2. 中国农业科学院北京畜牧兽医研究所, 北京 100193
2. Beijing Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing 100193, China
柑橘属于芸香科柑橘属植物,全世界每年的柑橘产量可达1 000多万t,是世界上第一大类水果,其中50%~60%作为新鲜水果被人们食用,其余的被用作工业生产[1-2],其产生的副产品富含黄酮、柠檬烯和精油等多种活性成分,其中含有的橙皮苷、柚子苷及橘皮素等黄酮类化合物是动物饮食中黄酮类化合物的主要来源[3-4]。中国的柑橘产业在世界上占有重要地位,为世界的水果供应做出了巨大贡献,但是在生产加工过程中产生的大量皮渣引出了一系列资源浪费与环境污染问题,这些柑橘加工后剩余的副产品含有丰富的黄酮类物质,合理的提取利用这些剩余副产品具有重要的生态及社会意义。
柑橘黄酮及其提取物具有显著的抗菌、抗炎、抗氧化、抗肿瘤、免疫调节和调节脂质代谢等多种生物活性作用[5-6]。2021年7月27日,欧盟食品安全局发表声明:富含黄酮类化合物的柑橘提取物可以作为一种饲料添加剂在动物生产中使用,其在饲粮中的功能与在食物中的功能基本相同。相关试验也表明,在动物饲粮中添加柑橘黄酮可以提高动物抗炎、抗氧化能力及免疫力,改善动物的生产性能[7]。随着人们对非常规饲料资源的开发与应用,柑橘皮渣以其来源广泛、成本低廉、营养成分与活性物质丰富的优点开始被广泛关注,并在畜牧养殖中开始应用,但是有关柑橘黄酮提取方法与发挥活性作用机制的研究较少。因此,本文综述了柑橘黄酮的提取方法、活性作用机制及柑橘提取物在动物生产上的应用,以期为柑橘黄酮及柑橘提取物在畜牧养殖上的进一步应用与推广提供理论依据和生产指导。
1 柑橘黄酮的主要活性成分与提取方法柑橘黄酮主要富集在柑橘属果实的外皮中,柑橘果肉与外皮包含170多种植物化学成分,其中已鉴定出的黄酮类化合物有80种,主要分为黄烷酮类和多甲氧基黄酮类2类,黄烷酮类含量最高,约占黄酮类化合物的80%,其主要成分为橙皮苷、新橙皮苷、柚皮苷和云香柚皮苷等;多甲氧基黄酮类次之,主要成分为橘皮素、甜橙黄酮及川陈皮素等,橘皮素等多甲氧基黄酮是柑橘属中特有的物质,黄烷酮类和多甲氧基黄酮类这两大类物质均具有一定的抗炎、抗氧化活性[8-9]。有效的分离和纯化是得到柑橘黄酮的基础和前提,不同的提取工艺对柑橘黄酮的成分具有一定的影响,目前对柑橘黄酮进行提取的方法主要有有机溶剂浸提法、超声波辅助提取法、酶提法、亚临界水萃取法、闪式提取法和高效液相色谱法等[8, 10],其主要提取方法与优缺点见表 1。
![]() |
表 1 柑橘黄酮的提取方法比较 Table 1 Comparison of extraction methods of citrus flavonoids |
黄酮类活性物质结构中的羟基可以与细菌β-葡萄糖醛酸苷酶中的活性位点结合,抑制细菌内皮细胞生长因子产生,影响细胞膜通透性,抑制细菌生物膜的形成,影响细菌内细胞信号的传导,降低核苷酸和细菌体内能量合成速率,发挥抗菌活性[19-20]。研究发现,不同种属的柑橘黄酮可以通过抑制细胞代谢活性及细菌形成生物膜的方式阻碍细菌生长,并显著抑制大肠杆菌(Escherichia coli)、单核细胞增生李斯特菌(Listeria monocytogenes)、绿脓杆菌(Pseudomonas aeruginosa)、金黄色葡萄球菌(Staphylococcus aureus)和胡萝卜软腐果胶杆菌(Pectobacterium carotovorum)的生长[21]。同样,柑橘不同部位的黄酮提取物均有显著的抑菌效果,相比之下,果皮提取物比果肉提取物的抑菌效果更为显著,柑橘黄酮中富含的多甲氧基黄酮能直接破坏细菌细胞壁,使细胞的Na+和K+从细胞内壁流向细胞外壁,抑制革兰氏阳性菌和革兰氏阴性菌的生长[22]。Ulhaq等[23]也证明0.625%的柑橘黄酮对革兰氏阴性菌鼠伤寒沙门氏菌具有显著的抑制作用。此外,1%~4%的柑橘皮水提酸解物(酸水解目的是为了让类黄酮苷释放游离糖,可提高柑橘皮提取物中黄酮的活性)可降低4 ℃贮藏牛奶中的单核细胞增生李斯特菌的增值,并且对蜡样芽孢杆菌(Bacillus cereus)和金黄色葡萄球菌等有害菌的生长表现出抑制作用[24]。
2.2 抗炎柑橘黄酮独特的结构是其发挥抗炎活性的关键,在柑橘黄酮中B环3位和4位的羟基取代基黄酮是一种脂氧合酶抑制剂,含有5个及更多的甲氧基取代基黄酮,具有显著的磷酸二酯酶抑制活性[25]。柑橘黄酮可以通过抑制蛋白激酶、类花生酸合成酶、磷酸二酯酶和前列腺素合成等多种途径与方式发挥抗炎活性[26]。柑橘黄酮中富含的柚皮苷、橙皮苷和柚皮素等物质可以抑制嗜中性粒细胞产生超氧自由基,激活胱天蛋白酶-3(Caspase-3,凋亡执行的标志物),逆转活性氧通过降低Caspase-3抑制细胞凋亡的过程,发挥抗炎作用[27]。柑橘黄酮也能通过降低环氧合酶-2(COX-2)和诱导型一氧化氮合酶(iNOS)的表达,抑制肿瘤坏死因子-α(TNF-α)诱导的核因子-κB(NF-κB)途径,减少炎性细胞浸润,抑制促炎性细胞因子的产生[28]。从柑橘中分离出的橙皮素、橙皮苷等物质在抗炎过程中发挥显著作用,橙皮素通过促进Toll样受体4(TLR4)介导的游离钙结合转接器分子1/胶质纤维酸性蛋白(Iba-1/GFAP)的表达,显著降低炎性细胞因子的表达,减少脂多糖(LPS)诱导的活性氧/脂质过氧化物(ROS/LPO)的产生,提高脑中核转录因子红系2相关因子2(Nrf2)和血红素加氧酶-1(HO-1)等抗氧化蛋白的水平,降低磷酸化c-Jun N末端激酶(p-JNK)、B细胞淋巴瘤2(Bcl-2)相关X蛋白(Bax)和Caspase-3蛋白的表达,并提高Bcl-2蛋白水平,以此来改善LPS诱导的细胞毒性和ROS/LPO[29];橙皮苷也能以剂量依赖的方式抑制促炎细胞因子[TNF-α、白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)]、炎性酶(COX-2和iNOS)和Caspase-3的表达,显著下调NF-κB的表达来减少炎症,同时其可以通过抑制NF-κB抑制蛋白(IκB)、p38、c-Jun氨基末端激酶(JNK)和细胞外调节蛋白激酶(ERK)的磷酸化来调节丝裂原活化蛋白激酶(MAPK)[主要的2种转录因子:激活蛋白-1(AP-1)、缺氧诱导因子-1α(HIF-1α)]和NF-κB信号通路,达到抗炎的目的[30]。大量研究证明柑橘中的黄酮类化合物具有显著的抗炎作用,但其作用的分子机制研究主要集中在体外试验,并且其在不同动物中的使用剂量也尚未明确。
