动物营养学报    2022, Vol. 34 Issue (7): 4182-4188    PDF    
影响鱼类消化道食糜状态特性指标的因素分析
董浩1 , 蔡凤英2 , 张勇1 , 刘来亭1     
1. 河南工业大学生物工程学院, 郑州 450001;
2. 河南工业大学化学化工学院, 郑州 450001
摘要: 食糜是鱼类胃肠道直接接触的物质,是营养物质的主要来源,鱼类消化道食糜的状态直接影响胃肠道的功能。本文主要通过阐述鱼类消化道食糜的状态特性指标和检测方法,分析不同理化因素对食糜状态特性指标的影响,总结食糜状态特性与鱼类生长性能之间的相关性,以期为鱼类消化道食糜的深入研究提供参考。
关键词: 食糜    检测方法    状态特性指标    影响因素    流变性能    
Analysis of Factors Affecting Status Characteristic Indicators of Fish Digestive Tract Chyme
DONG Hao1 , CAI Fengying2 , ZHANG Yong1 , LIU Laiting1     
1. School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China;
2. School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
Abstract: Chyme is a substance directly in contact with the fish's gastrointestinal tract, and is the main source of nutrient absorption. The status of fish digestive tract chyme directly affects the function of gastrointestinal tract. This article mainly describes the status characteristic indicators and detection methods of fish digestive tract chyme, analyzes the influence of different physical and chemical factors on chyme status characteristic indicators. The correlation between the characteristics of chyme and fish growth performance is summarized to provide a reference for further research on fish digestive tract chyme in the future.
Key words: chyme    detection method    status characteristic indicator    influence factor    rheological properties    

鱼类消化道是营养物质消化吸收的主要场所,也是食糜形成、输送和排泄的通道。食糜中的营养物质被鱼类肠道上皮细胞所吸收,为鱼类提供营养物质[1]。食糜主要由鱼类采食的饲料经口腔、胃和肠道等部位,磨碎、搅拌、蠕动并与唾液、胃液、胆汁、胰液、脱落的上皮细胞、微生物和分解后成分等混合而成,而进入消化道的致密内源性化合物(a dense endogenous fraction,DEF)[2]在食糜形成中起着重要作用。食糜由85%~99%的水合空洞黏液复合物和1%~16%的食物颗粒组成。

鱼类食糜状态特性指标包括:黏弹性、流变性、粒度、pH、持水性能、消化酶活性和微生物菌群[3]。食糜的状态能够影响鱼类的肠道性能,且与肠道吸收利用食糜中营养物质具有一定相关性,可以用来评价鱼类肠道的健康状态。

1 鱼类食糜的状态特性指标和检测方法 1.1 黏弹性

鱼类的食糜按流体分类是具有黏弹性的非牛顿流体,该类流体通过储存和耗散机械能而呈现出弹性和黏性[4]。食糜黏度通常使用奥氏或乌氏黏度计测定,特殊的还有使用锥形/平板黏度计以及其他方法进行测定,测定方法汇总详见表 1

表 1 黏弹性测定方法汇总 Table 1 Summary of viscoelasticity measurement methods
1.2 流变性

鱼类肠道运动有2种类型:节段性运动和蠕动性运动。节段性运动将内容物机械性地剪切磨碎混合,蠕动性运动推动食糜沿着肠道向前运动[12]。鱼类食糜流变性就是指食糜在2种运动外力的作用下的变形和流动性质[14]

食糜的流变性测定通常使用流变仪,流变仪种类很多,使用不同类型的流变仪会得到不同参数,但基于原理都是通过对食糜施加应力导致其形变速度发生变化。例如,AR-G2流变仪通过流量测试和振荡测试的方法对食糜的流变性进行检测,得到食糜的流动曲线、储存模量(G′)和损失模量(G″);同时,可以由食糜的tanδ(G″/G′)来表现食糜的固液特性[15]。Brinker等[16]采取Paar Physica UDS 200流变仪对食糜进行时间扫描、频率扫描以及蠕变试验,用以分析食糜的流变性。

