动物营养学报    2022, Vol. 34 Issue (7): 4081-4088    PDF    
钙磷的代谢规律及其在仔猪营养上的研究进展
易宏波 , 王丽 , 杨雪芬 , 蒋宗勇     
广东省农业科学院动物科学研究所, 畜禽育种国家重点实验室, 农业农村部华南动物营养与饲料重点实验室, 广东省畜禽育种与营养研究重点实验室, 广州 510640
摘要: 钙磷作为重要的矿物质元素,在猪的生长发育、新陈代谢、神经活动、免疫功能等生理过程中发挥着关键作用。钙磷摄入不足、积蓄过多、比例失调等,均可引起严重的营养代谢疾病。随着畜牧业的迅速发展,钙磷大量添加导致的资源浪费、饲料成本增加以及环境污染等问题日益严重,实现畜禽饲粮钙磷的精准供给意义重大。因此,本文综述了钙磷在体内的分布、吸收、转运、代谢及其互作机理,并总结了仔猪的钙磷需求和不同来源钙磷的吸收效率,以期为饲料钙磷精准供给提供参考。
关键词:         吸收    转运    仔猪    营养需求    
Metabolism of Calcium and Phosphorus and Its Research Progress in Piglet Nutrition
YI Hongbo , WANG Li , YANG Xuefen , JIANG Zongyong     
State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
Abstract: As important mineral elements, calcium and phosphorus play key roles in the physiological processes of growth and development, metabolism, nerve activity and immune function in pigs. Insufficient intake and excessive accumulation or imbalance of calcium and phosphorus can cause serious nutritional and metabolic diseases. With the rapid development of animal husbandry, the massive addition of calcium and phosphorus caused the waste of resources, the increase of feed cost and environmental pollution. It is of great significance to realize the accurate supply of calcium and phosphorus in diet of livestock and poultry. Therefore, this paper summarized the distribution, absorption, transport, metabolism and interaction mechanism of calcium and phosphorus, and summarized the requirement of calcium and phosphorus in piglets and the efficiency of different sources of feed-stuffs, in order to provide a theoretical basis for the accurate supply of calcium and phosphorus in feed.
Key words: calcium    phosphorus    absorption    transport    piglets    nutrient requirement    

钙磷是动物体内含量最丰富的矿物元素,对动物的生长发育、能量代谢、信号传递等过程有重要作用[1-2]。钙磷缺乏会导致畜禽生长缓慢、饲料报酬降低、骨软化症、佝偻病以及乳热症等;钙磷过多则易导致高钙血症和高磷血症,严重时会导致软组织矿化,影响畜禽生长性能[3]。因此,饲粮中添加适量的钙磷对于畜禽的健康生长十分重要。过去由于钙磷成本较低,钙磷添加较为粗放,其精准营养供给技术的研究相对滞后。近年来随着饲料原料、磷矿等成本飙升,畜禽产品价格回落,环境保护的要求,养殖企业面临着降本增效求生存的考验。基于此,在充分了解畜禽生长营养动态需求的情况下,精准控制饲粮钙磷的添加量及方式,形成畜禽钙磷的精准营养供给技术,具有重要的科学意义和显著的经济效益。因此,本文主要从钙磷的分布和代谢规律、不同体重阶段仔猪钙磷的需要量以及不同饲料原料钙磷的吸收效率等方面进行综述,为仔猪钙磷精准营养供给提供参考。

1 钙磷在体内的分布及其作用

钙是动物机体中含量最高的矿物质,在体内99%的钙以羟基磷灰石形式存在于骨骼及牙齿中。在骨骼中,钙通过增强骨骼强度和提供钙储蓄池来发挥作用。剩余1%非骨骼钙以游离或结合态存于动物血液、组织液和软体组织中,通过在不同的钙池中进行交换,完成介导细胞内外信号传导、神经冲动传递和肌肉收缩等生理活动[1]。钙稳态通过控制肠道、肾脏和骨骼中钙转运体进行调节,将许多组织和器官连接起来并互相影响[4]。甲状旁腺激素(PTH)、降钙素和1, 25二羟基维生素D3[1, 25-(OH)2D3]是主要的血钙调节激素,当钙调激素过低或过高时,钙稳态受到破坏,造成低钙血症或高钙血症[4-5]