2.3 抗氧化柑橘黄酮具有显著清除自由基的能力,能抑制脂质氧化,提高机体抗氧化酶活性,减少体内过氧化物的形成,其还可以提高过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、对氧磷酶(PON)等抗氧化酶的活性,显著增强机体的抗氧化能力[31]。此外,柑橘黄酮能通过螯合变价金属离子的方式发挥抗氧化活性,其含有的橙皮苷可与Cu(Ⅱ)按2 ∶ 1形成螯合物,抑制氢过氧化物分解,进而发挥抗氧化作用[32]。对柑橘黄酮中的单体比较发现,其黄酮物质中B环3’, 4’端连接羟基形成邻羟基可以显著增强抗氧化能力,B环中4’端甲基化后抗氧化能力减弱,这是由于甲氧基结构稳定无法在体外清除自由基的性质所导致的[33]。不同品种的柑橘提取出的柑橘黄酮其抗氧化能力存在显著的差异,Huang等[34]对不同品种的柑橘黄酮的抗氧化能力进行比较后发现,8个不同品种柑橘黄酮的抗氧化能力表现为椪柑>橘子>柠檬>葡萄柚>柑橘>金桔>柚子>甜橙,且这些柑橘提取出的黄酮可以通过氢键和范德华力与脂肪酶相互作用发挥生物活性。此外,杨雪妍[35]对柑橘黄酮中含量较高的4种黄酮(橙皮素、柚皮素、橘皮素、川陈皮素)的抗氧化能力进行比较后发现,4种黄酮的抗氧化能力指数(ORAC)高低依次为川陈皮素>橙皮素>柚皮素>橘皮素,且川陈皮素清除自由基的能力最强,橘皮素则最弱,4种黄酮的浓度在200 μmol/L内对细胞没有毒性,但4种黄酮共同使用时具体是发挥拮抗还是协同作用尚未见报道。综上可知,柑橘黄酮具有显著的抗氧化活性,可以维持动物体内的自由基稳态,促进动物氧化应激-炎症反应-免疫三方联动效应的稳定[36]。
2.4 调节免疫黄酮类活性物质可以通过上调免疫与下调免疫进行免疫双向调节,其通过调节B淋巴细胞和T淋巴细胞以及改善白细胞介素和肿瘤坏死因子的分泌达到调节机体免疫的目的[37]。动物健康营养理论也指出动物免疫状态与氧化应激、炎症反应是密不可分的,即氧化应激-炎症-免疫失衡三方联动效应理论,其指出,在动物养殖过程中可以通过营养干预的方式降低炎症反应和氧化应激(维持自由基稳态),维持免疫稳态,促进机体健康,预防发生亚健康和疾病[36]。研究表明,柑橘黄酮是一种效果显著的营养干预物质,它能显著提高动物体内的免疫球蛋白E(IgE)和免疫球蛋白G(IgG)水平,增强来源于骨髓的树突状细胞呈递抗原的能力,提高抗原特异性细胞免疫和体液免疫反应[38]。同时,柑橘黄酮中的柚皮素能以剂量依赖性的方式抑制抗CD3/CD28和MOG35-55诱导的T细胞增殖,产生T细胞因子,干扰活化T细胞中白细胞介素-2(IL-2)/白细胞介素-2受体(IL-2R)介导的信号通路和信号传导及转录激活蛋白5(STAT5)磷酸化途径[39],并通过影响非受体型酪氨酸蛋白激酶2-信号传导及转录激活蛋白3(JAK2/STAT3)信号通路,调节巨噬细胞极化,改善动物的免疫状态[40]。柑橘黄酮中的3, 5, 6, 7, 8, 3’, 4-七甲基乙氧基黄酮可降低抗D3/CD28抗体刺激的小鼠脾细胞对3-(4, 5-二甲基噻唑-2-基)-2, 5-二苯基四唑溴化铵(MTT)的还原作用,抑制磷酸二酯酶(磷酸二酯酶4B和磷酸二酯酶3B)活性,增加环磷酸腺苷(cAMP)含量,提高动物的免疫能力[41]。综合柑橘黄酮对炎症、氧化应激和免疫3个方面的影响可知,其可以作为一种效果显著的营养活性物质来维持动物自由基稳态和免疫平衡稳态,进而改善动物的健康状态。
2.5 调节脂质代谢柑橘黄酮在多种高脂食物诱导的动物试验中表现出显著的调节脂质代谢作用,柑橘黄酮可以依赖于AMP依赖的蛋白激酶(AMPK)-α途径抑制过氧化物酶体增殖物激活受体γ(PPARγ)和CCAAT/增强子结合蛋白α,增强产热因子(包括解偶联蛋白1和PPARγ共激活因子1α)分化,促进热产生及抑制脂肪生成[42]。同时,柑橘黄酮中完全甲氧基化的A环可以抑制肝脏载脂蛋白B(apoB)的分泌,在不影响低密度脂蛋白的条件下,适度抑制胆固醇和甘油三酯的合成,进而降低血液中脂质的浓度,发挥降低血脂的作用,其含有的橘皮素和川陈皮素是发挥降低脂质活性的主要物质基础[43]。柑橘黄酮也可以通过调节Nrf2-抗氧化反应元件(ARE)信号通路,增强抗氧化基因HO-1、醌氧化还原酶1(NQO1)、r-谷氨酰半胱氨酸合成酶(r-GCS)表达,显著提高抗氧化能力,降低氧化损伤,改善脂质代谢[44]。此外,柑橘黄酮也可以通过对肠道微生物群的双向调节作用提高去甲基化活性和短链脂肪酸(SCFA)产量,调节异杆菌属(Allobaculum)和罗氏菌属(Roseburia)与柑橘黄酮的生物转化,增加体内脂质代谢的途径[45]。目前广泛的研究关注于柑橘黄酮在AMPK信号通路上对脂质代谢的影响,而对其他代谢途径的关注较少,并且柑橘黄酮在实际应用中的剂量、周期和适用群体不尽相同,其具体调节脂质代谢的机制还有待进一步研究。
2.6 保护肠道健康柑橘类植物及其生物活性物质可以作为膳食补充剂和功能性成分在保护肠道健康方面发挥重要作用,通过保护肠黏液层、调节肠道免疫系统、对抗肠道氧化应激、积极塑造微生物组和代谢组等多种途径保护肠道健康[46]。柑橘黄酮通过磷脂酶C(PLC)、蛋白激酶C(PKC)、激酶(ERK)1-2途径诱导2种主要肠凝胶形成黏蛋白(Muc)2和Muc5AC的分泌,阻断