1.3 粒度

粒度是鱼类消化道食糜的重要特征。粒度在鱼类研究中很少,有学者对断奶仔猪的研究表明,当粒度过大时会影响消化液的包覆,阻碍食糜的消化吸收;当粒度过小时,又会导致消化道中食糜黏度过大,阻碍食糜在肠道中的流动[17]。激光粒度仪是使用较多的测定粒度的仪器。通过恒定气流产生的湍流分散食糜,达到借助流动控制器和流通池测定颗粒大小的目的[18]。另外,还有一种新颖的测定食糜粒度分布的方法,即图像分析法。该方法使用Fiji-win64处理软件将数码相机拍摄的食糜样品RGB彩色图像转换在256个灰度级上,再经过裁剪得到大约1 000×1 000像素的图像,通过像素格来分析颗粒面积[19-20]。此方法相比激光粒度法不需要大型的仪器设备,成本更低,但需要储备图像处理相关知识。

1.4 pH

pH常作为鱼类消化道食糜的主要状态特性,反映了鱼类消化道中消化液的分泌情况,而消化液的分泌与营养物质的消化率有正相关性。食糜pH的测定通常使用pH计。Bucking等[21]研究表明,对于食糜的pH测定,离心前后食糜固相和液相pH没有显著差异。

1.5 持水性能

食糜的持水性能是指食糜保持其原有水分含量不变的能力,食糜的持水性能与其黏性、流变性有密切的相关性[22]。食糜持水性能通常用干燥失重法评估,通过采集消化道各段的食糜,在105 ℃烘箱中烘6 h或烘干至其水分含量不变后进行,根据烘干前后食糜重量的精确变化衡量各消化道食糜的持水性能[23]

1.6 消化酶活性

消化酶活性是鱼类胃肠道食糜中主要的状态特性指标,消化酶活性直接影响鱼类的消化性能,通常测定鱼类消化道中淀粉酶、麦芽糖酶、蔗糖酶、脂肪酶、胰蛋白酶和糜蛋白酶等的活性。测定消化酶活性的方法很多,不同动物间可相互采用。Newman等[24]在松鸡肠道食糜酶活性的测定中,采用早期Dahlqvist[25]的比色法,利用Hepes-KOH和甘露醇匀浆肠道黏膜并经过孵育后测定麦芽糖酶、蔗糖酶的活性。其他测定方法还有Temler等[26]建立的蛋白酶放射免疫分析法和Jensen等[27]的脂肪酶特异性测定法。此外,现在多采用生物公司提供的试剂盒,按照试剂盒中指定方法进行,利用试剂盒测定操作更加简便快捷,同时精确度高,具有更高的专业性[28]

1.7 微生物菌群

微生物菌群是鱼类肠道食糜中重要的状态特性指标[29]。对于鱼类食糜微生物菌群,通常参照其他动物微生物菌群测定方法,既可以采用涂板计数分析微生物数量[30],也可以采用实时荧光定量PCR分析微生物组成[31]。但后者所分析的微生物区系更为细致,研究的更为深入。

2 影响鱼类消化道食糜状态特性指标的因素 2.1 饲料组成成分

饲料组成成分的变化不仅会影响食糜的流变性,而且还会影响食糜的颜色、直径和黏液覆盖区域长度[16]。在鲑鱼养殖中发现,植物蛋白质替代鱼粉会使鲑鱼食糜的外形、性状发生变化,粪便变得苍白、密度降低[9]。另外,有研究表明,使用800 g/kg大豆粕替代鱼粉时,佛罗里达鲳鱼的体增重和增重效率无显著差异,说明适度改变蛋白质饲料的成分会影响食糜状态但并不影响鱼的生长性能[32]。经过对非洲鲶鱼进行研究发现,用更多的淀粉替代脂肪会导致胃内食糜黏度增大,而在近肠段则无明显变化,作者认为这是由淀粉糊化而引起[33]。饲料组成成分是食糜黏度变化的重要因素,例如小麦、大麦、燕麦、黑麦、玉米等谷物在鱼类饲料中添加量不同,鱼类肠道食糜黏度有所不同[34]。食糜黏度的变化可能是因为饲料原料中可溶性非淀粉多糖(non-starch polysaccharides,NSP)含量的变化以及不可消化NSP的联合效应[35]。此外,有研究发现饲用小米源淀粉相比小麦源淀粉食糜黏度更大。

