2. 温氏食品集团股份有限公司, 云浮 527400
2. Wen's Food Group Co., Ltd., Yunfu 527400, China
在生长猪消化道各段中,结肠对饲粮可消化纤维的贡献是回肠末端前消化道的1.86倍(以可消化中性洗涤纤维计),而盲肠因食糜停留时间短而对纤维消化的贡献较少[1]。因此,准确地模拟饲料原料在生长猪结肠段的消化对完善胃-小肠-大肠三阶段仿生消化法测定猪饲料的有效能非常关键。从生长猪后肠的生理特性看,结肠重量约为盲肠的5.8倍[2],虽然其微生物群体和盲肠相似[3-4],但液相中总厌氧菌、淀粉分解菌数量高于盲肠[5],且食糜中纤维素酶和木聚糖酶活性也高于盲肠[6]。上述生理特性导致了生长猪盲肠对饲粮能量消化率不超过2.2%,而结肠和直肠合计高达21.9%[7]。因此,对生长猪后肠消化的研究重点在结肠的消化。目前,营养学家对生长猪后肠的模拟消化主要采用酶水解法和发酵法。现有方法主要存在模拟消化程度与体内消化程度相差较大、变异较高等缺陷[8-11]。关键问题在于模拟大肠消化液及相应的消化条件可能与生长猪大肠的消化环境尚存在一定差距。考虑到盲肠食糜比结肠食糜的固液比低,结肠消化的水解酶主要来自于食糜流经小肠及盲肠微生物发酵后带入。本试验尝试在提取生长猪盲肠液水解酶的基础上,根据主要水解酶的活性与盲肠液相应水解酶一致的原则制备模拟大肠液,试图缩小生长猪大肠模拟消化与体内结肠消化的差异。由于杂粕类饲料原料含有较高的粗蛋白质和粗纤维,且不同的杂粕在纤维含量及消化程度上差异大。因此,以杂粕为代表探讨生长猪结肠的模拟消化与体内消化程度的相似性,有利于阐明模拟消化的有效性。为此,本研究以菜籽粕、棉籽粕、葵花粕和花生粕为研究对象,首先探讨不同杂粕类原料在生长猪结肠的消化程度,然后,比较结肠仿生消化与体内结肠消化程度的差异,为建立更接近体内消化的生长猪全消化道仿生消化方法提供参考。
1 材料与方法 1.1 试验动物及饲粮选择体重为(19.3±2.2) kg的杜×长×大三元杂交去势公猪5头,单笼饲养于代谢笼中。代谢笼含有低压压嘴式饮水器、食槽、全喷塑漏缝地板以及两侧可滑动的亚历克板。代谢室温度保持在23~25 ℃。试验猪在代谢笼中适应2周后,在试验猪盲肠末端安装T型瘘管(专利号:ZL201520207381.0),术后转入代谢笼中护理2周,再适应2周后开始试验。
选择4种常用的杂粕类原料,分别为菜籽粕、棉籽粕、葵花粕和花生粕。配制5种试验饲粮,以玉米-豆粕型饲粮为基础饲粮,然后将菜籽粕、棉籽粕、葵花粕和花生粕分别与基础饲粮按18.75 ∶ 81.25的比例混合,配制成菜籽粕饲粮、棉籽粕饲粮、葵花粕饲粮和花生粕饲粮。所有试验饲粮中玉米与豆粕的比例一致,维生素和微量元素的含量满足或超过NRC(2012)的推荐值。试验饲粮组成及营养水平见表 1。
![]() |
表 1 试验饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of experimental diets (air-dry basis) |
体内法测定生长猪结肠对饲粮的干物质和能量消化率采用5×5拉丁方设计,即5头初始体重为(39.4±2.9) kg安装有盲肠末端T型瘘管的去势公猪,5种试验饲粮,共进行5期消化试验,每期每头猪饲喂1种饲粮。每期试验包括7 d的预试期,第8~9天收集所有粪便,第10~11天、第13~14天每天09:00开始连续10 h收集盲肠食糜,且每次收集袋收集的食糜超过1/2体积后转移至-20 ℃储存。将每日内每次收集的食糜取样混匀后分装在50 mL离心管中,储存于-80 ℃冰箱中,用于水解酶活性测定。第10~11天收集的食糜离心后用于制备盲肠液冻干粉剂。第13~14天收集的盲肠食糜用于仿生消化法测定饲粮在结肠的干物质和能量消化率。根据Urriola等[12]的公式计算4种杂粕在生长猪结肠前、全消化道、结肠的能量消化率和消化能。
仿生消化法测定生长猪结肠对饲粮干物质和能量消化率采用单因素完全随机设计,将5种饲粮对应的盲肠末端食糜在仿生消化系统中进行大(结)肠阶段模拟消化,设2个处理,分别为盲肠液冻干粉剂制备的模拟结肠液和模拟大肠液粉剂(来源:中国农业科学院北京畜牧兽医研究所)制备的模拟结肠液。仿生消化法测定杂粕的结肠能量消化率采用单因素完全随机设计,通过单胃动物仿生消化系统分别进行胃-小肠[胃-小肠结束之后加入1 mL氢氧化钠(4 mol/L)进行消化酶活性的灭活]、胃-小肠-大(结)肠的模拟消化,测定4种杂粕的酶水解物能值(enzymatic hydrolysate gross energy, EHGE)和能量消化率,其中结肠消化所用消化液以模拟大肠液粉剂配制,具体上机操作参考《单胃动物仿生消化系统操作手册(第4版)》[13]。
1.3 样品处理及化学分析食糜样品解冻后同一期内同一头猪的样品混合。用于测定水解酶活性的盲肠液制备方法如下:食糜先进行流水解冻,然后4 ℃下进行低温解冻,混合均匀后于4 ℃、7 000×g离心3 min,将上清液混合均匀后分装于5 mL离心管中,-20 ℃保存待测酶活性。生长猪盲肠液、盲肠液冻干粉剂、模拟大肠液粉剂中淀粉酶、糜蛋白酶、胰蛋白酶、纤维素酶活性分别参考Dahlqvist[14]、Rick[15]、Rick[16]、NY/T 912—2004的方法测定。
