动物营养学报    2022, Vol. 34 Issue (8): 4785-4792    PDF    
柳属植物的生物学功能及其在畜禽生产中的应用研究进展
张鹏1,2 , 闫盛贤1 , ИPИHA ПABЛOBHA Короткова2 , 王家庆1     
1. 沈阳工学院生命工程学院, 抚顺 113122;
2. 俄罗斯滨海农学院, 乌苏里斯克 692510
摘要: 柳属植物根、茎、叶中含有黄酮、多酚、多糖和微量元素等多种化合物。国内外研究表明其提取物具有抑菌、抗氧化、抗炎和提高机体免疫力等多种生物学功能, 因此在畜禽饲料及兽药领域具有很广泛的开发利用前景。本文综述了柳属植物的主要活性成分, 并从抑菌、抗氧化、抗炎等角度阐述其主要生物学功能及潜在作用机理, 为柳属植物的活性成分筛选及相关作用机理的研究提供参考, 并为柳属植物在饲粮中的合理应用提供依据。
关键词: 柳属植物    活性成分    生物学功能    畜禽    应用    
Advances in Biological Functions of Salix Plants and Its Application in Livestock and Poultry Production
ZHANG Peng1,2 , YAN Shengxian1 , ИPИHA ПABЛOBHA Короткова2 , WANG Jiaqing1     
1. College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China;
2. Primorskaya State Academy of Agriculture, Ussuriisk 692510, Russia
Abstract: There are many compounds such as flavonoids, polyphenols, polysaccharides and trace elements in the roots, stems and leaves of Salix plants. Studies at home and abroad have shown that its extract has a variety of biological functions such as antibacterial, anti-oxidation, anti-inflammatory and improving immunity. Therefore, it has a wide range of development and utilization prospects in the field of animal feed and veterinary medicine. This article reviewed the main active components of Salix plant, and expounded its main physiological functions and potential mechanisms of action from the perspectives of antibacterial, anti-oxidation, and anti-inflammatory, in order to provide a reference for the study on the screening of the active components of Salix plant extracts and related mechanisms of action, and provide theoretical basis for the rational application of Salix plants in feed.
Key words: Salix plants    active ingredient    biological function    livestock    application    

柳属植物是杨柳科木本植物,已超过4个属500余个种,全世界广泛分布。研究发现柳属植物的根、茎、叶、花中含有大量的黄酮类、多酚类、多糖类化合物,因此其提取物具有显著的抗氧化、抗炎以及调节免疫功能[1-3]。此外,柳树还含有大量的微量元素,特别是碘元素,故柳树还常用来作为辅助药物治疗与缺碘密切相关的疾病[4]。与抗生素相比,柳属植物提取物具有低毒、无耐药性且绿色环保的特点;与传统中草药相比,柳属植物的皮、叶、根来源广,价格低廉,易规模化生产。因此,柳属植物在畜禽生产中具有广阔的应用前景。本文综述了柳属植物的主要活性成分及其抑菌、抗氧化、抗炎等生物学功能,以期为柳属植物在畜禽生产中的合理利用提供参考。

1 柳属植物的主要化学成分

目前国内外涉及柳属植物中化学成分的研究越来越多,主要针对化学成分的分离鉴定及含量测定。已分离鉴定的化合物以黄酮类化合物最多,其次是酚苷类化合物,还有多糖、有机酸等,具体名称见表 1

表 1 柳属植物的主要化学成分 Table 1 Main chemical constituents of Salix plants
1.1 黄酮类化合物

黄酮类化合物是指以2-苯基色原酮为骨架衍生的一类化合物的总称,在自然界的植物中广泛存在,尤以苜蓿等多种牧草含量丰富。由于黄酮类化合物具有较多的生物学功能,因此对促进畜牧生产有积极作用。目前研究发现,黄酮类化合物具有抑菌、抗炎、抗氧化、调节激素水平等药用价值。近年来的研究发现,柳属植物中黄酮类化合物较为丰富,近半数柳属植物的叶片中都含有木犀草素、槲皮素、芦丁、儿茶素、杨梅素等[5-18]具有极高应用价值的黄酮类化合物,其中木犀草素含量可高达2.21%~4.93%。因此,柳属植物饲用不仅提供能量及微量元素,而且具有预防疾病的作用。

