动物营养学报    2022, Vol. 34 Issue (2): 1076-1086    PDF    
枣粉与包被蛋氨酸对育肥牛生长性能、养分表观消化率、瘤胃发酵和血清生化指标的影响
刘永青1 , 刘辰2 , 冯泽伟1 , 张凯2 , 刘强2     
1. 吕梁学院生命科学系, 离石 033001;
2. 山西农业大学动物科学学院, 太谷 030801
摘要: 本试验旨在研究饲粮添加枣粉(JP)和包被蛋氨酸(CMet)对育肥期肉牛生长性能、养分表观消化率、瘤胃发酵和血清生化指标的影响。采用双因子试验设计,试验因素分别为JP(JP替代饲粮玉米比例为0或15%,JP-/JP+)和CMet(饲粮添加0或1.08 g/kg蛋氨酸有效成分,CMet-/CMet+)。将20头月龄与体重相近的育肥期肉牛(西门塔尔×本地黄牛)随机分为4组,分别饲喂基础饲粮、基础饲粮+JP、基础饲粮+CMet以及基础饲粮+JP+CMet,每组5个重复,每个重复1头牛。试验期共70 d,其中预试期10 d,正试期60 d。结果表明:1)饲粮添加JP显著提高了干物质采食量和平均日增重(P < 0.05);而添加CMet仅显著提高了平均日增重(P < 0.05);JP与CMet对生长性能互作效应不显著(P>0.05)。2)饲粮添加JP显著提高了粗蛋白质、酸性洗涤纤维和非纤维碳水化合物表观消化率(P < 0.05);饲粮添加CMet则显著提高了粗蛋白质、有机物和非纤维碳水化合物表观消化率(P < 0.05);JP与CMet对粗蛋白质和非纤维碳水化合物表观消化率互作效应显著(P < 0.05)。3)饲粮添加JP显著提高了瘤胃纤维二糖酶和木聚糖酶活性及总挥发性脂肪酸浓度(P < 0.05);而饲粮添加CMet显著降低了瘤胃pH和氨态氮浓度(P < 0.05),提高了瘤胃蛋白酶活性和丙酸浓度(P < 0.05);JP与CMet对瘤胃发酵互作效应不显著(P>0.05)。4)饲粮添加JP显著增加了血清葡萄糖含量、总抗氧化能力和超氧化物歧化酶活性(P < 0.05),降低了血清丙二醛含量(P < 0.05);饲粮添加CMet显著增加了血清葡萄糖、总蛋白含量和总抗氧化能力(P < 0.05),降低了血清尿素氮和丙二醛含量(P < 0.05);JP与CMet对血清丙二醛含量互作效应显著(P < 0.05)。综上所述,相比单独添加,JP与CMet互作未能显著促进育肥牛生长性能,但通过增加养分表观消化率提高了抗氧化能力。
关键词: 枣粉    包被蛋氨酸    养分表观消化率    抗氧化活性    育肥期肉牛    
Effects of Jujube Power and Coated Methionine on Growth Performance, Nutrient Apparent Digestibility, Rumen Fermentation and Serum Biochemical Indexes in Finishing Bulls
LIU Yongqing1 , LIU Chen2 , FENG Zewei1 , ZHANG Kai2 , LIU Qiang2     
1. Department of Life Sciences, Luliang University, Lishi 033001, China;
2. College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
Abstract: The study was conducted to investigate the effects of jujube power (JP) and coated methionine (CMet) in diets on growth performance, nutrient apparent digestibility, rumen fermentation and serum biochemical indexes in finishing bulls. A two-factor completely randomized design was arranged with JP (JP replacing 0 or 15% maize in the diet, JP-/JP+) and CMet (adding 0 or 1.08 g/kg dry matter to the diet, CMet-/CMet+). Twenty finishing bulls (Simmental×Local) with similar age and body weight were randomly divided into four groups and fed a basal diet, the basal diet+JP, the basal diet+CMet and the basal diet+JP+CMet, respectively, with five replicates of one cow in each group. The feeding test period lasted for 70 d. The pre-trial period lasted for 10 days and the formal trial period lasted for 60 days. The results showed as follows: 1) dietary JP addition significantly improved dry matter intake and average daily gain (P < 0.05); dietary CMet addition only increased average daily gain (P < 0.05); there was no significant interaction between JP and CMet in growth performance (P>0.05). 2) Dietary JP addition significantly increased the apparent digestibilites of crude protein, acid detergent fiber and non-fiber carbohydrate (P < 0.05); the increment of apparent digestibilites in organic matter, crude protein and non-fiber carbohydrate were found by adding CMet in the diets (P < 0.05); a significant JP×CMet interaction was found in apparent digestibilites of crude protein and non-fiber carbohydrate (P < 0.05). 3) The significant improvement in the activities of cellodisaccharase and xylanase and the concentration of total volatile fatty acids in the rumen was observed with dietary JP addition (P < 0.05); pH and ammonia nitrogen concentration in the rumen were significantly decreased and rumen proteinase activity and propionic acid concentration were increased with CMet supplement in the diets (P < 0.05); there was no significant interaction between JP and CMet in rumen fermentation (P>0.05). 4) Serum glucose content, total antioxidant capacity and superoxide dismutase activity were significantly increased (P < 0.05) but serum malondialdehyde content was significantly decreased in the dietary JP supplementation (P < 0.05); dietary CMet supplementation showed a significant increment in the serum glucose, total protein contents and total antioxidant capacity (P < 0.05), and a significant decrease in the serum urea nitrogen and malondialdehyde contents (P < 0.05); there was a significant JP and CMet interaction effect on serum malondialdehyde concentration (P < 0.05). In general, compared with the addition of JP and CMet alone, the interaction between JP and CMet failed to significantly promote growth performance of finishing bulls but improve antioxidant capacity by increasing nutrient apparent digestibility.
Key words: jujube power    coated methionine    nutrient apparent digestibility    antioxidant activity    finishing bulls    