盲肠液冻干粉剂的制备方法:生长猪盲肠食糜经流水解冻后,同一期内同一头猪的样品混合均匀后于4 ℃、3 000×g离心5 min,取上清液放置于冻干盘,-20 ℃冷冻后按照食糜冻干程序进行冻干。将5期饲喂同一饲粮的生长猪盲肠液冻干粉剂合并作为大肠消化酶源,本试验共获得5种盲肠液冻干粉剂。模拟大肠液粉剂来源于中国农业科学院北京畜牧兽医研究所,具体操作参考《单胃动物仿生消化系统操作手册(第4版)》[13]。
食糜样品-20 ℃冷冻12 h后,按照如下冻干程序进行冻干:-50 ℃,2 h;-30 ℃,1 h;-10 ℃,1 h;0 ℃,1 h;5 ℃,1 h;10 ℃,1 h;15 ℃,1 h;20 ℃,1 h;25 ℃,1 h;30 ℃,1 h;35 ℃,10~30 h。冻干后将食糜样品放入10号自封袋中,-20 ℃储存备用。盲肠末端食糜用做仿生消化底物的制备方法:5期饲喂同一饲粮的生长猪盲肠末端食糜,按照2 d内收集的盲肠末端食糜的重量等比例进行混合,最终得到的混合食糜为底物(混合重量约200 g)。
参考GB/T 6435—2006的方法测定样品的水分含量。参考ISO9831 ∶ 1998的方法,使用氧弹热量计(型号:Parr-6400)测定样品的总能。饲粮、食糜及粪便中三氧化二铬含量参考GB/T 5009.123—2014测定。
1.4 数据统计分析用SAS 9.4的MEANS模块对基本统计量进行分析,并使用“四分位法”剔除异常值[17]。采用GLM模块对不同饲粮在生长猪结肠前、结肠、全消化道干物质和能量消化率及消化能的差异进行显著性检验,采用GLM模块对仿生消化法与体内法测定的饲粮在生长猪结肠的干物质和能量消化率及能值的差异进行显著性检验,采用T-TSET模块对杂粕的仿生消化法和体内法测定值进行t检验,P < 0.05为差异显著。
2 结果与分析 2.1 5种试验饲粮在生长猪结肠前、全消化道、结肠的干物质和能量消化率及消化能的差异由表 2可知,基础饲粮在生长猪结肠前、全消化道的干物质、能量消化率及消化能均显著高于其余4种饲粮(P < 0.05)。菜籽粕饲粮和棉籽粕饲粮在结肠前的干物质和能量消化率及消化能相对接近(P>0.05),且二者与葵花粕饲粮、花生粕饲粮无显著差异(P>0.05)。葵花粕饲粮在结肠前的干物质和能量消化率及消化能显著低于花生粕饲粮(P < 0.05)。棉籽粕饲粮在全消化道的干物质和能量消化率及消化能与葵花粕饲粮无显著差异(P>0.05),但显著低于菜籽粕饲粮和花生粕饲粮(P < 0.05)。菜籽粕饲粮在全消化道的干物质和能量消化率及消化能与葵花粕饲粮无显著差异(P>0.05),但干物质和能量消化率显著低于花生粕饲粮(P < 0.05),而消化能与花生粕饲粮无显著差异(P>0.05)。5种饲粮在生长猪结肠的干物质和能量消化率及消化能均没有显著差异(P>0.05)。5种饲粮在生长猪结肠前和结肠的干物质消化率分别占全消化道干物质消化率的81.46%~85.41%和14.59%~18.54%;能量消化率分别占全消化道能量消化率的82.93%~86.40%和13.60%~17.07%。
![]() |
表 2 5种试验饲粮在生长猪结肠前、全消化道、结肠的干物质和能量消化率及消化能 Table 2 DM and energy digestibility, digestible energy of 5 experimental diets in anterior colon, total tract and colon of growing pigs |
由表 3可知,花生粕在生长猪全消化道的能量消化率和消化能显著高于菜籽粕、棉籽粕和葵花粕(P < 0.05)。4种杂粕在生长猪结肠前和结肠的能量消化率和消化能均无显著差异(P>0.05)。4种杂粕在生长猪结肠前和结肠的能量消化率分别占全消化道能量消化率的64.05%~74.74%和25.26%~35.95%。
![]() |
表 3 4种杂粕在生长猪结肠前、全消化道、结肠的能量消化率和消化能 Table 3 Energy digestibility and digestible energy of 4 miscellaneous meals in anterior colon, total tract and colon of growing pigs |
由表 4可知,仿生消化法1、2测定的5种试验饲粮在生长猪结肠的干物质消化率与体内法均无显著差异(P>0.05)。仿生消化法1、2测定的基础饲粮、菜籽粕饲粮、棉籽粕饲粮和花生粕饲粮在生长猪结肠的能量消化率及能值(仿生消化法1、2测定所得能值为EHGE,体内法测定所得能值为消化能)与体内法测定值无显著差异(P>0.05)。仿生消化法1测定的葵花粕饲粮在生长猪结肠的能量消化率和能值与体内法无显著差异(P>0.05)。而仿生消化法2测定的葵花粕饲粮在生长猪结肠的能量消化率和能值显著高于仿生消化法1和体内法(P < 0.05)。
![]() |
表 4 仿生消化法和体内法测定的5种试验饲粮在生长猪结肠的干物质和能量消化率及能值 Table 4 DM and energy digestibility and energetic value of 5 experimental diets determined by simulated digestion method and in vivo method for growing pigs1) |
