动物营养学报    2022, Vol. 34 Issue (12): 7844-7857    PDF    
脂肪粉和诱食剂对热应激环境下干奶牛生理状态、血清生化指标及产后产奶量的影响
户林其1 , 王海慧1 *, 赵晓静2 , 沈宜钊1,3 , 李妍4 , 王姗姗1 , 霍子韩1 , 王志远1 , 曹玉凤1,4 , 李建国1,3,5,6 , 高艳霞1,3,5,6     
1. 河北农业大学动物科技学院, 保定 071001;
2. 保定职业技术学院, 保定 071001;
3. 农业农村部奶牛健康养殖重点实验室(部省共建), 保定 071001;
4. 河北农业大学动物医学院, 保定 071001;
5. 河北省牛羊胚胎技术创新中心, 保定 071001;
6. 河北省乳制品产业技术研究院, 石家庄 050000
摘要: 本试验旨在研究热应激环境下饲粮中添加脂肪粉和诱食剂对干奶牛生理状态、血清生化指标及产后产奶量的影响,以期为生产中通过营养调控缓解干奶牛热应激提供理论依据。选择40头处于干奶期的荷斯坦奶牛[妊娠天数(239±5) d、胎次(1.95±0.30)胎],随机分为4组,每组10头。采用2×2双因素试验设计,设2个诱食剂添加水平[0和2 g/(d·头)]和2个脂肪粉添加水平[0和60 g/(d·头)]。试验期97 d,其中预产期前40~20 d按上述处理进行补饲,所有试验牛在预产期前19 d至分娩当日、分娩后第1天至产后21 d、产后22~56 d统一管理,分别饲喂围产前期、围产后期和泌乳期饲粮,自由饮水。结果显示:1)脂肪粉、诱食剂及二者的交互作用对干奶牛的呼吸频率均无显著影响(P>0.05),但添加脂肪粉可显著降低直肠温度(P < 0.05)。2)不同处理对热应激干奶牛干物质采食量无显著影响(P>0.05)。3)补饲诱食剂组干奶牛预产期前28 d的血清碱性磷酸酶活性显著高于其他3组(P < 0.05);补饲脂肪粉+诱食剂组分娩当天的血清葡萄糖含量显著高于未补饲组和补饲诱食剂组(P < 0.05);饲粮中添加诱食剂可显著降低产后7 d的血清甘油三酯含量(P < 0.05)。4)不同处理对各采样时间点的血清热休克蛋白-70含量均无显著影响(P>0.05)。5)不同处理对犊牛初生重无显著影响(P>0.05)。6)补饲诱食剂组第3周产奶量显著高于其他3组(P < 0.05),其他3组间差异不显著(P>0.05)。综上所述,在热应激环境下,在干奶牛饲粮中添加脂肪粉和诱食剂,虽然对干物质采食量无显著影响,但可以提高奶牛产后血清葡萄糖含量,其中单独添加诱食剂可提高产后第3周的产奶量。
关键词: 脂肪粉    诱食剂    干奶牛    热应激    
Effects of Fat Powder and Attractant on Physiological Status, Serum Biochemical Indices and Postpartum Milk Yield of Dry Dairy Cows under Heat Stress
HU Linqi1 , WANG Haihui1 *, ZHAO Xiaojing2 , SHEN Yizhao1,3 , LI Yan4 , WANG Shanshan1 , HUO Zihan1 , WANG Zhiyuan1 , CAO Yufeng1,4 , LI Jianguo1,3,5,6 , GAO Yanxia1,3,5,6     
1. College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China;
2. Baoding Vocational and Technical College, Baoding 071001, China;
3. Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding 071001, China;
4. College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China;
5. Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding 071001, China;
6. Hebei Dairy Industry Technology Research Institute, Shijiazhuang 050000, China
Abstract: The purpose of the experiment was to study the effects of fat powder and attractants on the physiological status, serum biochemical indices and postpartum milk yield of dry dairy cows under heat stress, to provide a theoretical reference for relieving heat stress of dry dairy cows through nutritional regulation in production. Forty Holstein dairy cows with pregnancy days of (239±5) d and (1.95±0.30) parities at dry milk stage were randomly divided into 4 groups with 10 cows in each group. A 2×2 two-factor experimental design was used, two supplemental levels of attractant[(0 and 2 g/(d·head)] and two supplemental levels of fat powder[0 and 60 g/(d·head)] were set up. The experiment lasted for 97 days, and the cows were fed with the above treatments from 40 to 20 days before the pre-production period. All the cows were managed uniformly from 19 days before the pre-production period to the day of delivery, from the first day of delivery to 21 days after delivery, and from 22 to 56 days after delivery. At each stage, they were fed with diets in the prepartum period, postpartum period, and lactation period, respectively, with free drinking water. The results showed as follows: 1) fat powder, attractant and the interaction of them had not significant effects on respiratory rate (P>0.05), but adding fat powder to the diet significantly decreased rectal temperature (P < 0.05). 2) Different treatments did not significantly affect dry matter intake of heat-stress dry cows (P < 0.05). 3) The activity of serum alkaline phosphatase in the supplementary feeding attractant group was significantly higher than that in other three groups at 28 days before delivery (P < 0.05). On the day of calving, the serum glucose content in the supplementary feeding fat powder+attractant group was significantly higher than that in the no supplementary feeding group and supplementary feeding attractant group (P < 0.05). Adding attractant to the diet could significantly reduce the serum triglyceride content at 7 days after delivery (P < 0.05). 4) Different treatments did not significantly affect serum heat shock protein-70 content at each sampling time points (P>0.05). 5) Different treatments had no significant effect on birth weight of calves (P>0.05). 6) The milk yield in the 3rd week of supplementary feeding attractant group was significantly higher than that of the other three groups (P < 0.05), but there was no significant difference among the other three groups (P>0.05). In summary, under the heat stress environment, adding fat powder and attractant in the diet of dry dairy cows, although no effect on dry matter intake, but can increase postpartum serum glucose content. Among them, the single addition of attractant can increase the milk yield in the 3rd week after delivery.
Key words: fat powder    attractant    dry dairy cows    heat stress    