山西吕梁为我国主要红枣产区之一,每年产生的残次枣及副产物高达3万t以上。合理利用枣饲料既减轻环境压力,又缓解饲料资源紧缺现状。红枣含糖量高,蛋白质和脂肪含量低,兼有粗纤维、多种维生素和矿物质元素,适合用作能量饲料。研究表明,肉牛添加枣粉(jujube power, JP)或发酵JP替代玉米或氨化秸秆,不同程度提高了干物质采食量(DMI)、日增重和饲料效率[1-3];5%~20% JP替代玉米提高了山羊干物质(DM)、有机物(OM)、粗蛋白质(CP)和酸性洗涤纤维(ADF)表观消化率[4-5];有研究表明,用红枣产品替换饲粮中玉米增加牛、羊、鸡和猪中血液抗氧化性能[4, 6-8]。以上研究显示生长肥育期肉牛JP替代玉米最佳比例为饲粮DM的15%。目前关于JP对于反刍动物瘤胃发酵的研究较少,深入研究JP对瘤胃发酵及瘤胃酶活性的影响可为JP饲料的开发提供参考。

蛋氨酸是生长育肥期肉牛的主要限制性氨基酸,虽然瘤胃微生物可以合成一定量的蛋氨酸,但无法满足舍饲条件下快速生长的肉牛需要[9-10],因此额外添加蛋氨酸可以补充饲粮蛋氨酸不足,促进肉牛体内氨基酸平衡,达到促进生长的目的。低蛋白质饲料添加蛋氨酸可以提高瘤胃微生物氮利用效率,相当于变相地增加了饲粮蛋白质含量[11-12]。过瘤胃蛋氨酸可减少瘤胃微生物的降解,使更多的蛋氨酸被小肠吸收[13-14]。包被蛋氨酸(coated methionine, CMet)对奶牛DMI的影响说法不一[15-16]。研究显示,CMet可提高肉牛日增重[17-18],增加CP表观消化率[19-20],提高体内氮沉积[21-22],但也有研究表明CMet未能提高奶公牛日增重和奶牛产奶量[23-24],可能与蛋氨酸添加量和饲粮组成有关。此外,蛋氨酸可通过谷胱甘肽途径以及氧化还原途径在动物体内发挥抗氧化功能[25]

鉴于JP能促进机体对蛋氨酸的吸收和利用[26],以及两者在提高动物生长性能、养分表观消化率和抗氧化等方面的共同点,本试验将以西门塔尔杂交肉牛为研究对象,探讨添加JP与CMet对育肥期肉牛生长性能、养分表观消化率、瘤胃发酵和血清生化指标的影响,以期为JP和CMet的应用提供理论依据。

1 材料与方法 1.1 试验时间与地点、试验材料

本试验于2020年9—11月在山西省方山县宏康牧业有限责任公司养殖场进行,预试期10 d,正试期60 d。收集柳林境内残次红枣全枣(无霉无毒),经同一批次干燥和粉碎后过200目筛得到JP。通过常规营养成分分析法比较JP和玉米的营养水平(表 1)。CMet购自北京某有限公司,蛋氨酸含量为85%,瘤胃降解率为20%,小肠吸收率为90%。

表 1 JP和玉米的营养水平对比(干物质基础) Table 1 Nutrient level comparison of JP and maize (DM basis) 
1.2 试验设计

选取约14月龄、体重相近、健康体况良好、体形一致的育肥期肉牛(西门塔尔×本地黄牛)20头为研究对象,随机分为4组,每组5个重复,每个重复1头牛。采用双因子试验设计,选定因素分别为JP(JP替代基础饲粮DM中玉米比例为0或15%,JP-/JP+)和CMet(饲粮添加0或1.08 g/kg蛋氨酸有效成分,CMet-/CMet+)。JP添加比例依据薄叶峰[2]试验设置,按照NRC(2016)[27]代谢蛋氨酸需要计算CMet添加量。根据添加JP和CMet情况,各组分别饲喂基础饲粮、基础饲粮+JP、基础饲粮+CMet和基础饲粮+JP+CMet。试验饲粮组成及营养水平见表 2

表 2 试验饲粮组成及营养水平(干物质基础) Table 2 Composition and nutrient levels of experimental diets (DM basis) 
1.3 饲养管理