由表 5可知,仿生消化法2测定的菜籽粕、棉籽粕、花生粕在生长猪结肠的能量消化率及能值(仿生消化法2测定所得能值为EHGE,体内法测定所得能值为消化能)与体内法无显著差异(P>0.05),但仿生消化法2测定的葵花粕在生长猪结肠的能量消化率显著低于体内法(P < 0.05)。
![]() |
表 5 仿生消化法2和体内法测定的4种杂粕在生长猪结肠的能值和能量消化率 Table 5 Energetic value and energy digestibility of 4 miscellaneous meals determined by simulated digestion method 2 and in vivo method for growing pigs |
杂粕类原料作为一种高蛋白质、较高纤维含量的原料在生长猪不同消化位点的消化程度各不相同。我们前期测定的4种杂粕在生长猪回肠末端的能量消化率与本试验测定的4种杂粕在结肠前的能量消化率差异不大,这表明,在后肠消化中主要为结肠消化,这一现象和Jaworski等[7]的研究结果相似。本研究测定生长猪对菜籽粕的消化能为13.36 MJ/kg DM,高于Zhang等[18]的测定值,低于Liu等[19]的测定值。然而,本试验中菜籽粕在结肠前的消化率低于Woyengo等[11]和Pérez de Nanclares等[20]测定的回肠消化率,但本试验中菜籽粕在结肠的消化率相对较高。由此可见,菜籽粕的来源不同,在猪消化道各位点的消化程度也不同。Li等[21]研究表明,生长猪对棉籽粕的消化能与粗蛋白质含量呈正相关。本试验中棉籽粕的粗蛋白质含量为48.3%,消化能测定值为11.89 MJ/kg DM,与马晓康[22]测定的棉籽粕(粗蛋白质含量为49.1%)的消化能接近。刘君地[23]测得生长猪对10种葵花粕的消化能在10.51~12.46 MJ/kg DM,其与粗蛋白质含量呈正相关,与纤维含量呈负相关。本研究测得的生长猪对葵花粕的消化能为12.36 MJ/kg DM,高于Li等[24]和Adeola等[25]的测定值,这可能是因为本试验葵花粕粗蛋白质含量较高,且中性洗涤纤维和酸性洗涤纤维含量较低造成的。李青云[26]测得生长猪对12种花生粕的消化能在14.50~16.40 MJ/kg DM,其与粗蛋白质含量呈正相关,与中性洗涤纤维含量呈负相相关。本试验测定生长猪对花生粕的消化能为15.09 MJ/kg DM,低于Li等[24]的测定值。本试验测定的4种杂粕在生长猪结肠的消化率虽然数值上差异较大,但无显著差异,这一方面可能是不同饲粮在生长猪结肠的消化程度变异较大,另一方面可能是“套算法”会明显放大饲粮消化能在结肠的变异。
当前,对生长猪大肠消化酶的模拟多采用纤维素酶或碳水化合物复合酶[27-31]。孟丽辉[32]使用碳水化合物复合酶模拟生长猪后肠的消化,测得7种纤维饲粮的干物质和能量消化率分别在0.4%~1.9%、0.1%~3.5%。然而,本研究发现生长猪盲肠液中即存在大量的碳水化合物酶,也存在活性较高的淀粉酶和胰蛋白酶、糜蛋白酶。本试验使用盲肠液冻干粉剂作为大肠消化酶时,仿生消化法测定的5种饲粮在生长猪结肠的干物质和能量消化率同体内法较为接近。由此表明,盲肠液来源的水解酶适合用于对结肠的模拟消化。而使用大肠消化酶粉剂作为大肠消化酶时,仿生消化法测定的葵花粕饲粮及葵花粕的能量消化率与体内法存在显著差异,但差值不大。这也表明水解酶的来源对结肠的模拟消化程度有一定影响。
Park等[33]使用碳水化合物酶和微生物酶模拟菜籽粕和棉籽粕在生长猪大肠的消化,所得干物质消化率分别为13.7%、8.0%,其中菜籽粕与本试验结果(12.60%)相似,棉籽粕低于本研究结果(15.04%)。而Kong等[34]使用碳水化合物复合酶模拟菜籽粕和棉籽粕在生长猪大肠的消化,两者的干物质消化率(菜籽粕:3.7%;棉籽粕:4.1%)均低于本试验结果。这可能是由于本试验在模拟大(结)肠消化酶时额外添加了蛋白酶。Ha等[35]在模拟生长猪大肠消化时,在碳水化合物酶的基础上加入蛋白酶也进一步提高了羽毛粉和椰子粕的干物质消化率。然而,当前酶法模拟杂粕在生长猪大肠的干物质、能量消化率在数值上仍低于体内的实测值。王亚[36]在猪仿生消化过程中发现,小肠阶段存在消化酶失活的现象,通过补酶可准确评定猪对谷实类饲料原料中蛋白质及氨基酸的消化率。仿生消化过程中猪大(结)肠消化时间设置为21 h,因此,大肠消化酶是否存在失活的现象以及这一现象是否是导致当前评价杂粕类饲料原料的结肠消化率偏低的原因也有待进一步的研究。此外,Hernandez-Hernandez等[37]研究也指出,体外模拟人类对碳水化合物的消化需要考虑除淀粉酶和微生物酶之外的酶。因此,需要进一步探讨除碳水化合物酶和蛋白酶之外是否存在其他制约性消化酶影响生长猪大(结)肠消化。
4 结论① 菜籽粕、棉籽粕、葵花粕和花生粕在生长猪结肠的能量消化率分别为17.63%、15.55%、22.77%和22.02%。
② 仿生消化法1(结肠消化酶来源于盲肠液冻干粉剂)模拟生长猪结肠对菜籽粕、棉籽粕、葵花粕和花生粕的消化程度与体内法无显著差异,但仿生消化法2(结肠消化酶来源于模拟大肠液粉剂)模拟生长猪结肠对葵花粕的消化程度与体内法存在显著差异。这表明仿生消化法模拟生长猪结肠对杂粕的消化程度与体内消化程度的差异受模拟消化液水解酶来源的影响。