磷在动物体内含量仅次于钙,80%以磷灰石的形式存在于骨骼和牙齿中,还有一部分磷存在于软组织和细胞外液中充当缓冲液。磷是遗传物质和大部分酶的重要组成成分,在能量转移、遗传信息、信号传递以及维持生物膜完整性中发挥重要作用[2]。肾脏是调节磷酸盐稳态的重要器官,通过调节肾小球滤液对磷的重吸收来维持正常的血清磷水平。成纤维细胞生长因子23(fibroblast growth factor 23, FGF23)和PTH是调节磷酸盐稳态的主要激素[6]。当磷稳态受到破坏时,慢性低磷血症会导致骨骼矿化延迟,而慢性高磷血症则引起皮下、血管和神经组织中的软组织矿化。

2 钙磷的吸收和转运

机体70%~90%钙磷的吸收发生在小肠,胃和大肠约占总吸收的10%[7],其吸收方式主要为跨细胞主动转运。在肠腔内,钙通过钙转运蛋白1(CaT1)和上皮钙通道(ECAC)进入肠上皮细胞[8-9],然后与细胞内钙结合蛋白9K、27K结合转运至细胞器内。其余的Ca2+扩散至基底外侧膜,随后在钙泵Ca2+-ATP酶的作用下,经逆向转运蛋白Na+/Ca2+交换体将Ca2+排出,最终进入到门静脉[10]。此外,钙还可通过细胞旁途径中的闭合蛋白2、12、15在肠腔内被动扩散[11]。磷主要通过Na+依赖性磷酸根离子转运蛋白(PiT)和磷酸根离子-钠离子协同转运蛋白(NaPi)对磷酸根离子进行吸收。肠腔内,磷酸根离子主要经NaPi2b、PiT1和PiT2,利用Na+浓度差使其进入小肠上皮细胞。肠腔外,磷酸根离子则主要通过NaPi2a、NaPi2c、PiT1和PiT2被肠外细胞摄入。肾脏是钙磷重吸收的主要场所。未被肠道吸收的钙磷主要通过粪便排出体外,而细胞外液中未被吸收利用的钙磷离子经过肾小球时,在近端小管和远端小管被重新吸收,多余的钙磷则通过尿液排出体外(图 1)[12-13]

图 1 钙磷的吸收转运 Fig. 1 Absorption and transport of calcium and phosphorus[12-13]
3 钙磷的代谢调控及其互作

动物体内的钙磷稳态受多种因素影响,包括肠腔吸收、肾脏重吸收、钙磷排泄以及细胞外基质与骨组织之间的钙磷交换。钙磷代谢主要通过FGF23、PTH和1, 25-(OH)2D3 3种激素协同调节(图 2)。骨细胞分泌的FGF23在维持机体磷稳态发挥着关键作用。FGF23可特异性识别成纤维细胞生长因子受体1(FGF receptor 1, FGFR1),激活细胞外信号调节酶(extracellular signal regulated kinase, ERK)使钠氢交换器调节因子1(sodium-hydrogen exchanger regulatory factor 1, NHERF1)磷酸化。磷酸化后的NHERF1可将钠依赖性磷酸转运蛋白2A(sodium-dependent phosphate transport protein 2A, NPT2A)置换到溶酶体内使其降解,从而抑制磷酸盐的转运吸收。此外,FGF23还可直接通过NPT2A调节磷酸盐的再吸收[14-16]。研究表明,血清磷浓度下降会抑制骨细胞分泌FGF23,通过肾近端肾小管细胞中的NaPi Ⅱ共转运体增强肾小管对磷的重吸收,活化受抑制的FGFR1还可经羟化酶编码因子CYP27B1和CYP24A1促进1, 25-(OH)2D3分泌[17];另外,由甲状旁腺细胞分泌的PTH在维持机体钙稳态发挥重要作用。研究表明,血清钙浓度下降会引起甲状旁腺细胞中的钙受体(CaR)失活从而促进PTH分泌,随之促进肾脏中1, 25-(OH)2D3的分泌,通过激活维生素D受体(VDR)增强肾脏对钙的吸收,并抑制肾小管对磷的重吸收[18]。虽然FGF23和PTH对肾小管对磷的重吸收具有相同作用,但Pi-FGF23相较于Pi-PTH作用更加缓慢。此外,血清钙磷浓度的变化还会引起其他重要激素的分泌。降钙素是甲状腺滤泡旁细胞分泌的一种肽激素,可抑制骨的钙外流和促进成骨作用,进而迅速降低血清中的钙磷浓度,同时还可以阻断PTH与受体的结合。降钙素的分泌主要受血清钙浓度的影响,血清钙浓度升高可刺激降钙素的分泌,血清钙浓度降低则抑制其分泌[19]