热应激是动物对高湿高温环境产生的非特异性应答反应的总和[1]。有研究表明,当环境温度超过25 ℃或温湿指数(temperature-humidity index,THI)超过68时,奶牛处于热应激状态[2]。奶牛在干奶期不产生直接经济效益,但该期却是胎儿发育和泌乳准备的关键时期,此期遭受热应激会降低其产后的生产性能[3-4],对其子代甚至孙代的生长性能和死淘率均有显著影响[5-7]。因此,缓解干奶牛热应激状态对牛只健康和生产性能至关重要,是牧场长期健康发展的重要保障。

当前奶牛热应激状态主要通过风扇和喷淋等直接管理手段进行缓解,而饲粮营养调控也是重要的缓解措施之一。热应激会提高奶牛对能量的需要,尤其是奶牛处于中等程度到严重热应激时,维持的能量需要量甚至会更高[8],因此,干奶牛遭受热应激更容易出现能量负平衡。前人研究发现,饲粮中添加脂肪粉(fat powder,FP)可增加饲粮能量水平[9],降低奶牛呼吸频率,提高血糖水平,缓解奶牛能量负平衡[10],提高饲料效率[11],是缓解泌乳期奶牛热应激的一种重要营养调控手段。De Souza等[12]研究显示,在围产后期奶牛饲粮中添加脂肪粉可以提高奶牛的产奶量和各乳成分的产量。因此,在热应激干奶牛饲粮中添加适量的脂肪粉可能会起到缓解热应激的效果。采食量降低是诱发热应激奶牛能量负平衡的因素之一[13],诱食剂(attractant,ART)是添加到饲粮中改善饲粮的适口性、提高动物食欲的非营养性添加剂[14]。焦崇等[15]发现,饲粮中添加诱食剂可提高犊牛的干物质采食量。Silva等[16]发现,在热应激母猪饲粮中添加香味剂可提高母猪的采食量,并改善产仔性能。曹英东[17]发现,在母猪饲粮中添加甜味剂和亚麻油可提高采食量和抗氧化能力。在饲粮中添加诱食剂可能会改善热应激干奶牛的采食量,进而改善其能量负平衡状态。然而,目前关于脂肪粉和诱食剂在干奶牛饲粮中应用效果的比较研究还未见报道。因此,本试验通过补饲脂肪粉和诱食剂,研究其对热应激环境下干奶牛生理状态、血清生化指标和产后产奶量的影响,为生产中通过营养调控缓解干奶牛热应激提供理论依据。

1 材料与方法 1.1 试验材料

脂肪粉购自山东某公司,棕榈酸(C16 ∶ 0)含量≥90%、硬脂酸(C18 ∶ 0)含量≤1%、油酸(C18 ∶ 0)含量≤1%、亚油酸(C18 ∶ 2)含量≤1%,其他脂肪酸含量≤3%;诱食剂购自法国某公司,主要成分是甜橙提取物。

1.2 试验设计及饲养管理

选择40头处于干奶期的荷斯坦奶牛[妊娠天数(239±5) d、胎次(1.95±0.30)胎],随机分为4组,每组10头,采用2×2双因素试验设计,设2个诱食剂添加水平[0和2 g/(d·头)]和2个脂肪粉添加水平[0和60 g/(d·头)]。试验期97 d,其中预产期前40~20 d按上述处理进行补饲,所有试验牛在预产期前19 d至分娩当日、分娩后第1天至产后21 d、产后22~56 d统一管理,分别饲喂围产前期、围产后期和泌乳期饲粮,自由饮水。

试验期间各阶段饲粮参照NRC(2001)配制,其组成及营养水平见表 1。试验牛只在整个干奶期可自由采食和饮水,每日饲喂2次(05:30、16:30),分娩后每日饲喂3次(07:00、15:00和21:00),每日挤奶3次(06:30、14:30和22:30),可自由采食和饮水。

表 1 各阶段饲粮组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of diets in different periods (DM basis)  
表 2 脂肪粉和诱食剂对热应激干奶牛直肠温度和呼吸频率的影响 Table 2 Effects of FP and ART on rectal temperature and respiration rate of heat-stressed dry cows
1.3 样品采集与测定指标 1.3.1 牛舍THI的测定与统计

在预产期前40~20 d期间,用距离地面1.5 m的温湿度计(米家温湿度计)测量牛舍中的温度和相对湿度,记录牛舍每天每个小时的温度和相对湿度,计算THI。计算公式如下:

THI=(1.8T+32)-(0.55-0.55R)×(1.8T-26)[18]