[1] |
PETRY A L, HUNTLEY N F, BEDFORD M R, et al. The influence of xylanase on the fermentability, digestibility, and physicochemical properties of insoluble corn-based fiber along the gastrointestinal tract of growing pigs[J]. Journal of Animal Science, 2021, 99(7): skab159. DOI:10.1093/jas/skab159 |
[2] |
AGYEKUM A K, SLOMINSKI B A, NYACHOTI C M. Organ weight, intestinal morphology, and fasting whole-body oxygen consumption in growing pigs fed diets containing distillers dried grains with solubles alone or in combination with a multienzyme supplement[J]. Journal of Animal Science, 2012, 90(9): 3032-3040. DOI:10.2527/jas.2011-4380 |
[3] |
ISAACSON R, KIM H B. The intestinal microbiome of the pig[J]. Animal Health Research Reviews, 2012, 13(1): 100-109. DOI:10.1017/S1466252312000084 |
[4] |
XIAO Y P, KONG F L, XIANG Y, et al. Comparative biogeography of the gut microbiome between Jinhua and Landrace pigs[J]. Scientific Reports, 2018, 8(1): 5985. DOI:10.1038/s41598-018-24289-z |
[5] |
高巍, 孟庆翔. 生长育肥猪后肠纤维分解菌的数量及微生物发酵作用[J]. 动物营养学报, 2002, 14(2): 33-36. GAO W, MENG Q X. Populations and activity of cellulolytic bacteria in the hindgut of growing finishing pigs[J]. Chinese Journal of Animal Nutrition, 2002, 14(2): 33-36 (in Chinese). DOI:10.3969/j.issn.1006-267X.2002.02.008 |
[6] |
冯平. 肥育猪对不同类型纤维消化适应性及其后肠发酵与微生物菌群变化研究[D]. 硕士学位论文. 北京: 中国农业科学院, 2013: 34-35. FENG P. Adaptation to different types of fiber in growing-finishing swine and changes of hindgut fermentation and microbiota[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2013: 34-35. (in Chinese) |
[7] |
JAWORSKI N W, STEIN H H. Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed corn-soybean meal diets containing distillers dried grains with solubles, wheat middlings, or soybean hulls[J]. Journal of Animal Science, 2017, 95(2): 727-739. DOI:10.2527/jas.2016.0752 |
[8] |
HUANG Z, URRIOLA P E, SHURSON G C. Prediction of digestible and metabolizable energy of corn distillers dried grains with solubles for growing pigs using in vitro digestible nutrients[J]. Journal of Animal Science, 2018, 96(5): 1818-1824. DOI:10.1093/jas/sky102 |
[9] |