Osteocyte:骨细胞;FGF23:成纤维细胞生长因子23 fibroblast growth factor 23;Kidney:肾脏;Parathyroid cell:甲状旁腺细胞;PTH:甲状旁腺激素parathyroid hormone;Calcitonin:降钙素;Bone:骨骼;Gut:肠道;[Pi]:血清磷phosphorus in serum;[Ca]:血清钙calcium in serum;TmPi:肾小管重吸收的磷maximal tubular reabsorption of Pi;1, 25D3:1, 25二羟基维生素D3 1, 25-dihydroxyvitamin D3 图 2 FGF23、PTH和1, 25-(OH)2D3激素协同调节钙磷代谢 Fig. 2 Coordinate regulation of FGF23, PTH and 1, 25-(OH)2D3 on calcium and phosphorus metabolism[1]

钙磷的代谢不是独立的,在各种营养生理过程中均存在复杂的交互作用[20]。骨骼中,钙磷代谢与成骨细胞、骨细胞和细胞外基质蛋白的形成相关[21]。正常骨生成需要吸收来源于细胞外液中的钙磷,其吸收比例约为5 ∶ 3。细胞外液钙磷浓度过低会导致骨骼去矿化,而过饱和会导致软组织矿化。钙磷浓度变化通过FGF23、PTH和1, 25-(OH)2D3维持体内钙磷的稳态。钙磷在饲粮中也存在交互作用。研究表明,大量使用钙补充剂会显著降低磷的生物利用率。反之,大量使用磷补充剂也会抑制钙吸收。因此,饲粮添加钙磷需考虑其交互作用,避免钙磷缺乏。此外,母乳是初生仔猪钙磷的主要来源,其供应钙约1 800 mg/L,磷约800 mg/L。母乳中的钙磷可与酪蛋白结合形成微胶粒,有利于仔猪吸收利用[22]

4 钙磷在仔猪营养上的应用研究 4.1 仔猪对钙磷的需要量

钙磷是猪生长发育的必需元素,不同生长阶段的猪对钙磷的需求量各不相同,其中仔猪生长发育阶段对钙磷的需求量较大,育肥阶段对钙磷的需求趋于稳定。关于断奶仔猪钙磷的需要量国内外数十年前已被大量的研究,并形成了营养需要标准。由表 1可见,随着仔猪体重增加,总钙含量从0.9%逐渐降低至0.7%,总磷含量从0.7%逐渐降至0.6%,钙磷比例维持在1.2左右。目前,国内研究主要利用总钙、总磷或有效磷等数据进行仔猪需要量研究,欧美等国家已经开始标准全消化道可消化钙(STTD Ca)和标准全消化道可消化磷(STTD P)的研究[23]。研究表明,通过STTD Ca和STTD P配制的基础饲粮同时减少了钙磷的吸收量和排放量,对猪的钙磷沉积无显著影响;过量的饲粮钙添加会影响猪的生长性能,提高饲粮磷添加量可改善此影响,故饲粮STTD Ca需求量取决于饲粮中的STTD P;按STTD钙磷比1.4 ∶ 1,此后随猪体重增长逐步降低STTD钙磷比至1.1 ∶ 1配制基础饲粮,可在不影响猪生长性能情况下,减少钙排放且不影响沉积量,提高磷的吸收效率[24-27]。因此,STTD Ca、STTD P的最适添加量及其比例的测算是实现仔猪钙磷精准供给的重要途径。此外,钙磷相关的研究对象主要为杜长大等国外引进猪种,针对我国地方猪种钙磷需要量的研究较少。