试验牛均为单栏舍饲,自然通风,统一管理,饲养开始前对所有牛进行驱虫和耳号标记。每天07:00和17:00各饲喂1次,自由饮水,定期清理牛舍,保持卫生清洁。喂食采用全混合日粮的方式,保证一定的剩料量。JP在配制饲粮时加入,CMet混于饲粮上1/3处确保全部被采食,正试期第29、30天和第59、60天为采样期。

1.4 样品采集与指标检测 1.4.1 生长性能

正试期每天记录采食量,晨饲前准确称量试验牛的饲粮饲喂量和前1天的剩料量,计算DMI。于正试期开始和结束分别连续2 d记录试验牛空腹体重,计算平均日增重(ADG)和饲料转化率(FCR)。计算公式如下:

1.4.2 养分表观消化率

正试期开始每隔5 d采集1次饲粮样品,采样期通过直肠取样法收集新鲜粪样后加入粪重1/4的10%酒石酸。将收集到的饲粮和粪样65 ℃烘干,回潮24 h,粉碎,制备成分析试样测定常规营养成分。DM含量采用直接烘干法测定;粗灰分(Ash)和酸不溶灰分(AIA)含量采用灼烧法测定[28];CP含量采用凯氏定氮法测定;中性洗涤纤维(NDF)和ADF含量采用Van Soest[29]纤维素分析法测定;粗脂肪(EE)含量采用乙醚浸提法测定;钙(Ca)和磷(P)含量分别采用高锰酸钾滴定法和钒钼黄比色法测定。JP和玉米营养成分测定同样采用上述方法。通过内源性指示剂法计算养分表观消化率,计算公式如下:

1.4.3 瘤胃发酵参数

利用瘤胃管经口腔抽取瘤胃液,使用UB-7型酸度计现场测定。4层无菌棉纱布过滤,分装于10 mL离心管,-20 ℃保存待测。通过比色法测定氨态氮(NH3-N)浓度。挥发性脂肪酸(VFA)浓度采用气相色谱法测定,以巴豆酸作为内标物,色谱柱类型为SH-Rtx-WAX(30.00 m×0.25 mm×0.25 μm),火焰氢离子检测器、气化室温度分别为220和200 ℃,柱温140 ℃,上样量1 μL。瘤胃液酶(羧甲基纤维素酶、纤维二糖酶、木聚糖酶、果胶酶、淀粉酶和蛋白酶)活性测定参照Wang等[30]方法进行。

1.4.4 血清生化指标

通过全自动生化检测仪测定血清中葡萄糖(GLU)、总蛋白(TP)、白蛋白(ALB)、甘油三酯(TG)和尿素氮(UN)含量;按照南京建成生物工程研究所试剂盒说明书测定血清总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性和丙二醛(MDA)含量。

1.5 统计分析

应用SAS 9.2统计软件进行一般线性模型下多因素交互方差分析,分析模型如下:

式中:μ为群体均数;Ji为JP因素的效应;Mj为CMet因素的效应;(JM)ij为JP因素与CMet因素互作效应;εijk为随机误差。不同时间采集的样品按重复测量处理,各组间平均值的多重比较采用Duncan氏法。试验数据以平均值±标准差表示,P<0.05为差异显著。

2 结果与分析 2.1 添加JP和CMet对育肥牛生长性能的影响

表 3所示,添加JP和CMet对育肥牛DMI、ADG和FCR互作效应不显著(P>0.05)。添加JP对育肥牛DMI、第60天体重和ADG影响显著(P<0.05),对FCR影响不显著(P>0.05)。添加CMet对育肥牛ADG影响显著(P<0.05),对DMI和FCR影响不显著(P>0.05)。

表 3 添加JP和CMet对育肥牛生长性能的影响 Table 3 Effects of JP and CMet supplementation on growth performance in finishing bulls
2.2 添加JP和CMet对育肥牛养分表观消化率的影响

表 4所示,添加JP和CMet对育肥牛CP和NFC表观消化率互作效应显著(P<0.05),对DM、OM、NDF和ADF表观消化率影响不显著(P>0.05)。添加JP显著提高了育肥牛CP、ADF和NFC表观消化率(P<0.05),对DM、OM和NDF表观消化率影响不显著(P>0.05)。添加CMet对育肥牛OM、CP和NFC表观消化率影响显著(P<0.05),对DM、NDF和ADF表观消化率影响不显著(P>0.05)。

表 4 添加JP和CMet对育肥牛养分表观消化率的影响 Table 4 Effects of JP and CMet supplementation on nutrient apparent digestibilities in finishing bulls 
2.3 添加JP和CMet对育肥牛瘤胃发酵的影响

表 5表 6所示,对瘤胃液pH、总挥发性脂肪酸(TVFA)、NH3-N浓度和酶活性互作效应均不显著(P>0.05)。添加JP显著提高了瘤胃TVFA浓度及纤维二糖酶和木聚糖酶活性(P<0.05);添加CMet显著降低了瘤胃液pH和NH3-N浓度(P<0.05),显著提高了丙酸浓度和蛋白酶活性(P<0.05)。