式中:T为牛舍环境温度(℃);R为牛舍环境相对湿度(%)。

THI划分:< 68,热中性;68~71,热应激阈值;72~79,轻度热应激;80~89,中度热应激;90~98,重度热应激;>100,极重度热应激[19]

1.3.2 直肠温度和呼吸频率的测定

在预产期前30和20 d时测定直肠温度,测定时间为15:00—16:00,采用专用兽用温度计进行直肠温度测量。在预产期前30和20 d时,测定呼吸频率,呼吸频率测定时间为09:00—10:30与14:00—15:00,利用目测法,记录1 min内牛只胸腹部的起伏动作次数即为呼吸频率。

1.3.3 干物质采食量的测定

在预产期前40~20 d期间,每天每组的总饲粮投喂量减去该组剩料量,再除以该组牛只总数即为每头牛每日采食量,同时测定新鲜全混合日粮(TMR)和剩料样品干物质含量,用于计算各组的干物质采食量。

1.3.4 血液样品的采集及测定指标

在预产期前40、28、20 d,分娩当天以及产后7和14 d晨饲前于尾根静脉进行血液样品采集,每组选择8头奶牛,血样37 ℃水浴后进行离心(3 500 r/min,15 min),吸取上清液分装于0.5 mL离心管中,-20 ℃保存待测。

血清中总蛋白(TP)、白蛋白(ALB)、甘油三酯(TG)、谷草转氨酶(AST)和谷丙转氨酶(ALT)、碱性磷酸酶(AKP)、葡萄糖(GLU)、总抗氧化能力(T-AOC)、丙二醛(MDA)、尿素氮(UN)含量或活性均使用南京建成生物工程研究所生产的试剂盒并严格按照操作说明测定。采用酶联免疫吸附测定(ELISA)法测定血清中热休克蛋白-70(HSP-70)含量,试剂盒购自北京华悦昌生物科技有限公司。使用日本和光纯药公司的试剂盒,采用ELISA法测定血清中游离脂肪酸(NEFA)含量。

1.3.5 奶牛产后产奶量及犊牛初生重测定

记录分娩后每头奶牛的每日产奶量,以周进行统计,犊牛出生后进行称重。

1.4 统计与分析

试验数据用SAS 9.4软件的PROC MIXED模型进行双因素方差分析。该模型以脂肪粉、诱食剂及二者之间的交互作用为固定因子,奶牛为随机因子,预产期前40 d采集的样品测得相应指标的数据作为协变量参与分析,用PDIFF校正的Tukey模型进行多重比较。以P≤0.05作为显著差异的标准,在0.05 <P≤0.10时讨论趋势。

2 结果与分析 2.1 牛舍THI

图 1可知,在预产期前40~20 d期间,牛舍日平均THI在73~79,均高于其临界值68,奶牛处于轻、中度热应激状态。

横坐标为时间(相对预产期的天数),纵坐标为温湿指数。 The abscissa is time (the days to the expected delivery day), and the ordinate is the THI. 图 1 试验期间牛舍温湿指数变化曲线 Fig. 1 Variation curve of THI of cow barn during experiment
2.2 脂肪粉和诱食剂对热应激干奶牛生理指标的影响

脂肪粉、诱食剂及二者的交互作用对干奶牛的呼吸频率均无显著影响(P>0.05)。虽然诱食剂以及脂肪粉与诱食剂的交互作用对干奶牛的直肠温度无显著影响(P>0.05),但补饲脂肪粉显著降低了直肠温度(P<0.05)。

2.3 脂肪粉和诱食剂对热应激干奶牛DMI的影响

表 3可知,不同处理对干奶牛的DMI均无显著影响(P>0.05)。

表 3 脂肪粉和诱食剂对热应激干奶牛DMI的影响 Table 3 Effects of FP and ART on DMI of heat-stressed dairy cows  
2.4 脂肪粉和诱食剂对热应激干奶牛血清中肝功能及抗氧化指标的影响

表 4可知,脂肪粉与诱食剂的交互作用对各采样时间点血清AST和ALT活性均无显著影响(P>0.05),但补饲脂肪粉显著降低了预产期前28 d和分娩当天的血清AST活性(P<0.05)。脂肪粉与诱食剂的交互作用对预产期前28 d的血清AKP活性有显著影响(P<0.05),表现为补饲脂肪粉+诱食剂组预产期前28 d血清AKP活性显著低于补饲诱食剂组(P<0.05),与未补饲组和补饲脂肪粉组无显著差异(P>0.05)。虽然脂肪粉与诱食剂的交互作用对各采样时间点的血清MDA含量无显著影响(P>0.05),但补饲脂肪粉显著降低了预产期前20 d的血清MDA含量(P<0.05)。此外,脂肪粉与诱食剂的交互作用对预产期前40 d的血清T-AOC有显著影响(P<0.05),表现为补饲脂肪粉+诱食剂组预产期前40 d的血清T-AOC显著低于未补饲组(P<0.05),与补饲诱食剂组和补饲脂肪粉组无显著差异(P>0.05)。

表 4 脂肪粉和诱食剂对热应激干奶牛血清中肝功能及抗氧化指标的影响 Table 4 Effects of FP and ART on serum liver function and antioxidant indices of heat-stressed dry dairy cows
2.5 脂肪粉和诱食剂对热应激干奶牛血清中糖代谢、脂代谢指标影响