表 1 断奶仔猪不同阶段的钙磷需要量 Table 1 Calcium and phosphorus requirements of weaned piglets at different stages
FGF23:成纤维细胞生长因子23 fibroblast growth factor 23;PTH:甲状旁腺激素parathyroid hormone;PTHR:甲状旁腺激素受体parathyroid hormone receptor;CaR:钙受体calcium receptor;VDR:维生素D受体vitamin D receptor;1, 25D:1, 25二羟基维生素D 1, 25-dihydroxyvitamin D。 图 3 FGF23、PTH和1, 25-(OH)2D3调控钙磷稳态的机理 Fig. 3 Mechanisms of FGF23, PTH and 1, 25-(OH)2D3 regulating calcium and phosphorus homeostasis[1]
4.2 原料中钙磷的吸收效率

饲料原料中钙磷的存在形式与其吸收效率密切相关,植物来源的饲料原料中磷主要以植酸磷或植酸钙镁磷的形式存在,猪只难以利用[33]。不同植物原料的磷有效利用率也不同,玉米通常低于15%[34],小麦由于自身含有植酸酶,因此磷利用率接近50%[35]。动物来源的饲料原料中磷主要是无机磷,利用率相对植物原料更高[36]。各种无机磷原料中的磷利用率也不尽相同,实践生产中以磷酸氢钙、磷酸二氢钙、磷酸三钙等形式添加。对于天然饲料原料中钙的利用率的研究甚少,植物来源饲料中的钙由于植酸的存在利用率也较低,需要用石粉、贝壳粉、鱼骨粉、乳清粉等动物性原料或矿物类原料来补充钙元素[37]。考虑到原料中钙磷消化率的巨大差异,使用原料的STTD Ca和STTD P配制饲粮可能更加准确,但目前国内原料的STTD Ca和STTD P数据相对缺乏,相关研究亟待开展[38]表 2为不同饲料原料饲粮的钙磷吸收效率。相关研究表明,生长猪对乳清粉和脱脂乳粉等动物源性蛋白质的STTD Ca优于低蛋白质乳清粉,且对玉米、豆粕和菜籽粕等植物源性蛋白质的STTD P具有可加性[41];饲粮选用磷酸一二钙或磷酸二氢钙替代磷酸氢钙作为磷源,其高效的吸收效率(>75%)以及低系酸力可提高猪生长性能以及改善肠道菌群[44]

表 2 不同饲料原料饲粮的钙磷吸收效率 Table 2 Calcium and phosphorus absorption efficiency of diets with different feed materials
5 小结

综上所述,钙磷主要在小肠吸收转运,参与体内多种生化过程,其代谢稳态则通过FGF23、PTH、1, 25-(OH)2D3、降钙素等激素协同调节。钙磷的吸收利用与仔猪的生长阶段以及饲料原料中的钙磷存在形式密切相关。随着精准检测技术的发展,传统的饲料原料钙磷价值评定体系应与现代信息技术结合,应用STTD Ca、STTD P及其比例实现仔猪钙磷的精准供给。然而,我国在饲料原料营养的大数据采集分析和猪动态营养需要量的算法模型等研究领域及其有机结合应用仍处于初步阶段。因此,围绕饲料原料中STTD Ca和STTD P进行相关应用研究,利用STTD Ca和STTD P及其比例精确估测猪各个生长阶段的钙磷需要量,结合钙磷的分布、吸收、转运和代谢规律,进一步研发绿色安全高效的饲料钙磷营养源,可实现节本增效并减少环境污染的目的。