表 5 添加JP和CMet对育肥牛瘤胃液pH、氨态氮和挥发性脂肪酸浓度的影响 Table 5 Effects of JP and CMet supplementation on pH, NH3-N and VFA concentration in finishing bulls
表 6 添加JP和CMet对育肥牛瘤胃液酶活性的影响 Table 6 Effects of JP and CMet supplementation on rumen fluid enzyme activity in finishing bulls 
2.4 添加JP和CMet对育肥牛血清生化指标和抗氧化指标的影响

表 7所示,JP和CMet互作显著降低了血清MDA含量(P<0.05)。添加JP显著提高了血清GLU含量、T-AOC和SOD活性(P<0.05),显著降低了血清MDA含量(P<0.05);添加CMet显著提高了血清GLU、TP含量和T-AOC(P<0.05),显著降低了血清UN和MDA含量(P<0.05)。

表 7 添加JP和CMet对育肥牛血清生化指标和抗氧化指标的影响 Table 7 Effects of JP and CMet supplementation on serum biochemical indexes and antioxidant indexes in finishing bulls
3 讨论 3.1 添加JP和CMet对育肥牛生长性能的影响

本研究JP替代饲粮中玉米提高了肉牛的DMI和ADG,与薄叶峰[2]、温旭杰等[6]研究结果一致。JP中糖分含量高,明显提高饲料适口性。王会战[31]在用红枣加工副产品与苹果渣饲喂奶牛的试验中发现,添加红枣组的采食量和产奶量都高于苹果渣组。JP中含有丰富的酶类和活性物质,促进体内营养物质消化吸收,部分提高日增重。另外,由于JP中cAMP含量丰富,可促进脂肪分解和体内能量分配,提高净蛋白质沉积,同时诱导生长激素,促进蛋白质合成[32]

CMet对肉牛日增重的影响差异主要与饲粮组成、肉牛生长发育阶段、品种和试验时间有关。本试验基础饲粮添加CMet提高了肉牛ADG,与彭全辉等[17]、Cantalapiedra-Hijar等[18]研究结果一致。蛋氨酸是一碳单位代谢的甲基供体,高蛋氨酸饲粮增加动物的DNA甲基化,受机体营养状态的影响,参与一碳单位代谢物质的营养摄入水平会对DNA甲基化产生影响,导致基因表达发生变化[33-34]

3.2 添加JP和CMet对育肥牛养分表观消化率的影响

本试验CP表观消化率显著增加可能是JP增加了瘤胃微生物蛋白合成,NFC表观消化率升高是因为JP含有高溶解性和高发酵速率的糖分,在瘤胃液中几乎能完全降解[35-36],促进了非纤维碳水化合物的吸收利用,与薄叶峰[2]、温旭杰等[6]研究结果一致;而ADF表观消化率升高与薄叶峰[2]、温旭杰等[6]研究结果相反,可能与JP中ADF含量有关,Xie等[5]用ADF含量较高的JP等比例替换饲粮玉米,发现山羊的ADF表观消化率升高,与本试验高含量ADF的JP促进消化道ADF的吸收利用结果相一致。

Gajera等[19]报道饲喂高谷物和玉米饲粮的动物,无论单独还是组合添加CMet都增加了CP的全肠道消化率。Noftsger等[20]发现饲粮添加CMet提高了泌乳奶牛OM和体外NDF的表观消化率。本试验添加CMet增加了OM、CP和NFC表观消化率,与上述研究结果一致,NFC表观消化率的提高可能与蛋氨酸代谢的转硫途径有关。

添加JP和CMet对提高肉牛的CP和NFC表观消化率互作效应显著,可能因为JP中含有多种生物活性物质,能促进机体对饲粮中必需氨基酸的吸收和利用[26],蛋氨酸具有促进动物体内氨基酸平衡的功效,JP和蛋氨酸都可通过调控体内氨基酸影响养分表观消化率,进而影响蛋白质合成和能量供应。Rulquin等[37]在奶牛能量平衡对CMet泌乳反应的影响研究中发现,能量水平和蛋氨酸补充量对乳蛋白含量存在互作效应,此外蛋氨酸还可能在奶牛处于高度负能量平衡的情况下发挥肝脏糖异生作用。

3.3 添加JP和CMet对育肥牛瘤胃发酵的影响

本试验添加JP组提高了瘤胃纤维二糖酶和木聚糖酶活性,增加ADF表观消化率,提高瘤胃TVFA浓度,与薄叶峰[2]报道添加JP后瘤胃TVFA浓度有增加趋势的结果相一致。另外,JP中可溶性糖可迅速降解造成TVFA浓度升高[38]