HUANG Z, URRIOLA P E, SHURSON G C. Use of in vitro dry matter digestibility and gas production to predict apparent total tract digestibility of total dietary fiber for growing pigs[J]. Journal of Animal Science, 2017, 95(12): 5474-5484. DOI:10.2527/jas2017.1964 |
[10] |
MONTOYA C A, RUTHERFURD S M, MOUGHAN P J. Kiwifruit fibre level influences the predicted production and absorption of SCFA in the hindgut of growing pigs using a combined in vivo-in vitro digestion methodology[J]. British Journal of Nutrition, 2016, 115(8): 1317-1324. DOI:10.1017/S0007114515002883 |
[11] |
WOYENGO T A, JHA R, BELTRANENA E, et al. In vitro digestion and fermentation characteristics of canola co-products simulate their digestion in the pig intestine[J]. Animal, 2016, 10(6): 911-918. DOI:10.1017/S1751731115002566 |
[12] |
URRIOLA P E, STEIN H H. Comparative digestibility of energy and nutrients in fibrous feed ingredients fed to Meishan and Yorkshire pigs[J]. Journal of Animal Science, 2012, 90(3): 802-812. DOI:10.2527/jas.2010-3254 |
[13] |
赵峰, 王钰明, 张虎, 等. 单胃动物仿生消化系统操作手册[M]. 4版. 北京: 中国农业科学院, 2021. ZHAO F, WANG Y M, ZHANG H, et al. Manual instruction of monogastric animal bionic digestion system[M]. 4th ed. Beijing: Chinese Academy of Agricultural Sciences, 2021 (in Chinese). |
[14] |
DAHLQVIST A. A method for the determination of amylase in intestinal content[J]. Scandinavian Journal of Clinical and Laboratory Investigation, 1962, 14(2): 145-151. DOI:10.3109/00365516209079686 |
[15] |
RICK W. Chymotrypsin: measurements with N-benzoyl-L-tyrosine ethyl ester as substrate[M]//BERGMEYER H U. Methods of enzymatic analysis. 2nd ed. New York: Academic Press, 1974: 1009-1012.
|
[16] |
RICK W. Trypsin: measurement with Nα-p-toluenesulfonyl-L-arginine methyl ester as substrate[M]//BERGMEYER H U. Methods of Enzymatic Analysis. 2nd ed. New York: Academic Press, 1974: 1021-1024.
|
[17] |
LI Q F, TROTTIER N, POWERS W. Feeding reduced crude protein diets with crystalline amino acids supplementation reduce air gas emissions from housing[J]. Journal of Animal Science, 2015, 93(2): 721-730. DOI:10.2527/jas.2014-7746 |
[18] |
ZHANG T, LIU L, PIAO X S. Predicting the digestible energy of rapeseed meal from its chemical composition in growing-finishing pigs[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(3): 375-381. DOI:10.5713/ajas.2011.11323 |
[19] |