表 5可知,脂肪粉与诱食剂的交互作用对分娩当天和产后14 d的干奶牛血清GLU含量有显著影响(P<0.05),表现为补饲脂肪粉+诱食剂组分娩当天的血清GLU含量显著高于未补饲组和补饲诱食剂组(P<0.05),与补饲脂肪粉组差异不显著(P>0.05);补饲脂肪粉+诱食剂组产后14 d的血清GLU含量显著高于其他3组(P<0.05)。脂肪粉与诱食剂的交互作用对各采样时间点的血清TG和NEFA含量均无显著影响(P>0.05),但补饲脂肪粉可显著增加分娩当天的血清GLU含量和预产期前40 d的血清NEFA含量(P<0.05),而补饲诱食剂可显著降低产后7 d的血清TG含量(P<0.05)。

表 5 脂肪粉和诱食剂对热应激干奶牛血清中糖代谢、脂代谢指标的影响 Table 5 Effects of FP and ART on serum glucose metabolism and lipid metabolism indices of heat-stressed dry dairy cows
2.6 脂肪粉和诱食剂对热应激干奶牛血清中氮代谢指标的影响

表 6可知,脂肪粉与诱食剂的交互作用对预产期前28 d的血清TP含量有显著影响(P<0.05),表现为补饲诱食剂组显著低于未补饲组和补饲脂肪粉+诱食剂组(P<0.05),而对其他采样时间点的血清TP含量以及各采样时间点的血清ALB、UN含量无显著影响(P>0.05)。此外,补饲脂肪粉可显著提高分娩当天的血清UN含量(P<0.05),补饲诱食剂则可显著提高产后7 d的血清UN含量(P<0.05)。

表 6 脂肪粉和诱食剂对热应激干奶牛血清中氮代谢指标的影响 Table 6 Effects of FP and ART on serum nitrogen metabolism indices of heat-stressed dry dairy cows
2.7 脂肪粉和诱食剂对热应激干奶牛血清中HSP-70含量的影响

表 7可知,不同处理对各采样时间点干奶牛血清中HSP-70含量均无显著影响(P>0.05)。

表 7 脂肪粉和诱食剂对热应激干奶牛血清中HSP-70含量的影响 Table 7 Effects of FP and ART on serum HSP-70 content of heat-stressed dry dairy cows  
2.8 脂肪粉和诱食剂对犊牛初生重的影响

表 8可知,不同处理对犊牛初生重均无显著影响(P>0.05)。

表 8 脂肪粉和诱食剂对犊牛初生重的影响 Table 8 Effects of FP and ART on birth weight of calves  
2.9 脂肪粉和诱食剂对热应激干奶牛产后产奶量的影响

表 9可知,脂肪粉与诱食剂的交互作用对产后第3周时的产奶量有显著影响(P<0.05),表现为补饲诱食剂组显著高于其他3组(P<0.05)。

表 9 脂肪粉和诱食剂对热应激干奶牛产后产奶量的影响 Table 9 Effects of FP and ART on postpartum milk yield of heat-stressed dry dairy cows  
3 讨论 3.1 脂肪粉和诱食剂对热应激干奶牛生理指标、干物质采食量的影响

干奶期是妊娠的最后2个月,此时胎儿生长发育迅速,需要较多的营养供给,这个时期也是乳腺组织更新的时期,此时奶牛遭受热应激可影响胎儿的发育,影响乳腺组织的恢复、增殖、更新,从而影响下一泌乳周期的产奶量[20-21]。由于热应激,使得干奶牛遭遇能量负平衡的风险增加,因此,满足热应激时干奶前期奶牛的营养需求可能能够改善围产期奶牛机体的能量平衡状态,有利于奶牛整个泌乳期的良性发展,而补饲脂肪粉和诱食剂可能是增加能量摄入和减少负能量平衡的一种策略。

在本试验期间,试验牛舍日平均THI在73~79,表明干奶牛处于热应激环境中。在热应激情况下,直肠温度的差异性相对于呼吸频率而言更为显著,直肠温度是反映体内的热平衡的指标之一[22],即使是直肠温度的微小改变也会对组织、器官和内分泌功能产生深远的影响,可能影响生长性能和产奶量[23],当直肠温度超过38.5 ℃时,奶牛会遭受热应激[24]。本试验结果显示,补饲脂肪粉降低干奶牛直肠温度,但呼吸频率无显著影响,这与Wang等[25]的研究结果一致,其原因可能是补充脂肪粉饲粮的热量增量较低。影响呼吸频率的因素有很多,如被毛特性、采食量和产奶量等,Li等[26]发现,环境湿度和风速对呼吸频率的影响较小,而环境温度与呼吸频率的相关性较高(r=0.77)。本试验中各组干奶牛均处于相同的环境中,因而各组之间呼吸频率变化不大。

热应激对动物采食量的影响较大,因为高温环境直接对动物下丘脑采食中枢产生抑制作用,进而降低动物食欲[13]。张平等[27]发现,在泌乳早期奶牛饲粮中添加脂肪粉对DMI无显著影响。Sun等[28]发现,在羔羊饲粮中添加甜味剂对DMI无显著影响。本试验结果与上述研究结果一致,即饲粮中添加脂肪粉对干奶牛的DMI无显著影响,同时本试验还得出饲粮中添加诱食剂对干奶牛的DMI也无显著影响。