参考文献
[1]
PEACOCK M. Calcium metabolism in health and disease[J]. Clinical Journal of the American Society of Nephrology, 2010, 5(Suppl.1): S23-S30.
[2]
PEACOCK M. Phosphate metabolism in health and disease[J]. Calcified Tissue International, 2021, 108(1): 3-15. DOI:10.1007/s00223-020-00686-3
[3]
SCHRÖDER B, BREVES G. Mechanisms and regulation of calcium absorption from the gastrointestinal tract in pigs and ruminants: comparative aspects with special emphasis on hypocalcemia in dairy cows[J]. Animal Health Research Reviews, 2006, 7(1/2): 31-41.
[4]
JUST F, REYER H, MURÁNI E, et al. Genetic variants of major genes contributing to phosphate and calcium homeostasis and their association with serum parameters in pigs[J]. Journal of Applied Genetics, 2018, 59(3): 325-333. DOI:10.1007/s13353-018-0449-2
[5]
BLAINE J, CHONCHOL M, LEVI M. Renal control of calcium, phosphate, and magnesium homeostasis[J]. Clinical Journal of the American Society of Nephrology, 2015, 10(7): 1257-1272. DOI:10.2215/CJN.09750913
[6]
MCKENNA M J, CROWLEY R K, TWOMEY P J, et al. Renal phosphate handling: independent effects of circulating FGF23, PTH, and calcium[J]. JBMR Plus, 2020, 5(2): e10437.
[7]
PARTRIDGE I G. Studies on digestion and absorption in the intestines of growing pigs.3.Net movements of mineral nutrients in the digestive tract[J]. British Journal of Nutrition, 1978, 39(3): 527-537. DOI:10.1079/BJN19780068
[8]
PENG J B, BROWN E M, HEDIGER M A. Epithelial Ca2+ entry channels: transcellular Ca2+ transport and beyond[J]. The Journal of Physiology, 2003, 551(Pt.3): 729-740.
[9]
PENG J B, BROWN E M, HEDIGER M A. Apical entry channels in calcium-transporting epithelia[J]. News in Physiological Sciences, 2003, 18: 158-163.
[10]
STAFFORD N, WILSON C, OCEANDY D, et al. The plasma membrane calcium ATPases and their role as major new players in human disease[J]. Physiological Reviews, 2017, 97(3): 1089-1125. DOI:10.1152/physrev.00028.2016
[11]
HOENDEROP J G J, NILIUS B, BINDELS R J M. Calcium absorption across epithelia[J]. Physiological Reviews, 2005, 85(1): 373-422. DOI:10.1152/physrev.00003.2004
[12]
KOGA T, SHIMADA Y, SATO K, et al. Contribution of ferrous iron to maintenance of the gastric colonization of Helicobacter pylori in miniature pigs[J]. Microbiological Research, 2002, 157(4): 323-330. DOI:10.1078/0944-5013-00169
[13]
FRIEDMAN P A, GESEK F A. Calcium transport in renal epithelial cells[J]. The American Journal of Physiology, 1993, 264(2Pt.2): F181-F198.
[14]
GATTINENI J, ALPHONSE P, ZHANG Q Y, et al. Regulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4[J]. American Journal of Physiology.Renal Physiology, 2014, 306(3): F351-F358. DOI:10.1152/ajprenal.00232.2013
[15]
ANDRUKHOVA O, ZEITZ U, GOETZ R, et al. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway[J]. Bone, 2012, 51(3): 621-628. DOI:10.1016/j.bone.2012.05.015
[16]
SNEDDON W B, RUIZ G W, GALLO L I, et al. Convergent signaling pathways regulate parathyroid hormone and fibroblast growth factor-23 action on NPT2A-mediated phosphate transport[J]. Journal of Biological Chemistry, 2016, 291(36): 18632-18642. DOI:10.1074/jbc.M116.744052
[17]
QUARLES L D. Endocrine functions of bone in mineral metabolism regulation[J]. The Journal of Clinical Investigation, 2008, 118(12): 3820-3828. DOI:10.1172/JCI36479
[18]
KRONENBERG H M. NPT2a——the key to phosphate homeostasis[J]. New England Journal of Medicine, 2002, 347(13): 1022-1024. DOI:10.1056/NEJMe020098
[19]