2.2 肠道pH

肠道中pH直接影响淀粉酶、蛋白酶、脂肪酶的活性,造成食糜状态特性变化。肠道pH与饲料蛋白质能量比呈显著负相关,因为pH的变化会导致鱼类食糜中蛋白酶活性的变化[36];此外,研究还发现,pH的不断升高能够引起斜齿鳊鱼肠道中淀粉酶活性的不断变化[37]。当pH下降时,通过对胃肠道各段食糜中Na+、K+、C1-、Ca2+和Mg2+浓度比较分析发现,各离子浓度均有不同程度的变化,其中一价离子受到pH变化影响较小,但是二价离子Ca2+和Mg2+有明显的变化,这是由于胃pH的降低,食糜中二价离子物质都变得高度溶解,到达肠道的碱性环境中发生沉淀[21]

2.3 渗透压

鱼类消化道中液态食糜的流动主要受来自胃和各肠段压力差的控制,而固态食糜的流动受食糜粒度的控制,胃排往小肠的食糜在组成上是由固态物质与液态物质按不同的比例混合而成。因此消化道食糜在化学组成上是波动的,并且造成了食糜流量的变化。在采食后1 h内,随着肠道中食糜的增加,消化道渗透压增加,肠道的收缩运动增强,导致食糜排空速度加快。随着食糜的排空,渗透压逐渐降低,排空速度减慢[38]。此外,还有研究表明,在各消化道中食糜的渗透压随着食糜黏度的增加而增加,在胃中和远端肠道尤其明显[9]

2.4 胃肠段分布

不同消化段中食糜状态特性有所变化,一般来说,近端肠道食糜中的脂质含量和中肠段食糜中的蛋白质含量高于整个肠道[33]。Tran-Tu等[9]通过研究条纹鲶鱼食糜特征发现,胃、近端、中段和远端肠食糜特征、干物质含量、黏度和渗透压受胃肠道各段不同作用的影响有显著的变化,这意味着胃肠道各段对食糜状态特性指标有不同程度的影响。不同肠段食糜的pH也有所不同,经研究发现,大西洋鲑肠道食糜pH由近端的8.1升高到中段和远端的8.4,此外,还发现远端肠胰蛋白酶活性相比近端肠有所下降,但是从中段肠到远端肠亮氨酸氨基肽酶的活性有增加的趋势[39]

3 食糜状态特性指标对鱼类生长、生产性能的影响

食糜状态特性指标对鱼类生长、生产性能的影响的研究较少。在其他动物上有研究表明,肠道食糜黏度对蛋白质和干物质消化率有负面作用,且在回肠末端表现显著[40]。其原因可能是食糜中纤维在胃中吸取大量水分,随着食糜在消化道下游的输送,水分被吸收,导致不可消化纤维被浓缩,从而引起食糜的黏度增加,从而影响肠道对营养物质的消化吸收。另外当食糜黏度增加时,会引起肠道中食糜与内源性酶结合率降低,更不容易混合,导致了营养物质消化率降低[41]。高黏度还会增加食糜的停留时间,从而增加肠道挥发性脂肪酸(volatile fatty acid,VFA)的产量,导致肠道生态的剧烈变化而降低营养物质的消化,并最终降低动物的生长、生产性能[42]

当肠道食糜的弹性过大时,食糜会变得不利于肠道的蠕动和剪切,造成消化性能下降。食糜的弹性直接影响了消化道的流变性能,造成鱼类采食量、胃排空、肠道食糜滞留时间以及肠道菌群的变化;此外,还会对肠绒毛高度、隐窝深度、平均日增重、饲料转化率造成不同程度的影响[43]。Brinker[44]则有不同的发现,在虹鳟饲料中添加不同浓度的黏合剂使其食糜黏度和弹性模量分别增加了266%和209%。

食糜中蛋白酶活性的升高对尼罗罗非鱼体重、体长、日增重、采食量、比生长率和饲料转化率都有显著改善,引起肠道中肠绒毛的高度和宽度显著增加,能够降低同等增重下的饲料成本[45]。同样的,在罗非鱼幼鱼饲料中添加蛋白酶能够引起其体增重、蛋白质效率和饲料转化率的升高,且能够大大提升粗蛋白质、粗脂肪、可消化能的表观消化率以及必需氨基酸的表观利用率;另外,鱼体内的总蛋白、白蛋白、钙和磷的含量普遍高于饲料中未添加蛋白酶的鱼体[46]。Liu等[47]发现,在鲫鱼饲料中添加蛋白酶对其生长性能、粗蛋白质和粗脂肪的消化率有显著影响,同时导致其前肠肌肉厚度变薄,肝胰腺和前肠的蛋白酶活性升高,但中肠和后肠的蛋白酶活性没有显著变化。