1.2 酚苷类化合物

据报道,有多种柳属植物中含有酚苷类物质,其中水杨苷较为丰富,其在树皮、根皮、叶片中均有分布,在垂柳叶片中含量可达3%~4%。自古以来柳树皮制剂常用于缓解各种疾病所引起的发热和疼痛,研究证明这与水杨苷有关。有学者采用高效液相色谱法和硅胶柱联用技术验证了多种柳属植物树皮中有水杨酸类化合物及其他酚类衍生物的存在[19]。另外,在一些柳属植物中还存在着特有的酚苷类化合物,如特里杨苷、柳皮苷、云杉苷、水杨醇等[12, 20-25]

1.3 其他化合物

柳属植物除含有丰富的黄酮类化合物和酚苷类化合物以外,还有多糖类化合物、有机酸、氨基酸以及其他微量元素。高琪[26]通过对几种北方干旱地区沙生灌木饲用价值进行研究,发现沙柳虽然粗蛋白质含量较低,但碳水化合物含量较其他灌木高。经过发酵处理的沙柳作为绵羊的混合饲料时,可显著提高体重和采食量[27]。有研究在大黄柳叶中发现了丰富的钙、铁、钾、钠等矿物元素,其中钙的含量相当高,达到18 770 μg/g[28],高量钙和钾可作为强筋骨、补钙的营养或功能性饲料。综上所述,柳属植物丰富的活性成分不仅使柳属植物具有抗炎、抗氧化、抑菌等药理作用,而且还具有较高的营养价值。

2 柳属植物的生物学功能 2.1 抗氧化作用

过量的自由基是导致畜禽生产性能下降、患病、甚至死亡的主要原因。因此,通过抗氧化作用的研究,寻找有效的抗氧化物质成为目前养殖领域研究的热点之一。柳树是一种具有显著抗氧化活性的植物,柳树提取物自古以来就被印度传统医学用作抗氧化剂[30]。同时也有学者证明,柳叶提取物中酚类和黄酮类化合物具有抗氧化能力[29],柳叶和树皮乙醇提取物均表现出较强的抗氧化活性,尤其是树皮提取物,抗氧化活性比抗坏血酸更强[31]。除此之外,柳树提取物的抗氧化机制还与核因子E2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)信号通路有关,Nrf2是一种重要的氧化还原敏感性转录因子,与机体多种氧化酶的表达有关[29]。Ishikado等[32]研究发现,柳树皮提取物可防止氧化应激诱导的HUVECs细胞毒性和线虫的死亡,其机制与Nrf2靶基因血红素加氧酶-1和细胞内谷胱甘肽(GSH)有关。小鼠体内研究发现埃及柳中没食子酸和乙酰水杨酸单独或联合使用均能增强抗氧化酶的活性,并能抑制肝脏脂质过氧化[33],同样的药理作用在黄花柳[34]中也被证明。此外,还有研究发现,饲粮中添加0.05%白柳树皮粉可有效降低肉鸡血清中丙二醛含量,提高谷胱甘肽含量,达到抑制肉鸡肝脏氧化应激效果[35]。因此,柳属植物提取物可以维持机体氧化还原平衡,保护机体免受氧化损伤。

2.2 抑菌作用

动物健康原则,即动物应该免于疼痛、伤害和疾病。众所周知病原微生物是引发疾病的常见病因,且病原微生物具有耐药性或多重耐药性。在抑菌方面柳属植物提取物也有显著的作用。González-Alamilla等[36]在考察垂柳提取物抑菌效果时发现,该提取物对革兰氏阳性菌和阴性菌均有抑菌和杀菌效果。研究发现,白柳乙醇提取物具有较强的抑制金黄色葡萄球菌生长的作用,且对铜绿假单胞菌也有一定抑制效果[37]。Popova等[38]评价垂柳的叶和枝提取物的抗菌效果时也发现其对金黄色球菌的抑制效果最佳。柳树植物提取物可以有效抑制水产动物和家畜常见致病细菌,如嗜水气单胞菌、海豚链球菌[39]、大肠杆菌、金黄色葡萄球菌和李斯特菌[36]