瘤胃液TVFA浓度和组成与动物生长阶段、饲粮组成、瘤胃环境和测试时间有关。添加CMet增加了丙酸浓度,降低pH,但未改变瘤胃发酵模式,与OM、NFC表观消化率提高的结果相一致,说明瘤胃发酵有向糖异生方向发展的趋势。同时瘤胃液蛋氨酸浓度增加促使蛋氨酸亚砜激活乙硫氨酸降解纤维素,从而增加瘤胃微生物合成碳水化合物和蛋白质[39]。毕晓华等[40]发现饲粮添加CMet有降低奶牛瘤胃pH和提高瘤胃总VFA浓度的趋势;韩占强[41]报道CMet有提高奶牛瘤胃乙酸和丙酸浓度、降低丁酸浓度的趋势。Abbasi等[12]通过体外瘤胃模拟试验发现低蛋白质饲粮添加CMet显著增加奶山羊瘤胃TVFA、丙酸和丁酸浓度,降低NH3-N浓度,提高瘤胃微生物蛋白产量。与Feng等[42]和Abbasi等[12]研究结果一致,本试验添加CMet提高瘤胃蛋白酶活性,促进饲料蛋白水解产生NH3-N并利用其合成微生物蛋白质,瘤胃NH3-N浓度降低与CP表观消化率提高互相印证。

3.4 添加JP和CMet对育肥牛血清生化指标和抗氧化指标的影响

肉牛所需能量70%来自于瘤胃产生的各种VFA,30%来自于肝脏产生的GLU,添加JP组血清GLU含量显著升高与NFC表观消化率增加相对应。赵艳秀[43]以不同饲粮水平的JP饲喂海蓝灰蛋鸡,发现血清GLU含量均得到显著提升。SOD是生物体内清除活性氧自由基的重要酶,MDA是脂质过氧化的最终代谢产物,可以反映膜脂质过氧化受损的程度。本试验JP组血清T-AOC、SOD活性和MDA含量都有显著变化,与王留等[8]、薄叶峰[2]、温旭杰等[6]研究结果一致,可能与JP中枣多糖、多酚及黄酮类等活性物质有关[44]。同时,锰、铜、锌参与组成锰/超氧化物歧化酶和铜/锌-超氧化物歧化酶,JP富含矿物质元素提高SOD活性[4]

本试验添加CMet显著提高血清GLU和TP含量,降低血清UN含量,与CP、NFC表观表观消化率提高、瘤胃液NH3-N浓度降低结果一致。熊春梅[45]发现添加氮-羟甲基蛋氨酸钙后试验牛血浆中UN含量显著降低,ALB和TP含量显著高于对照组;Liker等[46]研究CMet对生长肉牛血清生化指标时发现,CMet提高了血浆GLU含量,降低血浆UN含量,对ALB和TP含量无显著影响。蛋氨酸残基对氧化作用极为敏感,几乎可以被所有种类的活性氧修饰[47],蛋氨酸残基与活性氧结合生成蛋氨酸亚砜,从而使活性氧失去活性;通过蛋氨酸循环及转硫化途径蛋氨酸可生成谷胱甘肽和牛磺酸等具有较强的抗氧化性的产物[48]。蛋氨酸在动物体内主要通过谷胱甘肽途径以及氧化还原途径发挥抗氧化功能。本试验CMet组血清T-AOC显著增加,MDA含量显著降低。Jacometo等[49]发现饲喂过瘤胃蛋氨酸饲粮的母羊乳中自由基清除能力显著高于对照组。

添加JP和CMet对降低肉牛血清MDA含量有显著的互作效应。MDA是脂质过氧化产物,可以反映细胞损伤程度。添加JP可引入多种活性物质、维生素和矿物质离子来消除自由基引起的氧化应激;蛋氨酸则是通过氧化还原和谷胱甘肽途径消耗机体活性氧,缓解氧化应激状态;蛋氨酸抗氧化过程中酶活性的发挥需要各种维生素和矿物质元素的参与,进而防止蛋白质和DNA的脂质过氧化损伤,减少细胞损伤或凋亡[25]

4 结论

肉牛饲粮添加JP可增强瘤胃纤维二糖酶和木聚糖酶活性,提高瘤胃TVFA浓度和CP、ADF、NFC表观消化率,从而提高育肥牛生长性能;肉牛饲粮添加CMet增强瘤胃蛋白酶活性,降低瘤胃NH3-N浓度,提高CP、OM和NFC表观消化率,达到增加育肥牛生长性能的目的。JP与CMet互作提高了CP和NFC表观消化率,虽然未能显著提高ADG,但降低了血清MDA含量。