在其他动物方面的研究表明,食糜pH的变化同样能够引起生长、生产性能的变化[48]。pH主要影响肠道中各类消化酶的活性以及肠道微生物的生长,导致食糜中营养物质使用效率的转变,各种微生物及其消化酶在最适的肠道pH时表现出最大活性,当肠道pH出现变化时,直接引起了消化酶活性的降低,导致动物营养转化率降低[49]

4 小结与展望

综上所述,不同的食糜状态特性指标有对应的测定方法。饲料组成、消化道部位、pH、渗透压、温度与鱼类消化道食糜的黏弹性、流变性、粒度等状态特性有一定的相关性,鱼类消化道的食糜状态特性能够改变鱼类的肠道性能。肠道结构和食糜状态是影响鱼类营养消化吸收的2个相辅相成的重要方面,肠道结构影响食糜状态,而食糜状态也同样引起肠道结构和功能的变化。目前,有关肠道结构对鱼类营养物质消化、吸收影响的研究较多,但食糜状态对鱼类消化、吸收的影响主要集中在饲料中营养物质含量及消化酶活性对鱼类生理、生化、生长性能等指标的影响,而对食糜其他状态特性指标如流变性的相关研究很少,对最利于鱼类营养物质消化、吸收时食糜状态特性的精确参数研究更少。因此,应针对食糜流变性、粒度分布、持水性能等特性对鱼类生长、发育、繁殖的影响展开更深一步的探究。希望未来能够研究出一套科学的方法和参数用以评价鱼类消化道食糜的状态特性,为营养学研究开辟新领域,为保证鱼类肠道健康、精准饲料加工技术提供新的思路。