3.2 脂肪粉和诱食剂对热应激干奶牛血清生化指标的影响

血液代谢物含量反映了动物营养水平和健康状况。血清AST和ALT活性的增加是肝脏损伤的敏感标志[29]。本试验中,饲粮中添加脂肪粉可显著降低预产期前28、20 d和分娩当天的血清AST活性,这与Mohtashami等[30]的研究结果一致,即饲粮中添加油脂可降低热应激犊牛血液AST活性,说明饲粮中添加脂肪粉可有效降低热应激环境下干奶牛的肝脏损伤。MDA是脂质过氧化的产物,其含量的高低与组织细胞中脂质过氧化的程度有关[31]。许鹏等[32]发现,在奶牛饲粮中添加过瘤胃脂肪可降低血清MDA含量。Peng等[33]发现,在鳜鱼饲料中添加诱食剂可降低血液MDA含量。本试验中,饲粮中添加脂肪粉或诱食剂可降低预产期前20 d干奶牛的血清MDA含量,与前人研究结果一致,说明饲粮中添加脂肪粉或诱食剂可提高干奶牛的抗氧化能力,有利于机体提高对乳腺组织的修复能力。

血清GLU含量可反映机体能量代谢情况。本试验中,饲粮中添加脂肪粉和诱食剂可提高奶牛产后血清GLU含量。张海波[34]发现,在奶牛饲粮中添加脂肪粉可提高奶牛血液GLU含量,与本试验结果一致,GLU含量升高的原因可能是由于添加脂肪粉可促进瘤胃中丙酸的产生[35],加快糖异生,进而提高了GLU含量,促进了机体的能量代谢,使其在产犊时有足够的能量供应。Nazok等[36]发现,在蛋鸡饲粮中添加柑橘渣可提高血清GLU含量,这与本试验结果一致,其原因可能是甜橙提取物中富含可溶性纤维,有利于其在瘤胃中降解,进而为机体提供能量。血液NEFA和TG含量是衡量机体能量平衡状态和利用情况的指标[32],与动物机体脂类物质的代谢有关,NEFA和TG含量降低,说明脂类物质的消化代谢加快[37]。本试验中,饲粮中添加诱食剂对干奶牛血清NEFA含量无显著影响,但添加诱食剂可降低产后7 d的血清TG含量,说明添加诱食剂可在一定程度上提高热应激环境下干奶牛的脂类物质消化,为机体供能。Nazok等[36]发现,在蛋鸡饲粮中添加柑橘渣可降低血清TG含量。De Souza等[38]的研究结果显示,在围产后期奶牛饲粮中添加脂肪粉对血清NEFA含量无显著影响,这与本研究结果一致,TG含量降低的原因可能是由于添加诱食剂使得血清GLU含量增加,降低了体脂动员。

血清TP含量可反映机体对蛋白质的吸收、合成、分解情况[39]。本试验中,脂肪粉和诱食剂合用时预产期前28 d干奶牛的血清TP含量优于单独使用时,但与未补饲组无显著差异。常兴发[40]研究发现在,泌乳早期奶牛饲粮中添加脂肪粉对TP含量无显著影响,这与本研究结果不一致,其原因可能奶牛在不同生理阶段对蛋白质的利用能力不同。此外,崔艺燕等[41]发现,饲喂柑橘提取物对育肥猪TP含量无显著影响。血清UN含量与饲料氮利用率成反比。在热应激环境下,由于奶牛采食量下降,导致氮摄入不足,从而引起机体部分蛋白质分解为氨基酸,使得血清UN含量增加[42]。本试验结果显示,在补饲期不同处理对干奶牛血清UN含量无显著影响,分娩当天和产后7 d血清UN含量增加,其原因可能是由于分娩应激造成食欲降低,采食量下降,导致氮摄入不足,使得血清UN含量增加。HSP-70具有维持细胞蛋白稳定性,提高细胞对热应激原的耐受性,使细胞维持正常的生理功能[43]。本试验结果显示,在预产期前20 d,补饲脂肪粉和诱食剂后干奶牛血清HSP-70含量有所降低,表明脂肪粉和诱食剂对干奶牛的热应激有一定缓解作用。

3.3 脂肪粉和诱食剂对犊牛初生重和干奶牛产后产奶量的影响

前人研究发现,干奶期热应激会降低犊牛的初生重[6]。本试验结果显示,各组间犊牛初生重差异不显著,可能是所用干奶牛进行了主动降温处理的原因,进一步证实了对干奶牛进行主动降温处理后可降低对犊牛初生重的影响[5]。有研究发现,妊娠后期热应激会损害奶牛的乳腺功能,降低乳腺上皮细胞增殖,从而导致下一泌乳期的产奶量下降[44]。本试验中,补饲诱食剂可提高产后第3周的产奶量,补饲脂肪粉组与未补饲组相比产奶量提高,但无显著影响,全期各组产奶量没有显著差异。常兴发[40]研究发现,与对照组相比,在泌乳早期奶牛饲粮中添加100 g脂肪粉可提高产奶量。库尔班等[45]研究发现,在西门塔尔牛粗饲料中分别添加0.3%的果味剂和0.1%的绿色素均能显著提高产奶量,与本试验结果类似。奶牛产后产奶量的提高可能与产后血清GLU含量的提高和TG含量的降低有关,饲粮中添加诱食剂改善了奶牛机体能量代谢的途径,缓解了奶牛体脂动员,使得产奶量提高。