受体相互作用蛋白激酶3/混合谱系激酶结构域样蛋白(RIPK3/MLKL)坏死因子信号传导,上调Muc2表达,维持上皮屏障功能,保护肠黏液层[47-48]。纯化后富含柑橘多甲氧基黄酮提取物(PMFE)的代谢调节作用主要依赖于肠道微生物群,PMFE显著地富集了卵形拟杆菌(Bacteroides ovatus),降低肥胖小鼠的支链氨基酸(BCAA)浓度,有效改善高脂饮食诱导的代谢综合征,缓解肠道失调,调节BCAA代谢[49]。不仅如此,肠道微生物群代谢柑橘黄酮的同时,柑橘黄酮也在影响着微生物结构,在动物体内双歧杆菌属(Bifidobacterium)和乳杆菌属(Lactobacillus)是参与柑橘黄烷酮的主要代谢细菌,它们通过切割黄烷酮骨架上的芸香苷基,催化柑橘黄烷酮的环裂变,发生去甲基化和脱羟基化,产生比母体生物利用度更高的苯丙酸,再进一步发挥生物活性[50];而柑橘黄酮可以降低厚壁菌与拟杆菌比率并富集拟杆菌,提高嗜黏蛋白阿克曼菌(Akkermansia muciniphila)和异杆菌属(Allobaculum)2种肠道保护细菌的相对丰度,调节肠道生态失调[49, 51]。此外,柑橘黄酮还可以通过优化微生物区系,提高肠道中SCFA的浓度,维持并调节宿主的肠道代谢稳态[46, 52]。
3 柑橘提取物在动物生产中的应用 3.1 在反刍动物上的应用在奶牛饲粮中添加柑橘提取物对奶牛干物质采食量、喂养行为、产奶量、乳脂率、乳蛋白率和乳成分没有显著影响,但提高了总C16脂肪酸的浓度,且降低了血浆胰岛素的浓度,对奶牛的生理状态具有一定的改善作用[53]。Williams等[54]用柑橘代替饲粮中的部分苜蓿时,发现其对奶牛瘤胃发酵及生产性能没有产生任何不良影响,这说明柑橘可以作为一种低成本的饲料补充剂降低奶牛养殖成本。Santos等[55]给奶牛饲喂含18% DM柑橘皮渣的饲粮时,牛乳中单不饱和脂肪酸的含量升高﹐饱和脂肪酸的含量降低,当添加量为9%~18% DM时,乳中总多酚和黄酮含量增加,同时乳的抗氧化能力也显著提高;瘤胃内容物和瘤胃液中真菌和古菌的相对丰度增加,更有效地促进瘤胃发酵[56]。使用脱水柑橘饲喂奶牛能降低血液中葡萄糖和尿素氮浓度,增加非酯化脂肪酸浓度,缓解脂多糖诱导的奶牛炎症反应[57]。此外,用干燥柑橘皮渣代替玉米饲喂断奶羔羊时发现柑橘皮渣对瘤胃pH及门水平的微生物组成没有显著影响,但极显著提高了乙丙比,降低了丙酸和异戊酸浓度,在属水平上提高了瘤胃菌群的多样性,促进了羔羊瘤胃上皮肌层和瘤胃乳头的发育,提高了瘤胃内营养物质的消化吸收[58];柑橘渣还可以增加肉牛瘤胃中总挥发性脂肪酸、乙酸盐和异戊酸盐的浓度以及乙酸盐与丙酸盐的比例,降低丙酸盐的浓度,提高饲粮中干物质、有机物和无机物的表观消化率[59]。综上可知,柑橘可以作为一种非常规饲料添加在奶牛饲粮中,且柑橘提取物有望成为改善反刍动物生产性能的饲料添加剂。
3.2 在家禽上的应用在生产中,合理的使用天然植物饲料添加剂能改善家禽的健康状态及生产性能。在肉鸡饲粮中添加10 mg/kg的柑橘提取物可显著改善血浆总蛋白、白蛋白和葡萄糖浓度,降低血浆尿素浓度[60],并且能显著提高肠道中厌氧杆菌属(Barnesiella)、布劳特氏菌属(Blautia)、双歧杆菌属和乳杆菌属的数量,降低另枝菌属(Alistipes)、拟杆菌属(Bacteroides)和大肠杆菌(Escherichia coli)的数量,增加盲肠中乳酸、SCFA、乙酸盐和丁酸盐的浓度,降低氨基酸发酵产物(氨、胺、对甲酚和吲哚)的浓度,并上调回肠屏障基因闭锁小带蛋白-1(ZO-1)和封闭蛋白(Claudin)的mRNA表达,增强黏膜免疫稳态,营造更适合宿主健康生产的肠道环境[61],同时也可以提高IgG和免疫球蛋白M(IgM)的抗体滴度反应,增强肉鸡的体液免疫和抗病性[62]。当肉鸡处于热应激条件下时,补充400 mg/kg柑橘提取物(柑橘黄酮含量为47.9%)可显著提高鸡红细胞谷胱甘肽过氧化物酶和超氧化物歧化酶活性,升高血浆生长激素浓度及血清总磷、总蛋白和氯化物浓度,降低血清低密度脂蛋白和胆固醇浓度,提高肉鸡的抗应激能力和免疫力[63]。在蛋鸡饲粮中添加柑橘提取物物时,其能提高鸡蛋蛋黄的氧化稳定性,改善蛋黄颜色,降低鸡蛋中胆固醇的含量,提高鸡蛋品质[64-65]。此外,鹅饲粮中添加4%的柑橘提取物时有提高鹅日增重的趋势,添加量不高于16%时不会对鹅产生任何不良反应[66]。家禽属于小型家畜,在饲粮中添加柑橘提取物时应注意添加剂量,以免过量添加造成应激等不良反应。
3.3 在猪上的应用柑橘副产品及其提取物可以有效提高猪的免疫能力和抗应激能力,调节肠道健康。崔艺燕等[67-69]发现,长期在育肥猪的饲粮中添加柑橘提取物(黄酮含量为20.77%)时,育肥猪体内免疫球蛋白A(IgA)水平显著提高,抗炎、抗氧化水平也均显著提高,促进了猪体内免疫稳态,同时还增强了肠道内蛋白酶和脂肪酶活性,降低了淀粉酶活性,提高了小肠绒毛高度与隐窝深度的比率和结肠中乙酸浓度,促进了粪杆菌属(Faecalibacterium spp.)和巨球型菌属(Megasphaera spp.)等有益菌的增殖,调节结肠的发酵模式,有效缓解断奶仔猪的应激反应,其在不影响猪生产性能的情况下能提高猪的健康状态,利于其高效生产。在不同饲粮蛋白质水平下,需要合理的使用柑橘提取物,其添加在低蛋白质(16%)饲粮中不会影响猪的整体生长性能,但会轻微增加断奶仔猪肠道形态的损伤,减少蛋白质发酵代谢产物,改变断奶仔猪肠道的发酵模式,但其添加在高蛋白(20%)质饲粮中会则促进猪对饲粮中营养物质的吸收[70]。此外,补充0.2~0.25 mg/kg柑橘提取物也可以在不影响猪生长性能、胴体特征和肉质的前提下,增加肌内脂肪含量,提高十五烷酸(C15 ∶ 0)浓度和超氧化物歧化酶活性,改善部分肉质指标[71]。总之,在猪饲粮中添加柑橘提取物不会对猪的生产性能产生负面影响,其可以改善猪机体免疫状态,提高肠道健康,能作为一种非常规饲料资源应用在猪生产中。
4 小结与展望柑橘黄酮来源广泛,含量丰富,可以预防与氧化应激、炎症和免疫功能失调有关的动物健康问题[72],促进动物健康生长,提高畜产品品质,有望成为天然绿色饲料添加剂。目前,柑橘黄酮和柑橘提取物在动物生产中应用的研究主要集中在柑橘皮渣和柑橘粗提物,其在动物体内发挥活性作用的机制尚未阐明,深入挖掘柑橘黄酮在动物体内的代谢途径与作用机制,将有助于为其在动物生产中的研究与应用提供理论支持,促进动物的绿色健康养殖;此外,如何提取纯化柑橘副产品中的黄酮类活性物质也是亟待解决的问题。深入研究发掘柑橘黄酮的应用价值将有助于缓解饲料资源紧缺,减少环境污染,促进畜禽健康绿色养殖。