参考文献
[1]
TALBOT J, LITTMAN D R. Immune cell control of nutrient absorption[J]. Science, 2021, 371(6535): 1202-1203. DOI:10.1126/science.abg6455
[2]
POLYAKOVA E P, BARBOSOVA M E, KAZAKOVA L K. The role of endogenous formations in the formation of chyme in fish and birds[J]. Biomeditsina, 2014, 1(4): 70-79.
[3]
王瑞, 刘来亭, 牛小伟. 食糜特性的评价指标和测定方法[J]. 动物营养学报, 2018, 30(7): 2496-2500.
WANG R, LIU L T, NIU X W. Evaluation indexes and determination methods of chyme characteristics[J]. Chinese Journal of Animal Nutrition, 2018, 30(7): 2496-2500 (in Chinese). DOI:10.3969/j.issn.1006-267x.2018.07.009
[4]
王克坤. 家禽消化道食糜流变特性的研究[D]. 硕士学位论文. 郑州: 河南工业大学, 2019.
WANG K K. Study on the rheological characteristics of the digestive tract of poultry[D]. Master's Thesis. Zhengzhou: Henan University of Technology, 2019. (in Chinese)
[5]
胡官波. 在不同类型饲粮中添加复合酶制剂GSM对肉鸡生长的影响[D]. 硕士学位论文. 长沙: 湖南农业大学, 2015.
HU G B. Effects of compound enzyme GSM preparations supplemented to different meals on broilers[D]. Master's Thesis. Changsha: Hunan Agricultural University, 2015. (in Chinese)
[6]
宾宇波. 铁皮石斛多糖结构及抗氧化性初步研究[D]. 硕士学位论文. 北京: 北京林业大学, 2014.
BIN Y B. Preliminary study on structure and anti-oxidation of the polysaccharide from Dendrobium officinale[D]. Master's Thesis. Beijing: Beijing Forestry University, 2014. (in Chinese)
[7]
吕秋凤, 文宗雪, 邵彩梅, 等. 小麦日粮中添加木聚糖酶对肉鸡肠道大肠杆菌数量、pH值及食糜黏度的影响[J]. 饲料工业, 2013, 34(2): 41-44.
LYU Q F, WEN Z X, SHAO C M, et al. Effect of adding xylanase to wheat diet on the number of intestinal Escherichia coli, pH value and chyme viscosity of broilers[J]. Feed Industry, 2013, 34(2): 41-44 (in Chinese).
[8]
LEENHOUWERS J I, VELD M T, VERRETH J A J, et al. Digesta characteristiscs and performance of African catfish (Clarias gariepinus) fed cereal grains that differ in viscosity[J]. Aquaculture, 2007, 264(1/4): 330-341.
[9]
TRAN-TU L C, HIEN T T T, BOSMA R H, et al. Effect of ingredient particle sizes and dietary viscosity on digestion and faecal waste of striped catfish (Pangasianodon hypophthalmus)[J]. Aquaculture Nutrition, 2018, 24(3): 961-969. DOI:10.1111/anu.12632
[10]
YAMAKAWA M, SHⅡNA T. Tissue viscoelasticity imaging using vibration and ultrasound coupler gel[J]. Japanese Journal of Applied Physics, 2012, 51(7S): 07GF12. DOI:10.7567/JJAP.51.07GF12
[11]
TRIPATHI D. A mathematical model for the peristaltic flow of chyme movement in small intestine[J]. Mathematical Biosciences, 2011, 233(2): 90-97. DOI:10.1016/j.mbs.2011.06.007
[12]
VILLEMEJANE C, WAHL R, AYMARD P, et al. In vitro digestion of short-dough biscuits enriched in proteins and/or fibres, using a multi-compartmental and dynamic system (1): viscosity measurement and prediction[J]. Food Chemistry, 2015, 182: 55-63. DOI:10.1016/j.foodchem.2015.02.125
[13]
BAYLISS W M, STARLING E H. The movements and innervation of the small intestine[J]. The Journal of Physiology, 1899, 24(2): 99-143. DOI:10.1113/jphysiol.1899.sp000752
[14]
ZHANG L L, ZHANG W, PENG F B, et al. Effects of bacterial cellulose on glucose metabolism in an in vitro chyme model and its rheological evaluation[J]. International Journal of Food Science & Technology, 2021, 56(11): 6100-6112.
[15]
LENTLE R G, JANSSEN P W M. The physical processes of digestion[M]. New York: Springer, 2011.
[16]
BRINKER A, FRIEDRICH C. Fish meal replacement by plant protein substitution and guar gum addition in trout feed.Part Ⅱ: effects on faeces stability and rheology[J]. Biorheology, 2012, 49(1): 27-48. DOI:10.3233/BIR-2012-0605
[17]
ALMEIDA L M D, ZAVELINSKI V A B, SONÁLIO K C, et al. Effect of feed particle size in pelleted diets on growth performance and digestibility of weaning piglets[J]. Livestock Science, 2021, 244: 104364. DOI:10.1016/j.livsci.2020.104364
[18]
BRINKER A, SCHRÖDER H G, RÖSCH R. A high-resolution technique to size suspended solids in flow-through fish farms[J]. Aquacultural Engineering, 2005, 32(2): 325-341. DOI:10.1016/j.aquaeng.2004.07.002