2.3 解热、镇痛、抗炎作用

从7 000多年前的首次记录开始,各种天然植物被人类用来缓解疼痛,其中罂粟和柳树皮是主要代表[40]。古希腊和罗马人早已把柳树皮用作止痛药和退热剂,为后来发现柳属植物中的水杨苷发挥了积极的作用[41]。水杨苷被吸收到血液,在肝脏中被氧化成水杨酸,由于水杨酸可以抑制环氧合酶,因此可以阻止前列腺素介导的炎症反应[42]。研究表明,白柳提取物通过调节5-羟色胺合成,可以有效改善神经性疼痛[43],如偏头痛[44]。除此之外,体外研究表明,柳树皮提取物的炎症抑制作用主要依赖于其拮抗活化单核细胞的能力,以及阻断促炎细胞因子生成、环氧合酶和核因子-κB(NF-κB)信号通路的活化。在动物模型研究中,发现柳树皮提取物能减少炎性细胞的浸润和渗出,阻断细胞因子的增殖,其作用相当于乙酰水杨酸,且在降低白三烯含量和抑制环氧化酶-2(COX-2)方面优于乙酰水杨酸,在降低前列腺素含量方面与乙酰水杨酸相同[45]。这个结果在治疗犬、山羊关节炎方面得到了证实[3, 46]。除水杨苷以外,在人单核细胞和分化的巨噬细胞中,柳树中黄酮类化合物对COX-2也表现出抑制,并降低了促炎介质的合成[47]

2.4 其他作用

柳属植物提取物除以上药理作用以外,在降脂、抗癌、利尿消石、抗焦虑方面也有一定的作用。Han[48]研究认为,旱柳叶可以有效抑制高脂肪食源性肥胖,其多酚提取物通过抑制α-淀粉酶活性以及加速脂肪细胞降解,并减少碳水化合物和脂质从小肠吸收,从而达到有效降脂作用。在神经系统方面,研究发现单次给沙柳花提取物最佳给药量,对大鼠焦虑的影响与地西泮效果近似[49],达到明显的抗焦虑作用。在泌尿系统方面,通过试验研究发现,柳提取物可以增加小鼠24 h尿量,减轻膀胱结石重量[50]。近年来,有研究表明,柳树有效成分也可以提高机体免疫力,比如柳黄酮可以消除体力性疲劳,增强小鼠游泳耐力,降低血乳酸、血中尿素氮含量,提高肝糖原和肌糖原含量,并有抗疲劳、调整体内代谢和快速加强体质恢复的作用[51]

3 柳属植物在畜禽生产中的应用

柳叶、茎和皮含有大量的氮、有机质、粗蛋白质、中性洗涤纤维、酸性洗涤纤维,可促进家畜的适度生长。有研究认为杨树和柳树可以作为奶山羊的中等质量饲料[52]。柳叶对反刍动物的生长性能也有不同程度的影响,研究表明,饲料中添加垂柳提取物能有效地提高瘤胃体外发酵的效果[53]。Salem等[54]研究发现添加垂柳提取物可以提高羔羊生长速率。此外,柳树饲料块不仅能提高羔羊的生长速度,而且可以有效预防羊体内寄生虫[55]。巴比伦柳提取物对奶牛的产奶量也有影响,研究发现添加150和300 mL/d巴比伦柳提取物时,产奶量分别提高了13.3%和8.9%[56]。柳属植物不仅可以作为反刍动物的饲料添加剂,在单胃动物上也有报道。Abuhafsa等[57]采用柳叶代替部分苜蓿草饲喂新西兰白兔,发现改良后的饲粮无毒副作用且可显著提高兔的生产性能。此外,在肉仔鸡的饮用水中加入柳提取物,虽然对饲料效率和胴体重无显著影响,但对腹脂重有显著影响[58]。近年来研究发现,沙柳中富含单宁,膳食中的单宁成分是一种减少铁吸收的安全方法,因此沙柳叶和茎可用于喂养铁敏感的食草动物[59]。柳属植物作为家畜饲料,具有良好的免疫调节功能,在山羊和绵羊上均见报道。Farinacci等[60]通过筛选11种植物发现,白柳对绵羊中性粒细胞有明显的调节作用,其具有显著的抗炎活性。除此之外,在泌乳后期的山羊中,以柳树作为饲料进行试验,结果发现山羊血液和乳汁中免疫细胞数量变化有明显关系,无论是在血液还是在乳汁中,柳叶均可以有效增加CD8+数量[61]。近年来,氧化应激始终危害养殖业,柳属植物在抗氧化中扮演重要的角色,在饲粮添加0.05%白柳树皮粉可有效抑制肉鸡肝脏氧化应激,同时还可以改善肠道菌群[36]。综上所述,柳属植物在畜禽生产中具有极高的应用价值。