LIU W C, LEE S I, HONG S T, et al. Comparison of apparent total tract and ileal digestibility in growing and finishing pigs fed soybean meal, rapeseed meal, and canola meal[J]. Journal of Applied Animal Research, 2018, 46(1): 55-59. DOI:10.1080/09712119.2016.1258364 |
[20] |
PÉREZ DE NANCLARES M, TRUDEAU M P, HANSEN J Ø, et al. High-fiber rapeseed co-product diet for Norwegian Landrace pigs: effect on digestibility[J]. Livestock Science, 2017, 203: 1-9. DOI:10.1016/j.livsci.2017.06.008 |
[21] |
LI J T, LI D F, ZANG J J, et al. Evaluation of energy digestibility and prediction of digestible and metabolizable energy from chemical composition of different cottonseed meal sources fed to growing pigs[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(10): 1430-1438. DOI:10.5713/ajas.2012.12201 |
[22] |
马晓康. 棉粕猪有效能和氨基酸消化率及其预测方程的研究[D]. 硕士学位论文. 北京: 中国农业大学, 2015: 24-26. MA X K. Study on available energy, amino acids digestibility and prediction equation of cottonseed meals for pigs[D]. Master's Thesis. Beijing: Chinese Agricultural University, 2015: 24-26. (in Chinese) |
[23] |
刘君地. 生长猪葵花粕能值和氨基酸消化率预测方程的建立[D]. 硕士学位论文. 北京: 中国农业大学, 2014: 17-22. LIU J D. Modeling of energy value and amino acid digestibility of sunflower seed meals for growing pigs[D]. Master's Thesis. Beijing: Chinese Agricultural University, 2014: 17-22. (in Chinese) |
[24] |
LI Y K, LI Z C, LIU H, et al. Net energy content of rice bran, corn germ meal, corn gluten feed, peanut meal, and sunflower meal in growing pigs[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(9): 1481-1490. DOI:10.5713/ajas.17.0829 |
[25] |
ADEOLA O, KONG C. Energy value of distillers dried grains with solubles and oilseed meals for pigs[J]. Journal of Animal Science, 2014, 92(1): 164-170. DOI:10.2527/jas.2013-6662 |
[26] |
李青云. 生长猪花生粕有效能和氨基酸消化率预测方程的建立[D]. 硕士学位论文. 北京: 中国农业大学, 2014: 23-28. LI Q Y. Modeling of energy value and amino acid digestibility of peanut meals for growing pigs[D]. Master's Thesis. Beijing: Chinese Agricultural University, 2014: 23-28. (in Chinese) |
[27] |
BOISEN S, FERNÁNDEZ J A. Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses[J]. Animal Feed Science and Technology, 1997, 68(3/4): 277-286. |
[28] |