[19]
SILVA J V C, LEGLAND D, CAUTY C, et al. Characterization of the microstructure of dairy systems using automated image analysis[J]. Food Hydrocolloids, 2015, 44: 360-371. DOI:10.1016/j.foodhyd.2014.09.028
[20]
BORNHORST G M, KOSTLAN K, SINGH R P. Particle size distribution of brown and white rice during gastric digestion measured by image analysis[J]. Journal of Food Science, 2013, 78(9): E1383-E1391. DOI:10.1111/1750-3841.12228
[21]
BUCKING C, WOOD C M. The effect of postprandial changes in pH along the gastrointestinal tract on the distribution of ions between the solid and fluid phases of chyme in rainbow trout[J]. Aquaculture Nutrition, 2009, 15(3): 282-296. DOI:10.1111/j.1365-2095.2008.00593.x
[22]
REZAEI M, KARIMI TORSHIZI M A, ROUZBEHAN Y. The influence of different levels of micronized insoluble fiber on broiler performance and litter moisture[J]. Poultry Science, 2011, 90(9): 2008-2012. DOI:10.3382/ps.2011-01352
[23]
ILELEJI K E, GARCIA A A, KINGSLY A R P, et al. Comparison of standard moisture loss-on-drying methods for the determination of moisture content of corn distillers dried grains with solubles[J]. Journal of AOAC International, 2010, 93(3): 825-832. DOI:10.1093/jaoac/93.3.825
[24]
NEWMAN J, MAURER M, FORBEY J S, et al. Low activities of digestive enzymes in the guts of herbivorous grouse (Aves: Tetraoninae)[J]. Journal of Ornithology, 2021, 162(2): 477-485. DOI:10.1007/s10336-020-01835-z
[25]
DAHLQVIST A. A method for the determination of amylase in intestinal content[J]. Scandinavian Journal of Clinical and Laboratory Investigation, 1962, 14(2): 145-151. DOI:10.3109/00365516209079686
[26]
TEMLER R S, FELBER J P. Radioimmunoassay of human plasma trypsin[J]. Biochimica et Biophysica Acta, 1976, 445(3): 720-728. DOI:10.1016/0005-2744(76)90122-4
[27]
JENSEN R G, DEJONG F A, CLARK R M. Determination of lipase specificity[J]. Lipids, 1983, 18(3): 239-252. DOI:10.1007/BF02534556
[28]
SHANG Q H, MA X K, LI M, et al. Effects of α-galactosidase supplementation on nutrient digestibility, growth performance, intestinal morphology and digestive enzyme activities in weaned piglets[J]. Animal Feed Science and Technology, 2018, 236: 48-56. DOI:10.1016/j.anifeedsci.2017.11.008
[29]
JIANG D J, ZHANG L, CAO Y D, et al. [Application of gut microbiota in research of Chinese medicines][J]. China Journal of Chinese Materia Medica, 2016, 41(17): 3218-3225.
[30]
ABBASI ARABSHAHI H, GHASEMI H A, HAJKHODADADI I, et al. Effects of multicarbohydrase and butyrate glycerides on productive performance, nutrient digestibility, gut morphology, and ileal microbiota in late-phase laying hens fed corn-or wheat-based diets[J]. Poultry Science, 2021, 100(5): 101066. DOI:10.1016/j.psj.2021.101066
[31]
YANG M, YIN Y X, WANG F, et al. Effects of dietary rosemary extract supplementation on growth performance, nutrient digestibility, antioxidant capacity, intestinal morphology, and microbiota of weaning pigs[J]. Journal of Animal Science, 2021, 99(9): skab237. DOI:10.1093/jas/skab237
[32]
RICHE M, WILLIAMS T N. Fish meal replacement with solvent-extracted soybean meal or soy protein isolate in a practical diet formulation for Florida pompano (Trachinotus carolinus, L.) reared in low salinity[J]. Aquaculture Nutrition, 2011, 17(4): 368-379. DOI:10.1111/j.1365-2095.2010.00808.x
[33]
HARTER T S, HEINSBROEK L T N, SCHRAMA J W. The source of dietary non-protein energy affects in vivo protein digestion in African catfish (Clarias gariepinus)[J]. Aquaculture Nutrition, 2015, 21(5): 569-577. DOI:10.1111/anu.12185
[34]
LEENHOUWERS J I, ORTEGA R C, VERRETH J A J, et al. Digesta characteristics in relation to nutrient digestibility and mineral absorption in Nile tilapia (Oreochromis niloticus L.) fed cereal grains of increasing viscosity[J]. Aquaculture, 2007, 273(4): 556-565. DOI:10.1016/j.aquaculture.2007.10.044
[35]