[1] |
ZEMA D A, CALABRÒ P S, FOLINO A, et al. Valorisation of citrus processing waste: a review[J]. Waste Management, 2018, 80: 252-273. DOI:10.1016/j.wasman.2018.09.024 |
[2] |
SHARMA K, MAHATO N, CHO M H, et al. Converting citrus wastes into value-added products: economic and environmently friendly approaches[J]. Nutrition, 2017, 34: 29-46. DOI:10.1016/j.nut.2016.09.006 |
[3] |
SMERIGLIO A, CORNARA L, DENARO M, et al. Antioxidant and cytoprotective activities of an ancient Mediterranean citrus (Citrus lumia Risso) albedo extract: microscopic observations and polyphenol characterization[J]. Food Chemistry, 2019, 279: 347-355. DOI:10.1016/j.foodchem.2018.11.138 |
[4] |
CHHIKARA N, KOUR R, JAGLAN S, et al. Citrus medica: nutritional, phytochemical composition and health benefits-a review[J]. Food & Function, 2018, 9(4): 1978-1992. |
[5] |
PUTNIK P, BURSAĆKOVA ČEVIĆ D, REŽEK JAMBRAK A, et al. Innovative "green" and novel strategies for the extraction of bioactive added value compounds from citrus wastes-a review[J]. Molecules, 2017, 22(5): 680. DOI:10.3390/molecules22050680 |
[6] |
NAKAJIMA V M, MOALA T, CARIA C R E P, et al. Biotransformed citrus extract as a source of anti-inflammatory polyphenols: effects in macrophages and adipocytes[J]. Food Research International, 2017, 97: 37-44. DOI:10.1016/j.foodres.2017.03.034 |
[7] |
BAMPIDIS V, AZIMONTI G, BASTOS M L, et al. Safety and efficacy of a feed additive consisting of a flavonoid-rich dried extract of Citrus×aurantium L. fruit (bitter orange extract) for use in all animal species (FEFANA asbl)[J]. EFSA Journal, 2021, 19(7): e06709. |
[8] |
李阳, 曹婷, 安琪, 等. 柑橘中黄酮类化合物的提取技术、功能特性及应用研究进展[J/OL]. 食品工业科技, 2021: 1-12. (2021-08-31). https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SPKJ20210825004&DbName=CAPJ2021. LI Y, CAO T, AN Q, et al. Advance on extraction technology and functional properties of flavonoids in citrus[J/OL]. Science and Technology of Food Industry, 2021: 1-12. (2021-08-31). https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SPKJ20210825004&DbName=CAPJ2021. (in Chinese) |
[9] |
GATTUSO G, BARRECA D, GARGIULLI C, et al. Flavonoid composition of Citrus juices[J]. Molecules, 2007, 12(8): 1641-1673. DOI:10.3390/12081641 |
[10] |
GÓMEZ-MEJÍA E, ROSALES-CONRADO N, LEÓN-GONZÁLEZ M E, et al. Citrus peels waste as a source of value-added compounds: extraction and quantification of bioactive polyphenols[J]. Food Chemistry, 2019, 295: 289-299. DOI:10.1016/j.foodchem.2019.05.136 |
[11] |