参考文献
[1]
冀建军, 王俊萍, 丁兆忠, 等. 生物发酵枣粉在肉牛育肥日粮中的应用研究[J]. 中国草食动物科学, 2015, 35(6): 77-78.
JI J J, WANG J P, DING Z Z, et al. Application of bio-fermented Jujube powder in beef cattle fattening diet[J]. China Herbivore Science, 2015, 35(6): 77-78 (in Chinese). DOI:10.3969/j.issn.2095-3887.2015.06.025
[2]
薄叶峰. 枣粉日粮对肉牛瘤胃发酵及生产性能的影响[D]. 硕士学位论文. 晋中: 山西农业大学, 2015.
BO Y F. The effect of wasted Chinese jujube on ruminal fermentation and productive performance in beef cattle[D]. Master's Thesis. Jinzhong: Shanxi Agricultural University, 2015. (in Chinese)
[3]
赵金香, 矫继峰, 赵义龙, 等. 伤残枣入育肥牛饲料配方的可行性分析[J]. 当代畜牧, 2015(18): 48-50.
ZHAO J X, JIAO J F, ZHAO Y L, et al. Feasibility analysis of maimed jujube into feeding formula for fattening cattle[J]. Contemporary Animal Husbandry, 2015(18): 48-50 (in Chinese).
[4]
延志伟. 饲粮不同枣粉水平对晋岚绒山羊生产性能及血液理化指标的影响[D]. 硕士学位论文. 晋中: 山西农业大学, 2016.
YAN Z W. Effects of supplementation of different level substandard Chinese jujube in diet on productive performance and indexes of physiological and biochemical of blood in bucks[D]. Master's Thesis. Jinzhong: Shanxi Agricultural University, 2016. (in Chinese)
[5]
XIE B, WANG P J, YAN Z W, et al. Growth performance, nutrient digestibility, carcass traits, body composition, and meat quality of goat fed Chinese jujube (Ziziphus Jujuba Mill) fruit as a replacement for maize in diet[J]. Animal Feed Science and Technology, 2018, 246: 127-136. DOI:10.1016/j.anifeedsci.2018.10.005
[6]
温旭杰, 唐秀敏, 张拴林, 等. 枣渣对肉牛养分表观消化率、血液生化指标和肥育性能的影响[J]. 黑龙江畜牧兽医, 2019(10): 124-127.
WEN X J, TANG X M, ZHANG S L, et al. Effect of jujube residue on apparent digestibility, blood biochemical index and fertility performance in beef cattle[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(10): 124-127 (in Chinese).
[7]
马可为, 赵艳秀, 刘彦慈, 等. 枣粉对蛋鸡脂质代谢、抗氧化性能及免疫功能的影响[J]. 中国饲料, 2017(19): 5-8.
MA K W, ZHAO Y X, LIU Y C, et al. Effects of jujube powder on lipid metabolism, antioxidant ability and immune function in laying hens[J]. China Feed, 2017(19): 5-8 (in Chinese).
[8]
王留, 张代, 刘秀玲. 大枣多糖对断奶仔猪血液生理生化指标及抗氧化能力的影响[J]. 中国猪业, 2013, 8(4): 60-62.
WANG L, ZHANG D, LIU X L. Effects of jujube polysaccharide on blood physiological and biochemical indices and antioxidant capacity of weaned piglets[J]. China Swine Industry, 2013, 8(4): 60-62 (in Chinese). DOI:10.3969/j.issn.1673-4645.2013.04.024
[9]
SILVA G M, CHALK C D, RANCHES J, et al. Effect of rumen-protected methionine supplementation to beef cows during the periconception period on performance of cows, calves, and subsequent offspring[J]. Animal, 2021, 15(1): 100055. DOI:10.1016/j.animal.2020.100055
[10]
RICHARDSON C R, HATFIELD E E. The limiting amino acids in growing cattle[J]. Journal of Animal Science, 1978, 46(3): 740-745. DOI:10.2527/jas1978.463740x
[11]
BRODERICK G A, STEVENSON M J, PATTON R A, et al. Effect of supplementing rumen-protected methionine on production and nitrogen excretion in lactating dairy cows[J]. Journal of Dairy Science, 2008, 91(3): 1092-1102. DOI:10.3168/jds.2007-0769
[12]
ABBASI I H R, ABBASI F, LIU L H, et al. Rumen-protected methionine a feed supplement to low dietary protein: effects on microbial population, gases production and fermentation characteristics[J]. AMB Express, 2019, 9(1): 93. DOI:10.1186/s13568-019-0815-4
[13]
PATTERSON J A, KUNG L. Metabolism of DL-methionine and methionine analogs by rumen microorganisms[J]. Journal of Dairy Science, 1988, 71(12): 3292-3301. DOI:10.3168/jds.S0022-0302(88)79934-8
[14]
KOENIG K M, RODE L M. Ruminal degradability, intestinal disappearance, and plasma methionine response of rumen-protected methionine in dairy cows[J]. Journal of Dairy Science, 2001, 84(6): 1480-1487. DOI:10.3168/jds.S0022-0302(01)70181-6
[15]
SOCHA M T, PUTNAM D E, GARTHWAITE B D, et al. Improving intestinal amino acid supply of pre- and postpartum dairy cows with rumen-protected methionine and lysine[J]. Journal of Dairy Science, 2005, 88(3): 1113-1126. DOI:10.3168/jds.S0022-0302(05)72778-8
[16]