4 小结

柳属植物因其解热、镇痛、抗炎、抗氧化和抗病原微生物活性而被广泛认识。柳属植物分布广泛,无论在热带雨林还是沙漠盐碱地区均可寻见,因此有利于各地区开发安全、高效、廉价的促生长和预防疾病的饲料添加剂。目前,世界各国正在禁止饲料中添加抗生素,减少滥用抗生素造成的危害,维护动物源食品安全和公共卫生安全。然而,预防畜禽患病及促生长是畜牧兽医行业始终关注的话题,因此调整饲料配方设计,选用新型绿色添加剂产品迫在眉睫。柳属植物中富含大量的生物活性物质,在抗炎、抗氧化、抑菌等方面展现出良好的作用。然而,目前柳属植物作为畜禽饲料添加剂或兽药多停留在试验阶段,且其抗炎、抗氧化、抑菌机制有待进一步深入研究。另外,适合规模化生产的柳属植物有效成分提取及饲用加工工艺有待解决。解决上述问题,是实现柳属植物饲用化的重点。

参考文献
[1]
CALORIO C, DONNO D, FRANCHINO C, et al. Bud extracts from Salix caprea L. inhibit voltage gated calcium channels and catecholamines secretion in mouse chromaffin cells[J]. Phytomedicine, 2017, 36: 168-175. DOI:10.1016/j.phymed.2017.09.006
[2]
BOUNAAMA A, ENAYAT S, CEYHAN M S, et al. Ethanolic extract of bark from Salix aegyptiaca ameliorates 1, 2-dimethylhydrazine-induced colon carcinogenesis in mice by reducing oxidative stress[J]. Nutrition and Cancer, 2016, 68(3): 495-506. DOI:10.1080/01635581.2016.1152379
[3]
SHAKIBAEI M, ALLAWAY D, NEBRICH S, et al. Botanical extracts from rosehip (Rosa canina), willow bark (Salix alba), and nettle leaf (Urtica dioica) suppress IL-1β-induced NF-κB activation in canine articular chondrocytes[J]. Evidence-based Complementary and Alternative Medicine, 2012, 2012: 509383.
[4]
何季舟. 碘化物予防地方性甲状腺肿的效果观察[J]. 辽宁中级医刊, 1978(3): 51-52.
HE J Z. Effect of iodide on prevention of endemic goiter[J]. Liaoning Intermediate Medical Journal, 1978(3): 51-52 (in Chinese).
[5]
罗建军. 小红柳化学成分研究[D]. 硕士学位论文. 兰州: 兰州大学, 2013.
LUO J J. Chemical constituents of Salix bordensis[D]. Master's Thesis. Lanzhou: Lanzhou University, 2013. (in Chinese)
[6]
王婷, 赵永亮, 赵晓宁, 等. 小红柳化学成分及体外抗氧化活性研究[J]. 中药材, 2014, 37(12): 2222-2225.
WANG T, ZHAO Y L, ZHAO X N, et al. Constituents and antioxidant activity in vitro of Salix microstachya var. bordensis[J]. Journal of Chinese Medicinal Materials, 2014, 37(12): 2222-2225 (in Chinese).
[7]
SEMWAL S, RAWAT U, SHARMA R K. Isolation and characterization of a new flavone diglucoside from Salix denticulata[J]. Chemistry of Natural Compounds, 2011, 47(3): 366-368. DOI:10.1007/s10600-011-9935-z
[8]
LI X, LIU Z, ZHANG X F, et al. Isolation and characterization of phenolic compounds from the leaves of Salix matsudana[J]. Molecules, 2008, 13(8): 1530-1537. DOI:10.3390/molecules13081530
[9]
刘可越, 刘海军, 周斌, 等. 垂柳叶化学成分及其促进脂肪分解的活性研究[J]. 复旦学报(自然科学版), 2008, 47(4): 520-523.
LIU K Y, LIU H J, ZHOU B, et al. Studies on chemical constituents from Salix babylonica L. and their stimulating lipolysis activity[J]. Journal of Fudan University (Natural Science), 2008, 47(4): 520-523 (in Chinese).
[10]
买吾兰江·买提努尔. 新疆黄花柳花黄酮类化合物成分及其总黄酮组分的提取工艺研究[D]. 硕士学位论文. 乌鲁木齐: 新疆大学, 2010.
MAITINUER M. Study on flavonoids in flowers of Salix caprea L. in Xinjiang and its extraction technique of flavonoids[D]. Master's Thesis. Urumqi: Xinjiang University, 2010. (in Chinese)
[11]
CORRADI E, SCHMIDT N, RÄBER N, et al. Metabolite profile and antiproliferative effects in HaCaT cells of a Salix reticulata extract[J]. Planta Medica, 2017, 83(14/15): 1149-1158. DOI:10.1055/s-0043-109098