BAJKACZ S, ADAMEK J. Development of a method based on natural deep eutectic solvents for extraction of flavonoids from food samples[J]. Food Analytical Methods, 2018, 11(5): 1330-1344. DOI:10.1007/s12161-017-1118-5 |
[12] |
YAN Y, ZHOU H, WU C H, et al. Ultrasound-assisted aqueous two-phase extraction of synephrine, naringin, and neohesperidin from Citrus aurantium L. fruitlets[J]. Preparative Biochemistry & Biotechnology, 2021, 51(8): 780-791. |
[13] |
BARBOSA P D P M, RUVIARO A R, MACEDO G A. Conditions of enzyme-assisted extraction to increase the recovery of flavanone aglycones from pectin waste[J]. Journal of Food Science and Technology, 2021, 58(11): 4303-4312. DOI:10.1007/s13197-020-04906-4 |
[14] |
刘志聪, 郑丹萍. 微波辅助法提取潮州柑橘皮中总黄酮的工艺研究[J]. 安徽农业科学, 2021, 49(23): 188-191. LIU Z C, ZHENG D P. Study on microwave-assisted extration of total flavonoids from Chaozhou citrus peel[J]. Journal of Anhui Agricultural Sciences, 2021, 49(23): 188-191 (in Chinese). DOI:10.3969/j.issn.0517-6611.2021.23.053 |
[15] |
GIANNUZZO A N, BOGGETTI H J, NAZARENO M A, et al. Supercritical fluid extraction of naringin from the peel of Citrus paradisi[J]. Phytochemical Analysis, 2003, 14(4): 221-223. DOI:10.1002/pca.706 |
[16] |
LACHOS-PEREZ D, BASEGGIO A M, MAYANGA-TORRESA P C, et al. Subcritical water extraction of flavanones from defatted orange peel[J]. The Journal of Supercritical Fluids, 2018, 138: 7-16. DOI:10.1016/j.supflu.2018.03.015 |
[17] |
谢捷, 曹铭希, 朱兴一, 等. 响应面法优化闪式提取陈皮中橙皮苷工艺的研究[J]. 食品工业科技, 2010, 31(10): 285-288. XIE J, CAO M X, ZHU X Y, et al. Optimization for homogenate extraction of hesperidin from Pericarpium Citri Reticulatae by using response surface methodology[J]. Science and Technology of Food Industry, 2010, 31(10): 285-288 (in Chinese). |
[18] |
汪建红. 减压内部沸腾法提取血橙皮中黄酮[J]. 中国食品添加剂, 2019, 30(8): 41-47. WANG J H. Extraction of flavonoids from blood orange peel by decompressing inner ebullition[J]. China Food Additives, 2019, 30(8): 41-47 (in Chinese). DOI:10.3969/j.issn.1006-2513.2019.08.001 |
[19] |
WENG Z M, WANG P, GE G B, et al. Structure-activity relationships of flavonoids as natural inhibitors against E. coli β-glucuronidase[J]. Food and Chemical Toxicology, 2017, 109(Part 2): 975-983. |
[20] |
BARRECA D, MANDALARI G, CALDERARO A, et al. Citrus flavones: an update on sources, biological functions, and health promoting properties[J]. Plants, 2020, 9(3): 288. DOI:10.3390/plants9030288 |
[21] |
FRATIANNI F, COZZOLINO A, DE FEO V, et al. Polyphenols, antioxidant, antibacterial, and biofilm inhibitory activities of peel and pulp of Citrus medica L., Citrus bergamia, and Citrus medica cv. Salò cultivated in southern Italy[J]. Molecules, 2019, 24(24): 4577.