PIEPENBRINK M S, OVERTON T R, CLARK J H. Response of cows fed a low crude protein diet to ruminally protected methionine and lysine[J]. Journal of Dairy Science, 1996, 79(9): 1638-1646. DOI:10.3168/jds.S0022-0302(96)76527-X
[17]
彭全辉, 杨飞, 余强, 等. 添加蛋氨酸羟基类似物异丙醇酯(HMBi)对肉牛生产性能和屠宰性能的影响[J]. 饲料工业, 2018, 39(13): 47-51.
PENG Q H, YANG F, YU Q, et al. Effects of supplementating different levels of 2-hydroxy-4 (methylthio) butanoic acid isopropyl ester (HMBi) on growth and slaughter performance of beef cattle[J]. Feed Industry, 2018, 39(13): 47-51 (in Chinese).
[18]
CANTALAPIEDRA-HIJAR G, ORTIGUES-MARTY T, SEPCHAT B, et al. Methionine balanced diets improve cattle performance in fattening young bulls fed high forage diets through changes in nitrogen metabolism[J]. British Journal of Nutrition, 2020, 124(3): 273-285. DOI:10.1017/S0007114520001154
[19]
GAJERA A P, DUTTA K S, SAVSANI H H, et al. Effect of rumen-protected lysine, methionine and fat on nutrients utilization in growing Jaffrabadi heifers[J]. Indian Journal of Animal Nutrition, 2014, 30(4): 351-357.
[20]
NOFTSGER S, ST-PIERRE N R, SYLVESTER J T. Determination of rumen degradability and ruminal effects of three sources of methionine in lactating cows[J]. Journal of Dairy Science, 2005, 88(1): 223-237. DOI:10.3168/jds.S0022-0302(05)72680-1
[21]
WATERMAN R C, LÖEST C A, BRYANT W D, et al. Supplemental methionine and urea for gestating beef cows consuming low quality forage diets[J]. Journal of Animal Science, 2007, 85(3): 731-736. DOI:10.2527/jas.2006-425
[22]
ARCHIBEQUE S L, BURNS J C, HUNTINGTON G B. Nitrogen metabolism of beef steers fed endophyte-free tall fescue hay: effects of ruminally protected methionine supplementation[J]. Journal of Animal Science, 2002, 80(5): 1344-1351. DOI:10.2527/2002.8051344x
[23]
BAGGERMAN J O, THOMPSON A J, JENNINGS M A, et al. Effects of encapsulated methionine on skeletal muscle growth and development and subsequent feedlot performance and carcass characteristics in beef steers[J]. Animals, 2021, 11(6): 1627. DOI:10.3390/ani11061627
[24]
PEREIRA A B D, WHITEHOUSE N L, ARAGONA K M, et al. Production and nitrogen utilization in lactating dairy cows fed ground field peas with or without ruminally protected lysine and methionine[J]. Journal of Dairy Science, 2017, 100(8): 6239-6255. DOI:10.3168/jds.2016-12140
[25]
冯艳, 杨琳, 朱勇文, 等. 蛋氨酸调控动物主要生理功能的机制[J]. 中国科学(生命科学), 2019, 49(3): 228-237.
FENG Y, YANG L, ZHU Y W, et al. Methionine regulates the major physiological functions of animals[J]. Science in China (Series C), 2019, 49(3): 228-237 (in Chinese).
[26]
冯平, 孙旺斌, 张骞, 等. 不同枣粉水平对陕北白绒山羊肉呈味物质的影响[J]. 动物营养学报, 2021, 33(1): 519-527.
FENG P, SUN W B, ZHANG Q, et al. Effects of different levels of jujube power on flavor substance of Shanbei white cashmere goat meat[J]. Chinese Journal of Animal Nutrition, 2021, 33(1): 519-527 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.01.052
[27]
National Academies of Sciences, Engineering, and Medicine. Nutrient requirements of beef cattle[M]. 8th ed. Washington, D.C.: The National Academies Press, 2016.
[28]
VAN KEULEN J, YOUNG B A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies[J]. Journal of Animal Science, 1977, 44(2): 282-287. DOI:10.2527/jas1977.442282x
[29]
VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583-3597. DOI:10.3168/jds.S0022-0302(91)78551-2
[30]
WANG C, LIU C, ZHANG G W, et al. Effects of rumen-protected folic acid and betaine supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Angus bulls[J]. British Journal of Nutrition, 2020, 123(10): 1109-1116. DOI:10.1017/S0007114520000331
[31]
王会战. 红枣加工下脚料与烘干苹果渣饲喂奶牛试验[J]. 中国奶牛, 2006(2): 17-18.
WANG H Z. A comparison of red jujube by-products diet and desiccated apple residues diets for dairy cows[J]. China Dairy Cattle, 2006(2): 17-18 (in Chinese). DOI:10.3969/j.issn.1004-4264.2006.02.005
[32]
李常青. 外源性cAMP对秦川犊牛生长发育及调控机理的研究[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2010.
LI C Q. The effect on the growth and control mechanism in Qinchuan calves by exogenous cAMP[D]. Master's Thesis. Yangling: Northwest A&F University, 2010. (in Chinese)
[33]