[12]
WU Y Q, DOBERMANN D, BEALE M H, et al. Acutifoliside, a novel benzoic acid glycoside from Salix acutifolia[J]. Natural Product Research, 2016, 30(15): 1731-1739. DOI:10.1080/14786419.2015.1137571
[13]
封士兰, 石民彦, 胡芳弟, 等. 山生柳中的酚类衍生物[J]. 兰州大学学报, 2003, 39(3): 107-108.
FENG S L, SHI M Y, HU F D, et al. Phenolic derivatives of Salix SPP[J]. Journal of Lanzhou University, 2003, 39(3): 107-108 (in Chinese). DOI:10.3321/j.issn:0455-2059.2003.03.030
[14]
ZAPESOCHNAYA G G, KURKIN V A, BRASLAVSKII V B, et al. Phenolic compounds of Salix acutifolia bark[J]. Chemistry of Natural Compounds, 2002, 38(4): 314-318. DOI:10.1023/A:1021661621628
[15]
DU Q Z, JERZ G, WINTERHALTER P. Preparation of three flavonoids from the bark of Salix alba by high-speed countercurrent chromatographic separation[J]. Journal of Liquid Chromatography & Related Technologies, 2004, 27(20): 3257-3264.
[16]
POHJAMO S P, HEMMING J E, WILLFÖR S M, et al. Phenolic extractives in Salix caprea wood and knots[J]. Phytochemistry, 2003, 63(2): 165-169. DOI:10.1016/S0031-9422(03)00050-5
[17]
SHELYUTO V L, BONDARENKO V G. Flavonoids of Salix acutifolia[J]. Chemistry of Natural Compounds, 1985, 21(4): 534. DOI:10.1007/BF00579161
[18]
THAPLIYAL R P, BAHUGUNA R P. Fatty acids and flavonoids of Salix lindleyana[J]. International Journal of Pharmacognosy, 1993, 31(2): 165-166. DOI:10.3109/13880209309082934
[19]
POBŁOCKA-OLECH L, VAN NEDERKASSEL A M, VANDER HEYDEN Y, et al. Chromatographic analysis of salicylic compounds in different species of the genus Salix[J]. Journal of Separation Science, 2007, 30(17): 2958-2966. DOI:10.1002/jssc.200700137
[20]
张树军, 常海波, 吕伟强, 等. 旱柳落叶化学成分研究[J]. 林产化学与工业, 2013, 33(1): 97-101.
ZHANG S J, CHANG H B, LV W Q, et al. Chemical components of fallen leaves of Salix matsudana Koidz[J]. Chemistry and Industry of Forest Products, 2013, 33(1): 97-101 (in Chinese). DOI:10.3969/j.issn.0253-2417.2013.01.018
[21]
HUSSAIN H, BADAWY A, ELSHAZLY A, et al. Chemical constituents and antimicrobial activity of Salix subserrata[J]. Records of Natural Products, 2011, 5(2): 133-137.
[22]
王玫, 赵明. 旱柳嫩枝化学成分研究[J]. 齐齐哈尔大学学报(自然科学版), 2013, 29(3): 56-58.
WANG M, ZHAO M. Study on chemical constituents of Salix matsdana youngshoots[J]. Journal of Qiqihar University (Natural Science Edition), 2013, 29(3): 56-58 (in Chinese). DOI:10.3969/j.issn.1007-984X.2013.03.016
[23]
左飞鸿, 吴国江, 李进进, 等. 旱柳叶化学成分研究[J]. 中药材, 2013, 36(12): 1959-1962.
ZUO F H, WU G J, LI J J, et al. Chemical constituents of Salix matsudana leaf[J]. Jorunal of Chinese Medicinal Materials, 2013, 36(12): 1959-1962 (in Chinese).
[24]
EL-SHAZLY A, EL-SAYED A, FIKREY E. Bioactive secondary metabolites from Salix tetrasperma Roxb[J]. Zeitschrift Fur Naturforschung.C, Journal of Biosciences, 2012, 67(7/8): 353-359.
[25]