HUANG G, SAUER W C, HE J, et al. The nutritive value of hulled and hulless barley for growing pigs.1.Determination of energy and protein digestibility with the in vivo and in vitro method[J]. Journal of Animal and Feed Sciences, 2003, 12(4): 759-769. DOI:10.22358/jafs/67771/2003 |
[29] |
NOBLET J, JAGUELIN-PEYRAUD Y. Prediction of digestibility of organic matter and energy in the growing pig from an in vitro method[J]. Animal Feed Science and Technology, 2007, 134(3/4): 211-222. |
[30] |
REGMI P R, SAUER W C, ZIJLSTRA R T. Prediction of in vivo apparent total tract energy digestibility of barley in grower pigs using an in vitro digestibility technique[J]. Journal of Animal Science, 2008, 86(10): 2619-2626. DOI:10.2527/jas.2008-1058 |
[31] |
ŚWIECH E. Alternative prediction methods of protein and energy evaluation of pig feeds[J]. Journal of Animal Science and Biotechnology, 2017, 8: 39. DOI:10.1186/s40104-017-0171-7 |
[32] |
孟丽辉. 生长猪纤维饲料体内外消化率的评定及其对肠道消化功能的影响[D]. 硕士学位论文. 北京: 中国农业科学院, 2015: 20-26. MENG L H. Evaluation of fibrous feed's digestibility in vivo/in vitro and its effect on intestinal digestive function for growing pigs[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2015: 20-26. (in Chinese) |
[33] |
PARK K R, PARK C S, KIM B G. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs[J]. SpringerPlus, 2016, 5: 598. DOI:10.1186/s40064-016-2194-5 |
[34] |
KONG C S, PARK C S, KIM B G. Effects of an enzyme complex on in vitro dry matter digestibility of feed ingredients for pigs[J]. SpringerPlus, 2015, 4: 261. DOI:10.1186/s40064-015-1060-1 |
[35] |
HA D U, CHOI H, KIM B G. Supplemental protease improves in vitro disappearance of dry matter and crude protein in feather meal and copra meal for pigs[J]. Revista Brasileira de Zootecnia, 2020, 49: e20200095. DOI:10.37496/rbz4920200095 |
[36] |
王亚. 基于模拟生长猪胃-小肠消化过程测定谷实类饲料原料蛋白质效价的研究[D]. 硕士学位论文. 北京: 中国农业科学院, 2019: 9-18. WANG Y. Study on determination of protein availability in cereal grains based on simulated gastro-small intestinal digestion process for growing pigs[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2019: 9-18. (in Chinese) |
[37] |
HERNANDEZ-HERNANDEZ O, OLANO A, RASTALL R A, et al. In vitro digestibility of dietary carbohydrates: toward a standardized methodology beyond amylolytic and microbial enzymes[J]. Frontiers in Nutrition, 2019, 6: 61. DOI:10.3389/fnut.2019.00061 |