NAOT D, MUSSON D S, CORNISH J. The activity of peptides of the calcitonin family in bone[J]. Physiological Reviews, 2019, 99(1): 781-805. DOI:10.1152/physrev.00066.2017
[20]
CRENSHAW T D, RORTVEDT L A, HASSEN Z. Triennial growth symposium: a novel pathway for vitamin D-mediated phosphate homeostasis: implications for skeleton growth and mineralization[J]. Journal of Animal Science, 2011, 89(7): 1957-1964. DOI:10.2527/jas.2010-3411
[21]
QIN C, BABA O, BUTLER W T. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis[J]. Critical Reviews in Oral Biology and Medicine, 2004, 15(3): 126-136. DOI:10.1177/154411130401500302
[22]
张海军. 长约二元母猪初乳常规成分、酶和激素的动态变化及其与常乳的比较研究[D]. 硕士学位论文. 郑州: 河南农业大学, 2002.
ZHANG H J. Study on dynamic changes of conventional ingredients, enzymes and hormones in sows colostrum and their comparisons with milk[D]. Master's Thesis. Zhengzhou: Henan Agricultural University, 2002. (in Chinese)
[23]
MAISON T, LIU Y, STEIN H H. Apparent and standardized total tract digestibility by growing pigs of phosphorus in canola meal from North America and 00-rapeseed meal and 00-rrapeseed expellers from Europe without and with microbial phytase[J]. Journal of Animal Science, 2015, 93(7): 3494-3502. DOI:10.2527/jas.2015-9055
[24]
LAGOS L V, LEE S A, BEDFORD M R, et al. Formulating diets based on digestible calcium instead of total calcium does not affect growth performance or carcass characteristics, but microbial phytase ameliorates bone resorption caused by low calcium in diets fed to pigs from 11 to 130 kg[J]. Journal of Animal Science, 2021, 99(3): skab057. DOI:10.1093/jas/skab057
[25]
LAGOS L V, LEE S A, BEDFORD M R, et al. Formulation of diets for pigs based on a ratio between digestible calcium and digestible phosphorus results in reduced excretion of calcium in urine without affecting retention of calcium and phosphorus compared with formulation based on values for total calcium[J]. Journal of Animal Science, 2021, 99(5): skab138. DOI:10.1093/jas/skab138
[26]
MERRIMAN L A, WALK C L, MURPHY M R, et al. Inclusion of excess dietary calcium in diets for 100- to 130-kg growing pigs reduces feed intake and daily gain if dietary phosphorus is at or below the requirement[J]. Journal of Animal Science, 2017, 95(12): 5439-5446. DOI:10.2527/jas2017.1995
[27]
LAGOS L V, LEE S A, FONDEVILA G, et al. Influence of the concentration of dietary digestible calcium on growth performance, bone mineralization, plasma calcium, and abundance of genes involved in intestinal absorption of calcium in pigs from 11 to 22 kg fed diets with different concentrations of digestible phosphorus[J]. Journal of Animal Science and Biotechnology, 2019, 10: 47. DOI:10.1186/s40104-019-0349-2
[28]
林映才, 蒋宗勇, 余德谦, 等. 4~9 kg超早期断奶仔猪钙需求参数研究[J]. 养猪, 2002(1): 11-13.
LIN Y C, JIANG Z Y, YU D Q, et al. Study on the calcium requirement of 4 to 9 kg early weaned piglets[J]. Swine Production, 2002(1): 11-13 (in Chinese). DOI:10.3969/j.issn.1002-1957.2002.01.003
[29]
林映才, 蒋宗勇. 生长肥育猪有效磷需要量的研究[J]. 养猪, 2002(4): 1-7.
LIN Y C, JIANG Z Y. Study on dietary available phosphorus requirement of growing-finishing pigs[J]. Swine Production, 2002(4): 1-7 (in Chinese). DOI:10.3969/j.issn.1002-1957.2002.04.001
[30]
蒋宗勇, 林映才, 姜文联, 等. 仔猪钙需要量的研究[J]. 动物营养学报, 1998, 10(4): 50-55.
JIANG Z Y, LIN Y C, JIANG W L, et al. Calcium requirement of piglet[J]. Chinese Journal of Animal Nutrition, 1998, 10(4): 50-55 (in Chinese).
[31]
蒋宗勇, 林映才, 姜文联, 等. 仔猪有效磷需要量的研究[J]. 动物营养学报, 1999, 11(1): 44-50.