4 结论

热应激条件下,饲粮中添加脂肪粉可降低干奶牛直肠温度,添加脂肪粉或诱食剂可提高干奶牛的抗氧化能力;此外,干奶期饲粮添加脂肪粉和诱食剂可提高奶牛产后血清GLU含量,添加诱食剂可降低奶牛产后7 d的血清TG含量和提高产后第3周的产奶量。

参考文献
[1]
BERNABUCCI U, LACETERA N, BAUMGARD L H, et al. Metabolic and hormonal acclimation to heat stress in domesticated ruminants[J]. Animal, 2010, 4(7): 1167-1183. DOI:10.1017/S175173111000090X
[2]
ZIMBELMAN R B, NETWORKS S. A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows[C]//Proceedings of 24th Annual Southwest Nutrition and Management Conference. [S. l. ]: [s. n. ], 2009: 158-169.
[3]
FABRIS T F, LAPORTA J, SKIBIEL A L, et al. Effect of heat stress during early, late, and entire dry period on dairy cattle[J]. Journal of Dairy Science, 2019, 102(6): 5647-5656. DOI:10.3168/jds.2018-15721
[4]
FABRIS T F, LAPORTA J, SKIBIEL A L, et al. Effect of heat stress during the early and late dry period on mammary gland development of Holstein dairy cattle[J]. Journal of Dairy Science, 2020, 103(9): 8576-8586. DOI:10.3168/jds.2019-17911
[5]
唐程. 干奶期母牛热应激对母牛和犊牛生长、生产性能及血液生化指标的影响[D]. 硕士学位论文. 扬州: 扬州大学, 2020.
TANG C. Effects of heat stress on growth, production performance and blood biochemical indexes of cows and calves during dry milk period[D]. Master's Thesis. Yangzhou: Yangzhou University, 2020. (in Chinese)
[6]
MONTEIRO A P A, TAO S, THOMPSON I M T, et al. In utero heat stress decreases calf survival and performance through the first lactation[J]. Journal of Dairy Science, 2016, 99(10): 8443-8450. DOI:10.3168/jds.2016-11072
[7]
TAO S, MONTEIRO A P A, THOMPSON I M, et al. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves[J]. Journal of Dairy Science, 2012, 95(12): 7128-7136. DOI:10.3168/jds.2012-5697
[8]
王之盛, 李胜利. 反刍动物营养学[M]. 北京: 中国农业出版社, 2016.
WANG Z S, LI S L. Ruminant nutrition[M]. Beijing: China Agriculture Press, 2016 (in Chinese).
[9]
DE SOUZA J, ST-PIERRE N R, LOCK A L. Altering the ratio of dietary C16:0 and cis-9 C18:1 interacts with production level in dairy cows: effects on production responses and energy partitioning[J]. Journal of Dairy Science, 2019, 102(11): 9842-9856. DOI:10.3168/jds.2019-16374
[10]
杨游, 袁志琳, 董国忠, 等. 饲粮中添加脂肪酸钙和烟酸铬对热应激奶牛产奶性能、生理指标及血清生化指标的影响[J]. 动物营养学报, 2012, 24(1): 145-151.
YANG Y, YUAN Z L, DONG G Z, et al. Dietary calcium soaps of fatty acids and chromium nicotinate affect lactation performance, physiological and serum biochemical indices of dairy cows under heat stress[J]. Chinese Journal of Animal Nutrition, 2012, 24(1): 145-151 (in Chinese). DOI:10.3969/j.issn.1006-267x.2012.01.021
[11]
MOALLEM U, ALTMARK G, LEHRER H, et al. Performance of high-yielding dairy cows supplemented with fat or concentrate under hot and humid climates[J]. Journal of Dairy Science, 2010, 93(7): 3192-3202. DOI:10.3168/jds.2009-2979
[12]
DE SOUZA J, STRIEDER-BARBOZA C, CONTRERAS G A, et al. Effects of timing of palmitic acid supplementation during early lactation on nutrient digestibility, energy balance, and metabolism of dairy cows[J]. Journal of Dairy Science, 2019, 102(1): 274-287. DOI:10.3168/jds.2018-14977
[13]
邹必成, 龙凡, 瞿明仁, 等. 烟酸缓解反刍动物热应激的研究进展[J]. 动物营养学报, 2022, 34(4): 2130-2139.
ZOU B C, LONG F, QU M R, et al. Research progress of niacin to relieve heat stress in ruminants[J]. Chinese Journal of Animal Nutrition, 2022, 34(4): 2130-2139 (in Chinese). DOI:10.3969/j.issn.1006-267x.2022.04.009
[14]
ZHU L, WANG G, DONG B, et al. Effects of sweetener neotame on diet preference, performance and hematological and biochemical parameters of weaned piglets[J]. Animal Feed Science and Technology, 2016, 214: 86-94. DOI:10.1016/j.anifeedsci.2016.02.013
[15]
焦崇, 吴秋珏, 屠焰, 等. 诱食剂对荷斯坦犊牛生长性能和部分血清激素水平的影响[J]. 中国畜牧杂志, 2022, 58(6): 184-189.
JIAO C, WU Q J, TU Y, et al. Effects of attractants on growth performance and some serum hormones concentrations in Holstein calves[J]. Chinese Journal of Animal Science, 2022, 58(6): 184-189 (in Chinese).
[16]
SILVA B A N, TOLENTINO R L S, ESKINAZI S, et al. Evaluation of feed flavor supplementation on the performance of lactating high-prolific sows in a tropical humid climate[J]. Animal Feed Science and Technology, 2018, 236: 141-148. DOI:10.1016/j.anifeedsci.2017.12.005