WATERLAND R A. Assessing the effects of high methionine intake on DNA methylation[J]. The Journal of Nutrition, 2006, 136(6): 1706S-1710S. DOI:10.1093/jn/136.6.1706S
[34]
ABBASI I H R, ABBASI F, WANG L M, et al. Folate promotes S-adenosyl methionine reactions and the microbial methylation cycle and boosts ruminants production and reproduction[J]. AMB Express, 2018, 8(1): 65. DOI:10.1186/s13568-018-0592-5
[35]
HALL M B, HOOVER W H, JENNINGS J P, et al. A method for partitioning neutral detergent-soluble carbohydrates[J]. Journal of the Science of Food and Agriculture, 1999, 79(15): 2079-2086. DOI:10.1002/(SICI)1097-0010(199912)79:15<2079::AID-JSFA502>3.0.CO;2-Z
[36]
WEISBJERG M R, HVELPLUND T, BIBBY B M. Hydrolysis and fermentation rate of glucose, sucrose and lactose in the rumen[J]. Acta Agriculturae Scandinavica Section A-Animal Science, 1998, 48(1): 12-18. DOI:10.1080/09064709809362398
[37]
RULQUIN H, DELABY L. Effects of the energy balance of dairy cows on lactational response to rumen protected methionine[J]. Journal of Dairy Science, 1997, 80(10): 2513-2522. DOI:10.3168/jds.S0022-0302(97)76204-0
[38]
OBARA Y, FUSE H, TERADA F, et al. Influence of sucrose supplementation on nitrogen kinetics and energy metabolism in sheep fed with lucerne hay cubes[J]. The Journal of Agricultural Science, 1994, 123(1): 121-127. DOI:10.1017/S0021859600067848
[39]
SALSBURY R L, MARVIL D K, WOODMANSEE C W, et al. Utilization of methionine and methionine hydroxy analog by rumen microorganisms in vitro[J]. Journal of Dairy Science, 1971, 54(3): 390-396. DOI:10.3168/jds.S0022-0302(71)85850-2
[40]
毕晓华, 张晓明. 过瘤胃保护蛋氨酸对奶牛营养物质消化、瘤胃发酵和氮代谢的影响[J]. 饲料研究, 2014(19): 45-49.
BI X H, ZHANG X M. Effects of rumen-protected methionine on nutrient digestion, rumen fermentation and nitrogen metabolism of dairy cows[J]. Feed Research, 2014(19): 45-49 (in Chinese).
[41]
韩占强, 林英庭, 赵发盛, 等. 不同保护性蛋氨酸对奶牛挥发性脂肪酸和菌体蛋白的影响[J]. 饲料工业, 2008, 29(15): 34-36.
HAN Z Q, LIN Y T, ZHAO F S, et al. Effects of different protective methionine on volatile fatty acids and thallin in dairy cows[J]. Feed Industry, 2008, 29(15): 34-36 (in Chinese). DOI:10.3969/j.issn.1001-991X.2008.15.012
[42]
FENG Y L, CONG Y Y, DENG H W, et al. Effects of 2-hydroxy-4(methylthio) butanoic acid isopropyl ester on rumen fermentation in cashmere goats[J]. Revista Brasileira de Zootecnia, 2013, 42(5): 342-346. DOI:10.1590/S1516-35982013000500006
[43]
赵艳秀. 枣粉在蛋鸡日粮中的应用研究[D]. 硕士学位论文. 保定: 河北农业大学, 2012.
ZHAO Y X. Study of application of jujube power in laying hens diet[D]. Master's Thesis. Baoding: Agricultural University of Hebei, 2012. (in Chinese)
[44]
周小玲, 蒋慧, 陈宁. 残次枣在畜禽饲料中的应用研究进展[J]. 中国畜牧杂志, 2020, 56(5): 19-25.
ZHOU X L, JIANG H, CHEN N. Research progress on application of residual jujube fruit in livestock and poultry feed[J]. Chinese Journal of Animal Science, 2020, 56(5): 19-25 (in Chinese).
[45]
熊春梅. 氮-羟甲基蛋氨酸钙对中国荷斯坦奶牛瘤胃代谢及生产性能的影响[D]. 硕士学位论文. 兰州: 甘肃农业大学, 2004.
XIONG C M. Effects of N-hydroxymethyl-DL-methionine-Ca(N-HMM-Ca) on ruminal fermentation and performance in Chinese-Holstein cows[D]. Master's Thesis. Lanzhou: Gansu Agricultural University, 2004. (in Chinese)
[46]
LIKER B, VRANEŠIĆ N, GRBEŠA D, et al. Blood metabolites and haematological indices of beef cattle fed rumen-protected methionine[J]. Acta Veterinaria, 2006, 56(1): 3-15. DOI:10.2298/AVB0601003L
[47]
KOMARNISKY L A, CHRISTOPHERSON R J, BASU T K. Sulfur: its clinical and toxicologic aspects[J]. Nutrition, 2003, 19(1): 54-61. DOI:10.1016/S0899-9007(02)00833-X
[48]
KIM S K, KIM Y C. Effects of betaine supplementation on hepatic metabolism of sulfur-containing amino acids in mice[J]. Journal of Hepatology, 2005, 42(6): 907-913. DOI:10.1016/j.jhep.2005.01.017
[49]
JACOMETO C B, ZHOU Z, LUCHINI D, et al. Maternal supplementation with rumen-protected methionine increases prepartal plasma methionine concentration and alters hepatic mRNA abundance of 1-carbon, methionine, and transsulfuration pathways in neonatal Holstein calves[J]. Journal of Dairy Science, 2017, 100(4): 3209-3219. DOI:10.3168/jds.2016-11656