|
[22] |
ERNAWITA, WAHYUONO R A, HESSE J, et al. In vitro lipophilic antioxidant capacity, antidiabetic and antibacterial activity of citrus fruits extracts from Aceh, Indonesia[J]. Antioxidants, 2017, 6(1): 11. DOI:10.3390/antiox6010011 |
[23] |
ULHAQ Z S, HENDYATAMA T H, HAMEED F, et al. Antibacterial activity of Citrus hystrix toward Salmonella spp. infection[J]. Enfermedades Infecciosas y Microbiología Clínica, 2021, 39(6): 283-286. DOI:10.1016/j.eimc.2020.05.016 |
[24] |
MIN K Y, KIM H J, LEE K A, et al. Antimicrobial activity of acid-hydrolyzed Citrus unshiu peel extract in milk[J]. Journal of Dairy Science, 2014, 97(4): 1955-1960. DOI:10.3168/jds.2013-7390 |
[25] |
CHEN X M, TAIT A R, KITTS D D. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities[J]. Food Chemistry, 2017, 218: 15-21. DOI:10.1016/j.foodchem.2016.09.016 |
[26] |
MILES E A, CALDER P C. Effects of citrus fruit juices and their bioactive components on inflammation and immunity: a narrative review[J]. Frontiers in Immunology, 2021, 12: 712608. DOI:10.3389/fimmu.2021.712608 |
[27] |
ZIELIŃSKA-PRZYJEMSKA M, IGNATOWICZ E. Citrus fruit flavonoids influence on neutrophil apoptosis and oxidative metabolism[J]. Phytotherapy Research, 2008, 22(12): 1557-1562. DOI:10.1002/ptr.2449 |
[28] |
HE W, LI Y M, LIU M Y, et al. Citrus aurantium L. and its flavonoids regulate TNBS-induced inflammatory bowel disease through anti-inflammation and suppressing isolated jejunum contraction[J]. International Journal of Molecular Sciences, 2018, 19(10): 3057. DOI:10.3390/ijms19103057 |
[29] |
MUHAMMAD T, IKRAM M, ULLAH R, et al. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling[J]. Nutrients, 2019, 11(3): 648. DOI:10.3390/nu11030648 |
[30] |
TEJADA S, PINYA S, MARTORELL M, et al. Potential anti-inflammatory effects of hesperidin from the genus citrus[J]. Current Medicinal Chemistry, 2018, 25(37): 4929-4945. |
[31] |
DUZZIONI A G, FRANCO A G, LENTON V M, et al. Antioxidant activity of citrus fruits cultivated in Brazil[J]. Acta Horticulturae, 2018, 1198: 141-144. |
[32] |
LODYGA-CHRUSCINSKA E, SYMONOWICZ M, SYKULA A, et al. Chelating ability and biological activity of hesperetin Schiff base[J]. Journal of Inorganic Biochemistry, 2015, 143: 34-47. DOI:10.1016/j.jinorgbio.2014.11.005 |
[33] |
钱井. 柑橘黄酮类化合物组分鉴定与抗氧化活性研究[D]. 硕士学位论文. 杭州: 浙江大学, 2017. QIAN J. Determination and antioxidant evaluation of flavonoids compounds from different citrus cultivars[D]. Master's Thesis. Hangzhou: Zhejiang University, 2017. (in Chinese) |
[34] |
HUANG R, ZHANG Y, SHEN S Y, et al. Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: an in vitro study[J]. Food Chemistry, 2020, 326: 126785. DOI:10.1016/j.foodchem.2020.126785 |
[35] |
杨雪妍. 柑橘黄酮抗氧化、抗增殖及抗衰老活性研究[D]. 硕士学位论文. 广州: 华南理工大学, 2020. YANG X Y. Research on anti-oxidative, anti-proliferative and anti-aging activities of citrus flavonoids[D]. Master's Thesis. Guangzhou: South China University of Technology, 2020. (in Chinese) |
[36] |
卢德勋. 健康养殖的营养技术策略的系统观[J]. 饲料工业, 2019, 40(2): 1-5. LU D X. The systemic concept on a nutritional strategy for healthy animal production[J]. Feed Industry, 2019, 40(2): 1-5 (in Chinese). |
[37] |
周刘华, 姚涛, 郭爱灵, 等. 近十年中药免疫双向调节研究进展[J]. 中国中医基础医学杂志, 2020, 26(7): 1016-1020, 1033. ZHOU L H, YAO T, GUO A L, et al. Progress in the study of two-way immune regulation of traditional Chinese medicine in recent ten years[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 2020, 26(7): 1016-1020, 1033 (in Chinese). |
[38] |
MITANI M, MINATOGAWA Y, NAKAMOTO A, et al. Sudachitin, polymethoxyflavone from Citrus sudachi, enhances antigen-specific cellular and humoral immune responses in BALB/c mice[J]. Journal of Clinical Biochemistry and Nutrition, 2019, 64(2): 158-163. DOI:10.3164/jcbn.18-70 |
[39] |
NIU X L, WU C F, LI M Y, et al. Naringenin is an inhibitor of T cell effector functions[J]. The Journal of Nutritional Biochemistry, 2018, 58: 71-79. DOI:10.1016/j.jnutbio.2018.04.008 |
[40] |
KONG L N, LIN X, HUANG C, et al. Hesperetin derivative-12(HDND-12) regulates macrophage polarization by modulating JAK2/STAT3 signaling pathway[J]. Chinese Journal of Natural Medicines, 2019, 17(2): 122-130. DOI:10.1016/S1875-5364(19)30014-7 |
[41] |