KUBO S, HASHIDA K, MAKINO R, et al. Chemical composition of desert willow (Salix psammophila) grown in the Kubuqi Desert, Inner Mongolia, China: bark extracts associated with environmental adaptability[J]. Journal of Agricultural and Food Chemistry, 2013, 61(50): 12226-12231. DOI:10.1021/jf4038634
[26]
高琪. 柠条等几种北方干旱地区沙生灌木饲用价值与饲用研究[D]. 硕士学位论文. 呼和浩特: 内蒙古农业大学, 2017.
GAO Q. Study on feeding value and feeding way of Caragana Fabr. dominated desert shrubs in arid area of northern China[D]. Master's Thesis. Hohhot: Inner Mongolia Agricultural University, 2017. (in Chinese)
[27]
李满双. 灌木类饲用植物沙柳饲料化利用技术研究[J]. 硕士学位论文. 呼和浩特: 内蒙古农业大学, 2015.
LI M S. Studys on feed utilization technology of Salix psammophila in shrub forage plants[D]. Master's Thesis. Hohhot: Inner Mongolia Agricultural University, 2015. (in Chinese)
[28]
许传莲, 郑毅男, 刘天志, 等. 长白山大黄柳叶中微量元素的测定[J]. 药物分析杂志, 2005, 25(12): 1449-1450.
XU C L, ZHENG Y N, LIU T Z, et al. Analysis of inorganic elements in leaves of Salix raddeana Laksch[J]. Chinese Journal of Pharmaceutical Analysis, 2005, 25(12): 1449-1450 (in Chinese).
[29]
ABOUL-SOUD M A M, ASHOUR A E, CHALLIS J K, et al. Biochemical and molecular investigation of in vitro antioxidant and anticancer activity spectrum of crude extracts of willow leaves Salix safsaf[J]. Plants, 2020, 9(10): 1295. DOI:10.3390/plants9101295
[30]
AHMED A, SHAH W A, AKBAR S, et al. A short chemical review on Salix caprea commonly known as goat willow[J]. International Journal of Research Phytochemistry & Pharmacology, 2011, 1(1): 17-20.
[31]
PIATCZAK E, DYBOWSKA M, PŁUCIENNIK E, et al. Identification and accumulation of phenolic compounds in the leaves and bark of Salix alba (L.) and their biological potential[J]. Biomolecules, 2020, 10(10): 1391. DOI:10.3390/biom10101391
[32]
ISHIKADO A, SONO Y, MATSUMOTO M, et al. Willow bark extract increases antioxidant enzymes and reduces oxidative stress through activation of Nrf2 in vascular endothelial cells and Caenorhabditis elegans[J]. Free Radical Biology & Medicine, 2013, 65: 1506-1515.
[33]
NAUMAN M, KALE R K, SINGH R P. Polyphenols of Salix aegyptiaca modulate the activities of drug metabolizing and antioxidant enzymes, and level of lipid peroxidation[J]. BMC Complementary and Alternative Medicine, 2018, 18(1): 81. DOI:10.1186/s12906-018-2143-7
[34]
ALAM M S, KAUR G, JABBAR Z, et al. Evaluation of antioxidant activity of Salix caprea flowers[J]. Phytotherapy Research, 2006, 20(6): 479-483. DOI:10.1002/ptr.1882
[35]
PANAITE T D, SARACILA M, PAPUC C P, et al. Influence of dietary supplementation of Salix alba bark on performance, oxidative stress parameters in liver and gut microflora of broilers[J]. Animals, 2020, 10(6): 958. DOI:10.3390/ani10060958
[36]
GONZÁLEZ-ALAMILLA E N, GONZALEZ-CORTAZAR M, VALLADARES-CARRANZA B, et al. Chemical constituents of Salix babylonica L. and their antibacterial activity against gram-positive and gram-negative animal bacteria[J]. Molecules, 2019, 24(16): 2992.
[37]
