BMC Microbiology, 2015, 15: 32.
[36]
HU J, CHEN L L, ZHENG W Y, et al. Lactobacillus frumenti facilitates intestinal epithelial barrier function maintenance in early-weaned piglets[J]. Frontiers in Microbiology, 2018, 9: 897.
[37]
孔雨昕, 徐晴, 田佳鑫, 等. 三种乳酸菌对乌鳢肠道消化酶、肠道菌群、肠道形态及紧密连接蛋白mRNA相对表达水平的影响[J/OL]. 吉林农业大学学报. (2021-03-29)[2022-05-08]. http://kns.cnki.net/kcms/detail/22.1100.s.20210326.1717.012.html.
KONG Y X, XU Q, TIAN J X, et al. Effects of three kinds of lactic acid bacteria on the digestive enzymes, intestinal microbiota, intestinal morphology and relative expression levels of tight junction protein mRNA[J/OL]. Journal of Jilin Agricultural University. (2021-03-29)[2022-05-08]. http://kns.cnki.net/kcms/detail/22.1100.s.20210326.1717.012.html. (in Chinese)
[38]
杨汉春. 动物免疫学[M]. 2版. 北京: 中国农业大学出版社, 2003.
YANG H C. Animal immunology[M]. 2nd ed. Beijing: China Agricultural University Press, 2003 (in Chinese).
[39]
谢暮晴. ALV-B与REV共感染DF-1细胞对病毒复制及细胞因子表达的影响[D]. 硕士学位论文. 广州: 华南农业大学, 2019.
XIE M Q. Effect of co-infection of DF-1 cells with ALV-B and Rev on viral replication and cytokine expression[D]. Master's Thesis. Guangzhou: South China Agricultural University, 2019. (in Chinese)
[40]
刘伟, 戎兰, 丁伟群, 等. 益生菌对结肠炎大鼠黏膜和系统水平细胞因子的影响[J]. 复旦学报(医学版), 2008, 35(2): 278-281.
LIU W, RONG L, DING W Q, et al. Effects of bifico on cytokines at the mucosal and systemic levels in rats with TNBS-induced colitis[J]. Fudan University Journal of Medical Sciences, 2008, 35(2): 278-281 (in Chinese).
[41]
王婷婷, 王雪芹, 霍贵成. 乳酸杆菌对感染大肠杆菌O157 ∶ H7小鼠肠道黏膜免疫的影响[J]. 微生物学通报, 2014, 41(10): 2082-2089.
WANG T T, WANG X Q, HUO G C. Function of Lactobacillus on intestinal mucosal immunity of mice artificially infected with Escherichia coli O157 ∶ H7[J]. Microbiology China, 2014, 41(10): 2082-2089 (in Chinese).
[42]
韩云胜. 丁酸梭菌对断奶仔猪生长性能和肠道功能的影响及机理研究[D]. 硕士学位论文. 兰州: 兰州大学, 2021.
HAN Y S. Effects and mechanism of C. butyrate on intestinal function and weaned piglets[D]. Master's Thesis. Lanzhou: Lanzhou University, 2021. (in Chinese)
[43]
华明昌, 林廷勇, 赖明伟, 等. 益生菌生物三在PBMC和树突状细胞中诱导Th1和抗炎作用[J]. 世界胃肠病学杂志, 2010, 16(28): 3529-3540.
HUA M C, LIN T Y, LAI M W, et al. Probiotic bio-three induces Th1 and anti-inflammatory effects in PBMC and dendritic cells[J]. World Journal of Gastroenterology, 2010, 16(28): 3529-3540 (in Chinese).
[44]
SIEPERT B, REINHARDT N, KREUZER S, et al. Enterococcus faecium NCIMB 10415 supplementation affects intestinal immune-associated gene expression in post-weaning piglets[J]. Veterinary Immunology and Immunopathology, 2014, 157(1/2): 65-77.
[45]
贺濛初, 李思婷, 王志, 等. 鸡源复合益生菌对肉仔鸡免疫球蛋白及Toll样受体通路的影响[J]. 华南农业大学学报, 2021, 42(2): 26-33.
HE M C, LI S T, WANG Z, et al. Effects of chicken-derived compound probiotics on immunoglobulin and Toll-like receptor pathway of broilers[J]. Journal of South China Agricultural University, 2021, 42(2): 26-33 (in Chinese).
[46]
王艳丽, 张永, 陈运彬. 干酪乳酸杆菌对新生大鼠Toll样受体2和甘露醇受体影响及其免疫调节作用的可能机制的探讨[J]. 中国新生儿科杂志, 2009, 24(5): 288-291.
WANG Y L, ZHANG Y, CHEN Y B. The effect of probiotic Lactobacillus casei to TLR2 and CD206 of the newborn SD mice and the mechanisms by which probiotic bacteria affect the immune system[J]. Chinese Journal of Neonatology, 2009, 24(5): 288-291 (in Chinese).
[47]
邹明明. 乳酸杆菌DM9811肽聚糖的分离提取及免疫活性的研究[D]. 硕士学位论文. 大连: 大连医科大学, 2011: 18-23.
ZOU M M. The peptidoglycan from lactobacillus DM9811: isolation extraction and immunological activity[D]. Master's Thesis. Dalian: Dalian Medical University, 2011: 18-23. (in Chinese)
[48]
崔志文. 鼠李糖乳杆菌影响仔猪肠道屏障功能的研究[D]. 博士学位论文. 杭州: 浙江大学, 2013.
CUI Z W. Effects of Lactobacillus rhamnosus on intestinal barrier in piglets[D]. Ph. D. Thesis. Hangzhou: Zhejiang University, 2013. (in Chinese)
[49]
VINDEROLA G, MATAR C, PERDIGON G. Role of intestinal epithelial cells in immune effects mediated by gram-positive probiotic bacteria: involvement of Toll-like receptors[J]. Clinical and Diagnostic Laboratory Immunology, 2005, 12(9): 1075-1084.
[50]
GRIBAR S C, SODHI C P, RICHARDSON W M, et al. Reciprocal expression and signaling of TLR4 and TLR9 in the pathogenesis and treatment of necrotizing enterocolitis[J]. Journal of Immunology, 2009, 182(1): 636-646.
[51]
RACHMILEWITZ D, KATAKURA K, KARMELI K, et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis[J]. Gastroenterology, 2004, 126(2): 520-528.