[17]
曹英东. 亚麻油和茶多酚甜味剂共同添加在猪饲粮中的应用效果研究[D]. 硕士学位论文. 沈阳: 沈阳农业大学, 2018.
CAO Y D. Study on the effects of flax seed oil and tea polyphenol with sweeteners in feeds of pigs[D]. Master's Thesis. Shenyang: Shenyang Agricultural University, 2018. (in Chinese)
[18]
MA F T, SHAN Q, JIN Y H, et al. Effect of Lonicera japonica extract on lactation performance, antioxidant status, and endocrine and immune function in heat-stressed mid-lactation dairy cows[J]. Journal of Dairy Science, 2020, 103(11): 10074-10082. DOI:10.3168/jds.2020-18504
[19]
KHORSANDI S, RIASI A, KHORVASH M, et al. Nutrients digestibility, metabolic parameters and milk production in postpartum Holstein cows fed pomegranate (Punica granatum L.) by-products silage under heat stress condition[J]. Animal Feed Science and Technology, 2019, 255: 114213. DOI:10.1016/j.anifeedsci.2019.114213
[20]
张廷国. 奶牛干奶期的饲养管理要点[J]. 现代畜牧科技, 2020(2): 26-27.
ZHANG T G. Feeding and management points of dairy cows during dry milk period[J]. Modern Animal Husbandry Science & Technology, 2020(2): 26-27 (in Chinese). DOI:10.19369/j.cnki.2095-9737.2020.02.014
[21]
WOHLGEMUTH S E, RAMIREZ-LEE Y, TAO S, et al. Short communication: effect of heat stress on markers of autophagy in the mammary gland during the dry period[J]. Journal of Dairy Science, 2016, 99(6): 4875-4880. DOI:10.3168/jds.2015-10649
[22]
LIU J J, LI L Q, CHEN X L, et al. Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: a novel idea for monitoring and evaluation of heat stress-a review[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(9): 1332-1339. DOI:10.5713/ajas.18.0743
[23]
MCDOWELL R E, HOOVEN N W, CAMOENS J K. Effect of climate on performance of Holsteins in first lactation[J]. Journal of Dairy Science, 1976, 59(5): 965-971. DOI:10.3168/jds.S0022-0302(76)84305-6
[24]
COLLIER R J, RENQUIST B J, XIAO Y. A 100-year review: stress physiology including heat stress[J]. Journal of Dairy Science, 2017, 100(12): 10367-10380. DOI:10.3168/jds.2017-13676
[25]
WANG J P, BU D P, WANG J Q, et al. Effect of saturated fatty acid supplementation on production and metabolism indices in heat-stressed mid-lactation dairy cows[J]. Journal of Dairy Science, 2010, 93(9): 4121-4127. DOI:10.3168/jds.2009-2635
[26]
LI G, CHEN S Y, CHEN J, et al. Predicting rectal temperature and respiration rate responses in lactating dairy cows exposed to heat stress[J]. Journal of Dairy Science, 2020, 103(6): 5466-5484. DOI:10.3168/jds.2019-16411
[27]
张平, 郭刚, 霍文婕, 等. 日粮添加棕榈脂肪粉对泌乳牛产奶性能、养分消化率和瘤胃发酵的影响[J]. 中国畜牧杂志, 2020, 56(2): 136-140.
ZHANG P, GUO G, HUO W J, et al. Effects of dietary supplementation of palm fat powder on milk performance, nutrient digestibility and rumen fermentation of dairy cows[J]. Chinese Journal of Animal Science, 2020, 56(2): 136-140 (in Chinese).
[28]
SUN D M, LIU L X, MAO S Y, et al. Aspartame supplementation in starter accelerates small intestinal epithelial cell cycle and stimulates secretion of glucagon-like peptide-2 in pre-weaned lambs[J]. Journal of Animal Physiology and Animal Nutrition, 2019, 103(5): 1338-1350. DOI:10.1111/jpn.13159
[29]
杨占涛, 孔凡林, 王吉东, 等. 甜菜碱与烟酰胺复合制剂对热应激奶牛生产性能、乳品质及血清生化指标的影响[J]. 动物营养学报, 2021, 33(6): 3323-3333.
YANG Z T, KONG F L, WANG J D, et al. Effects of betaine and niacinamide compound preparation on performance, milk quality and serum biochemical indexes of heat-stressed dairy cows[J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3323-3333 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.06.034
[30]
MOHTASHAMI B, KHALILVANDI-BEHROOZYAR H, PIRMOHAMMADI R, et al. The effect of supplemental bioactive fatty acids on growth performance and immune function of milk-fed Holstein dairy calves during heat stress[J]. British Journal of Nutrition, 2022, 127(2): 188-201. DOI:10.1017/S0007114521000908
[31]
SAMSONOWICZ M, REGULSKA E. Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes[J]. Spectrochimica Acta: Part A, Molecular and Biomolecular Spectroscopy, 2017, 173: 757-771. DOI:10.1016/j.saa.2016.10.031
[32]