HAMADA Y, NAKAJIMA M, TSUZUKI K, et al. Heptamethoxyflavone reduces phosphodiesterase activity and T-cell growth in vitro[J]. International Archives of Allergy and Immunology, 2017, 174(3/4): 113-120. |
[42] |
PARK J, KIM H L, JUNG Y, et al. Bitter orange (Citrus aurantium Linné) improves obesity by regulating adipogenesis and thermogenesis through AMPK activation[J]. Nutrients, 2019, 11(9): 1988. DOI:10.3390/nu11091988 |
[43] |
LIN Y G, VERMEER M A, BOS W, et al. Molecular structures of citrus flavonoids determine their effects on lipid metabolism in HepG2 cells by primarily suppressing apoB secretion[J]. Journal of Agricultural and Food Chemistry, 2011, 59(9): 4496-4503. DOI:10.1021/jf1044475 |
[44] |
SHI Z, LI T, LIU Y W, et al. Hepatoprotective and anti-oxidative effects of total flavonoids from Qu Zhi Qiao (fruit of Citrus paradisi cv.Changshanhuyou) on nonalcoholic steatohepatitis in vivo and in vitro through Nrf2-ARE signaling pathway[J]. Frontiers in Pharmacology, 2020, 11: 483. DOI:10.3389/fphar.2020.00483 |
[45] |
ZHANG M, ZHANG X, ZHU J Y, et al. Bidirectional interaction of nobiletin and gut microbiota in mice fed with a high-fat diet[J]. Food & Function, 2021, 12(8): 3516-3526. |
[46] |
WANG M Y, ZHAO H, WEN X, et al. Citrus flavonoids and the intestinal barrier: interactions and effects[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(1): 225-251. DOI:10.1111/1541-4337.12652 |
[47] |
DAMIANO S, SASSO A, DE FELICE B, et al. Quercetin increases MUC2 and MUC5AC gene expression and secretion in intestinal goblet cell-like LS174T via PLC/PKCα/ERK1-2 pathway[J]. Frontiers in Physiology, 2018, 9: 357. DOI:10.3389/fphys.2018.00357 |
[48] |
ZHANG J X, LEI H B, HU X, et al. Hesperetin ameliorates DSS-induced colitis by maintaining the epithelial barrier via blocking RIPK3/MLKL necroptosis signaling[J]. European Journal of Pharmacology, 2020, 873: 172992. DOI:10.1016/j.ejphar.2020.172992 |
[49] |
ZENG S L, LI S Z, XIAO P T, et al. Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism[J]. Science Advances, 2020, 6(1): eaax6208. DOI:10.1126/sciadv.aax6208 |
[50] |
PEREIRA-CARO G, FERNÁNDEZ-QUIRÓS B, LUDWIG I A, et al. Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus[J]. European Journal of Nutrition, 2018, 57(1): 231-242. DOI:10.1007/s00394-016-1312-z |
[51] |
ZHANG M, ZHU J Y, ZHANG X, et al. Aged citrus peel (chenpi) extract causes dynamic alteration of colonic microbiota in high-fat diet induced obese mice[J]. Food & Function, 2020, 11(3): 2667-2678. |
[52] |
SANNA S, VAN ZUYDAM N R, MAHAJAN A, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases[J]. Nature Genetics, 2019, 51(4): 600-605. DOI:10.1038/s41588-019-0350-x |
[53] |
YING Y, NIU M, CLARKE A R, et al. Short communication: effect of a citrus extract in lactating dairy cows[J]. Journal of Dairy Science, 2017, 100(7): 5468-5471. DOI:10.3168/jds.2016-12233 |
[54] |
WILLIAMS S R O, CHAVES A V, DEIGHTON M H, et al. Influence of feeding supplements of almond hulls and ensiled citrus pulp on the milk production, milk composition, and methane emissions of dairy cows[J]. Journal of Dairy Science, 2018, 101(3): 2072-2083. DOI:10.3168/jds.2017-13440 |
[55] |
SANTOS G T, LIMA L S, SCHOGOR A L B, et al. Citrus pulp as a dietary source of antioxidants for lactating Holstein cows fed highly polyunsaturated fatty acid diets[J]. Asian-Australasian Journal of Animal Sciences, 2014, 27(8): 1104-1113. DOI:10.5713/ajas.2013.13836 |
[56] |
GARCÍA-RODRÍGUEZ J, SARO C, MATEOS I, et al. Effects of replacing extruded maize by dried citrus pulp in a mixed diet on ruminal fermentation, methane production, and microbial populations in Rusitec fermenters[J]. Animals, 2020, 10(8): 1316. DOI:10.3390/ani10081316 |
[57] |
LEIVA T, COOKE R F, BRANDÃO A P, et al. Effects of concentrate type and chromium propionate on insulin sensitivity, productive and reproductive parameters of lactating dairy cows consuming excessive energy[J]. Animal, 2017, 11(3): 436-444. DOI:10.1017/S1751731116001713 |
[58] |
罗巧慧. 干燥柑橘皮渣替代玉米对断奶羔羊生长、免疫、肉品质及瘤胃微生物多样性的影响[D]. 硕士学位论文. 成都: 西南民族大学, 2019. LUO Q H. Effects of dried citrus pulp replacing corn on growth, immunity, meat quality and rumen microbial diversity of weaned lambs[D]. Master's Thesis. Chengdu: Southwest Minzu University, 2019. (in Chinese) |