JIANG Z Y, LIN Y C, JIANG W L, et al. Study on available phosphorus requirement of piglets[J]. Chinese Journal of Animal Nutrition, 1999, 11(1): 44-50 (in Chinese).
[32]
姜海迪. 钙源和水平对断奶SD大鼠及断奶仔猪生产性能和钙磷利用率的影响[D]. 硕士学位论文. 雅安: 四川农业大学, 2012.
JIANG H D. Effect of calcium source and level on performance and bioavailability of calcium and phosphorus of weaning SD rats and pigs[D]. Master's Thesis. Ya'an: Sichuan Agricultural University, 2012. (in Chinese)
[33]
ACOSTA J A, PATIENCE J F. Insoluble dietary fiber does not affect the ability of phytase to release phosphorus from phytate in the diet of nursery pigs[J]. Journal of Animal Science, 2019, 97(8): 3451-3459. DOI:10.1093/jas/skz194
[34]
BAYLEY H S, THOMSON R G. Phosphorus requirements of growing pigs and effect of steam pelleting on phosphorus availability[J]. Journal of Animal Science, 1969, 28(4): 484-491. DOI:10.2527/jas1969.284484x
[35]
CROMWELL G L. The biological availability of phosphorus in feedstuffs for pigs[J]. Pig News and Information, 1992, 13: 75N-78N.
[36]
SELLE P H, COWIESON A J, RAVINDRAN V. Consequences of calcium interactions with phytate and phytase for poultry and pigs[J]. Livestock Science, 2009, 124(1/2/3): 126-141.
[37]
MALDE M K, GRAFF I E, SILJANDER-RASI H, et al. Fish bones—a highly available calcium source for growing pigs[J]. Journal of Animal Physiology and Animal Nutrition, 2010, 94(5): e66-e76. DOI:10.1111/j.1439-0396.2009.00979.x
[38]
张帅, 刘岭, 王凤来, 等. 猪饲料原料营养价值与动态营养需要量模型化研究进展[J]. 动物营养学报, 2020, 32(10): 4525-4539.
ZHANG S, LIU L, WANG F L, et al. Research progress on modeling of nutrient values and dynamic nutrient requirements of pig feed ingredients[J]. Chinese Journal of Animal Nutrition, 2020, 32(10): 4525-4539 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.10.006
[39]
刘静波, 杨跃奎, 何健, 等. 生长猪对玉米和豆粕中磷真消化率的评定及可加性研究[J]. 中国畜牧杂志, 2014, 50(19): 61-65.
LIU J B, YANG Y K, HE J, et al. Evaluation of true digestibility of phosphorus in corn and soybean meal and its additivity in growing pigs[J]. Chinese Journal of Animal Science, 2014, 50(19): 61-65 (in Chinese). DOI:10.3969/j.issn.0258-7033.2014.19.014
[40]
刘静. 饲粮磷来源和水平以及生长阶段对猪后肠磷消化的影响[D]. 硕士学位论文. 绵阳: 西南科技大学, 2020.
LIU J. Effects of dietary phosphorus sources, concentration and growth stage on postileal phosphorus digestion in pigs[D]. Master's Thesis. Mianyang: Southwest University of Science and Technology, 2020. (in Chinese)
[41]
佘玥. 生长猪对蛋白原料钙磷标准全肠道消化率的评价及植酸酶的影响[D]. 博士学位论文. 北京: 中国农业大学, 2017.
SHE Y. Evaluation of standardized total tract digestibility of calcium and phosphorus in protein ingredients fed to growing pigs and effects of phytase[D]. Ph. D. Thesis. Beijing: China Agricultural University, 2017. (in Chinese)
[42]
ADERIBIGBE A, AJUWON K, ADEOLA O. Digestibility of phosphorus in growing pigs as influenced by source and concentration of dietary phosphorus and collection site[J]. Journal of Animal Physiology and Animal Nutrition, 2021, 105(6): 1046-1055. DOI:10.1111/jpn.13516
[43]
SULABO R C, STEIN H H. Digestibility of phosphorus and calcium in meat and bone meal fed to growing pigs[J]. Journal of Animal Science, 2013, 91(3): 1285-1294. DOI:10.2527/jas.2011-4632
[44]
刘景, 陈炳钿, 何姝颖, 等. 不同磷源对育肥猪生长性能、血清指标、骨骼钙和磷代谢以及肠道微生物的影响[J]. 动物营养学报, 2022, 34(1): 104-114.
LIU J, CHEN B D, HE S Y, et al. Effects of different phosphorus sources on growth performance, serum indices, bone calcium and phosphorus metabolism and intestinal microbes of finishing pigs[J]. Chinese Journal of Animal Nutrition, 2022, 34(1): 104-114 (in Chinese).