许鹏, 杨致玲, 吴树峰, 等. 饲粮添加不同过瘤胃脂肪源对奶牛生产性能及牛奶中脂肪酸组成的影响[J]. 动物营养学报, 2021, 33(5): 2727-2737.
XU P, YANG Z L, WU S F, et al. Effects of dietary different rumen protected fat sources on performance and milk fatty acid composition of dairy cattle[J]. Chinese Journal of Animal Nutrition, 2021, 33(5): 2727-2737 (in Chinese).
[33]
PENG D, PENG B B, LI J, et al. Effects of three feed attractants on the growth, biochemical indicators, lipid metabolism and appetite of Chinese perch (Siniperca chuatsi)[J]. Aquaculture Reports, 2022, 23: 101075. DOI:10.1016/j.aqrep.2022.101075
[34]
张海波. 日粮补充脂肪酸钙对泌乳早期奶牛泌乳性能、血液生化指标及激素浓度的影响[J]. 中国畜牧杂志, 2018, 54(12): 73-77.
ZHANG H B. Effects of dietary supplement fatty acids calcium on lactation performance, blood biochemical parameters and hormone concentrations in early lactation cows[J]. Chinese Journal of Animal Science, 2018, 54(12): 73-77 (in Chinese).
[35]
ZHANG Z, LA S K, ZHANG G W, et al. Diet supplementation of palm fat powder and coated folic acid on performance, energy balance, nutrient digestion, ruminal fermentation and blood metabolites of early lactation dairy cows[J]. Animal Feed Science and Technology, 2020, 265: 114520. DOI:10.1016/j.anifeedsci.2020.114520
[36]
NAZOK A, REZAEI M, SAYYAHZADEH H. Effect of different levels of dried citrus pulp on performance, egg quality, and blood parameters of laying hens in early phase of production[J]. Tropical Animal Health and Production, 2010, 42(4): 737-742. DOI:10.1007/s11250-009-9481-x
[37]
王雪. 复合化学处理稻草饲粮中添加甘露寡糖对滩羊生产性能及肉品质的影响[D]. 硕士学位论文. 银川: 宁夏大学, 2020.
WANG X. Effects of mannan oligosaccharide added in compound chemical treatment straw diet on production performance and meat quality of Tan sheep[D]. Master's Thesis. Yinchuan: Ningxia University, 2020. (in Chinese)
[38]
DE SOUZA J, PROM C M, LOCK A L. Altering the ratio of dietary palmitic and oleic acids affects nutrient digestibility, metabolism, and energy balance during the immediate postpartum in dairy cows[J]. Journal of Dairy Science, 2021, 104(3): 2910-2923. DOI:10.3168/jds.2020-19312
[39]
王玲, 吕永艳, 程志伟, 等. 复合酵母培养物对奶牛产奶性能、氮排放及血液生化指标的影响[J]. 草业学报, 2015, 24(12): 121-130.
WANG L, LV Y Y, CHENG Z W, et al. Milk production, nitrogen excretion and blood biochemical parameter responses to dietary addition of compound yeast cultures in dairy cows[J]. Acta Prataculturae Sinica, 2015, 24(12): 121-130 (in Chinese).
[40]
常兴发. 不同脂肪酸组成脂肪粉对奶牛生产性能和肝功能的影响[D]. 硕士学位论文. 保定: 河北农业大学, 2020.
CHANG X F. Effects of fatty powder with different fatty acid composition on production performance and liver function of dairy cows[D]. Master's Thesis. Baoding: Hebei Agricultural University, 2020. (in Chinese)
[41]
冯定远, 陈美环, 张辉华, 等. 猪乳香在早期断奶仔猪饲料中的应用效果[J]. 饲料工业, 1996(7): 27-29.
FENG D Y, CHEN M H, ZHANG H H, et al. Application effect of pig milk fragrance in feed of early weaned piglets[J]. Feed Industry, 1996(7): 27-29 (in Chinese).
[42]
崔艺燕, 田志梅, 鲁慧杰, 等. 长期饲喂柑橘提取物对肥育猪血液生化指标、抗氧化能力、免疫功能以及游离氨基酸的影响[J]. 中国农业大学学报, 2021, 26(6): 63-72.
CUI Y Y, TIAN Z M, LU H J, et al. Effects of long-term feeding of citrus extract on blood biochemical indexes, antioxidant capacity, immune function and free amino acids of finishing pigs[J]. Journal of China Agricultural University, 2021, 26(6): 63-72 (in Chinese).
[43]
郑文亚, 李国生, 刘犇, 等. 运输应激对山羊小肠形态和热休克蛋白表达的影响[J]. 中国畜牧杂志, 2021, 57(12): 207-212.
ZHENG W Y, LI G S, LIU B, et al. Effects of transport stress on intestinal morphology and heat shock protein expression in goats[J]. Chinese Journal of Animal Science, 2021, 57(12): 207-212 (in Chinese).
[44]
SEYED ALMOOSAVI S M M, GHOORCHI T, NASERIAN A A, et al. Effects of late-gestation heat stress independent of reduced feed intake on colostrum, metabolism at calving, and milk yield in early lactation of dairy cows[J]. Journal of Dairy Science, 2021, 104(2): 1744-1758.
[45]
库尔班, 玛依拉·阿布都克力木. 果味剂和绿色素对西门塔尔奶牛生产性能的影响[J]. 安徽农业科学, 2014, 42(18): 5866-6014.
KU E B, ABUDUKELIMU M Y L. Effects of fruity flavoring and green pigment on performance of Simmental dairy cows[J]. Journal of Anhui Agricultural Sciences, 2014, 42(18): 5866-6014 (in Chinese).