[59] |
TAYENGWA T, CHIKWANHA O C, RAFFRENATO E, et al. Comparative effects of feeding citrus pulp and grape pomace on nutrient digestibility and utilization in steers[J]. Animal, 2021, 15(1): 100020. DOI:10.1016/j.animal.2020.100020 |
[60] |
YU M, LI Z M, WANG G, et al. Dietary supplementation with citrus extract alters the plasma parameters, circulating amino acid profiles and gene expression of small intestinal nutrient transporters in Chinese yellow-feathered broilers[J]. Journal of the Science of Food and Agriculture, 2020, 100(14): 5126-5135. DOI:10.1002/jsfa.10525 |
[61] |
YU M, LI Z M, CHEN W D, et al. Dietary supplementation with citrus extract altered the intestinal microbiota and microbial metabolite profiles and enhanced the mucosal immune homeostasis in yellow-feathered broilers[J]. Frontiers in Microbiology, 2019, 10: 2662. DOI:10.3389/fmicb.2019.02662 |
[62] |
POURHOSSEIN Z, QOTBI A A A, SEIDAVI A, et al. Effect of different levels of dietary sweet orange (Citrus sinensis) peel extract on humoral immune system responses in broiler chickens[J]. Animal Science Journal, 2015, 86(1): 105-110. DOI:10.1111/asj.12250 |
[63] |
AKBARIAN A, GOLIAN A, KERMANSHAHI H, et al. Antioxidant enzyme activities, plasma hormone levels and serum metabolites of finishing broiler chickens reared under high ambient temperature and fed lemon and orange peel extracts and Curcuma xanthorrhiza essential oil[J]. Journal of Animal Physiology and Animal Nutrition, 2015, 99(1): 150-162. DOI:10.1111/jpn.12188 |
[64] |
GOLIOMYTIS M, SIMITZIS P, PAPALEXI A, et al. Influence of citrus flavonoids on laying hen performance, inflammatory immune response, egg quality and yolk oxidative stability[J]. British Poultry Science, 2019, 60(3): 272-278. DOI:10.1080/00071668.2019.1587150 |
[65] |
NAZOK A, REZAEI M, SAYYAHZADEH H. Effect of different levels of dried citrus pulp on performance, egg quality, and blood parameters of laying hens in early phase of production[J]. Tropical Animal Health and Production, 2010, 42(4): 737-742. DOI:10.1007/s11250-009-9481-x |
[66] |
WANG C, GAO G L, HUANG J X, et al. Nutritive value of dry citrus pulp and its effect on performance in geese from 35 to 70 days of age[J]. Journal of Applied Poultry Research, 2017, 26(2): 253-259. DOI:10.3382/japr/pfw069 |
[67] |
UERLINGS J, ARÉVALO SUREDA E, SCHROYEN M, et al. Impact of citrus pulp or inulin on intestinal microbiota and metabolites, barrier, and immune function of weaned piglets[J]. Frontiers in Nutrition, 2021, 8: 650211. DOI:10.3389/fnut.2021.650211 |
[68] |
崔艺燕, 田志梅, 邓盾, 等. 柑橘提取物对肥育猪肠道抗氧化指标、消化酶活性、氨态氮含量以及粪便氮、磷、臭气含量的影响[J]. 动物营养学报, 2021, 33(5): 2585-2594. CUI Y Y, TIAN Z M, DENG D, et al. Effects of citrus extract on intestinal antioxidant indices, digestive enzyme activities, ammonia nitrogen contents and fecal nitrogen, phosphorus and odor contents of finishing pigs[J]. Chinese Journal of Animal Nutrition, 2021, 33(5): 2585-2594 (in Chinese). |
[69] |
崔艺燕, 田志梅, 鲁慧杰, 等. 长期饲喂柑橘提取物对肥育猪血液生化指标、抗氧化能力、免疫功能以及游离氨基酸的影响[J]. 中国农业大学学报, 2021, 26(6): 63-72. CUI Y Y, TIAN Z M, LU H J, et al. Effects of long-term feeding of citrus extract on blood biochemical indexes, antioxidant capacity, immune function and free amino acids of finishing pigs[J]. Journal of China Agricultural University, 2021, 26(6): 63-72 (in Chinese). |
[70] |
ALMEIDA V V, NUÑEZ A J C, SCHINCKEL A P, et al. Interactive effect of dietary protein and dried citrus pulp levels on growth performance, small intestinal morphology, and hindgut fermentation of weanling pigs[J]. Journal of Animal Science, 2017, 95(1): 257-269. |
[71] |
CUI Y Y, TIAN Z M, DENG D, et al. Effects of dietary citrus extract on growth performance, carcass characteristics and meat quality of pigs[J]. Journal of Animal Physiology and Animal Nutrition, 2021. |
[72] |
卢德勋. 动物营养学科发展在战略方向上的重大突破: 构建动物健康营养理论和技术体系及其实际应用[J]. 动物营养学报, 2021, 33(1): 1-12. LU D X. A major breakthrough in development of animal nutrition in strategic direction: building an animal health and nutrition theory and technology system and its application[J]. Chinese Journal of Animal Nutrition, 2021, 33(1): 1-12 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.01.001 |