SINHA A K, KUMAR V, MAKKAR H P S, et al. Non-starch polysaccharides and their role in fish nutrition: a review[J]. Food Chemistry, 2011, 127(4): 1409-1426. DOI:10.1016/j.foodchem.2011.02.042
[36]
韩庆, 凌卯梅, 龚丽军, 等. 温度和pH对翘嘴红鲌消化酶活性的影响[J]. 水产学杂志, 2021, 34(2): 28-33.
HAN Q, LING M M, GONG L J, et al. Effects of temperature and pH on digestive enzyme activities of topmouth culter Erythroculter ilishaeformis[J]. Chinese Journal of Fisheries, 2021, 34(2): 28-33 (in Chinese). DOI:10.3969/j.issn.1005-3832.2021.02.005
[37]
KUZ'MINA V V, SKVORTSOVA E G, ZOLOTAREVA G V, et al. Influence of pH upon the activity of glycosidases and proteinases of intestinal mucosa, chyme and microbiota in fish[J]. Fish Physiology and Biochemistry, 2011, 37(3): 345-353. DOI:10.1007/s10695-010-9426-3
[38]
GRANGER D N, MORRIS J, KVIETYS P R, et al. Physiology and pathophysiology of digestion: part 2[M]. San Rafael, California: Morgan & Claypool, 2018.
[39]
KROGDAHL A, SUNDBY A, HOLM H. Characteristics of digestive processes in Atlantic salmon (Salmo salar).Enzyme pH optima, chyme pH, and enzyme activities[J]. Aquaculture, 2015, 449: 27-36. DOI:10.1016/j.aquaculture.2015.02.032
[40]
高月琴, 王伟兰, 张亚伟, 等. 不同来源纤维在生长猪消化道内的食糜理化特性和养分消化率[J]. 南京农业大学学报, 2015, 38(3): 471-477.
GAO Y Q, WANG W L, ZHANG Y W, et al. Effect of fiber sources on physico-chemical properties of digesta and digestibilities of nutrients in duodeum and ileum double fistulated growing pigs[J]. Journal of Nanjing Agricultural University, 2015, 38(3): 471-477 (in Chinese).
[41]
LIU X B, XING K, NING R, et al. Impact of combined α-galactosidase and xylanase enzymes on growth performance, nutrients digestibility, chyme viscosity, and enzymes activity of broilers fed corn-soybean diets[J]. Journal of Animal Science, 2021, 99(6): skab088. DOI:10.1093/jas/skab088
[42]
CHOCT M, HUGHES R J, WANG J, et al. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens[J]. British Poultry Science, 1996, 37(3): 609-621. DOI:10.1080/00071669608417891
[43]
MOXON T E, NIMMEGEERS P, TELEN D, et al. Effect of chyme viscosity and nutrient feedback mechanism on gastric emptying[J]. Chemical Engineering Science, 2017, 171: 318-330. DOI:10.1016/j.ces.2017.05.048
[44]
BRINKER A. Guar gum in rainbow trout (Oncorhynchus mykiss) feed: the influence of quality and dose on stabilisation of faecal solids[J]. Aquaculture, 2007, 267(1/4): 315-327.
[45]
SALEH E S E, TAWFEEK S S, ABDEL-FADEEL A A A, et al. Effect of dietary protease supplementation on growth performance, water quality, blood parameters and intestinal morphology of Nile tilapia (Oreochromis niloticus)[J]. Journal of Animal Physiology and Animal Nutrition, 2022, 106(2): 419-428. DOI:10.1111/jpn.13591
[46]
HASSAAN M S, EL-SAYEDB A I M, SOLTAN M A, et al. Partial dietary fish meal replacement with cotton seed meal and supplementation with exogenous protease alters growth, feed performance, hematological indices and associated gene expression markers (GH, IGF-I) for Nile tilapia, Oreochromis niloticus[J]. Aquaculture, 2019, 503: 282-292. DOI:10.1016/j.aquaculture.2019.01.009
[47]
LIU W, WU J P, LI Z, et al. Effects of dietary coated protease on growth performance, feed utilization, nutrient apparent digestibility, intestinal and hepatopancreas structure in juvenile Gibel carp (Carassius auratus gibelio)[J]. Aquaculture Nutrition, 2018, 24(1): 47-55. DOI:10.1111/anu.12531
[48]
WANG H C, LI S S, FANG S L, et al. Betaine improves intestinal functions by enhancing digestive enzymes, ameliorating intestinal morphology, and enriching intestinal microbiota in high-salt stressed rats[J]. Nutrients, 2018, 10(7): 907. DOI:10.3390/nu10070907
[49]
WANG H C, LI S S, XU S Y, et al. Betaine improves growth performance by increasing digestive enzymes activities, and enhancing intestinal structure of weaned piglets[J]. Animal Feed Science and Technology, 2020, 267: 114545. DOI:10.1016/j.anifeedsci.2020.114545