SULAIMAN G M, HUSSIEN N N, MARZOOG T R, et al. Phenolic content, antioxidant, antimicrobial and cytotoxic activities of ethanolic extract of Salix alba[J]. American Journal of Biochemistry and Biotechnology, 2013, 9(1): 41-46. DOI:10.3844/ajbbsp.2013.41.46
[38]
POPOVA T P, KALEVA M D. Antimicrobial effect in vitro of aqueous extracts of leaves and branches of willow (Salix babylonica L.)[J]. International Journal of Current Microbiology and Applied Sciences, 2015, 4(10): 146-152.
[39]
RANGEL-LÓPEZ L, ZARAGOZA-BASTIDA A, VALLADARES-CARRANZA B, et al. In vitro antibacterial potential of Salix babylonica extract against bacteria that affect Oncorhynchus mykiss and Oreochromis spp[J]. Animals, 2020, 10(8): 1340. DOI:10.3390/ani10081340
[40]
MACKOWIAK P A. Brief history of antipyretic therapy[J]. Clinical Infectious Diseases, 2000, 31(Suppl 5): S154-S156.
[41]
MONTINARI M R, MINELLI S, DE CATERINA R. The first 3500 years of aspirin history from its roots—a concise summary[J]. Vascular Pharmacology, 2019, 113: 1-8.
[42]
CASDORPH D L. Book review: medicinal plants of the world, 2nd edition.Volume I: chemical constituents, traditional and modern medicinal uses[J]. Annals of Pharmacotherapy, 2004, 38(1): 179.
[43]
DI GIACOMO V, FERRANTE C, RONCI M, et al. Multiple pharmacological and toxicological investigations on Tanacetum parthenium and Salix alba extracts: focus on potential application as anti-migraine agents[J]. Food and Chemical Toxicology, 2019, 133: 110783.
[44]
SHRIVASTAVA R, PECHADRE J C, JOHN G W. Tanacetum parthenium and Salix alba (Mig-RL) combination in migraine prophylaxis: a prospective, open-label study[J]. Clinical Drug Investigation, 2006, 26(5): 287-296.
[45]
KHAYYAL M T, EL-GHAZALY M A, ABDALLAH D M, et al. Mechanisms involved in the anti-inflammatory effect of a standardized willow bark extract[J]. Arzneimittel-Forschung, 2005, 55(11): 677-687.
[46]
SHARMA S, SAHU D, DAS H R, et al. Amelioration of collagen-induced arthritis by Salix nigra bark extract via suppression of pro-inflammatory cytokines and oxidative stress[J]. Food and Chemical Toxicology, 2011, 49(12): 3395-3406.
[47]
BONATERRA G A, HEINRICH E U, KELBER O, et al. Anti-inflammatory effects of the willow bark extract STW 33-I (Proaktiv®) in LPS-activated human monocytes and differentiated macrophages[J]. Phytomedicine, 2010, 17(14): 1106-1113.
[48]
HAN L K, SUMIYOSHI M, ZHANG J, et al. Anti-obesity action of Salix matsudana leaves (Part 1).Anti-obesity action by polyphenols of Salix matsudana in high fat-diet treated rodent animals[J]. Phytotherapy Research, 2003, 17(10): 1188-1194.
[49]
KOMAKI A, HASHEMI-FIROUZI N, KAKAEI S, et al. Investigating the effect of hydro-alcoholic extract of Salix aegyptiaca on anxiety in male rat[J]. Advanced Biomedical Research, 2015, 4: 258.
[50]
VARGAS R, PÉREZ R M. Antiurolithiatic activity of Salix taxifolia aqueous extract[J]. Pharmaceutical Biology, 2002, 40(8): 561-563.
[51]
昌友权, 郑鸿雁, 曲红光, 等. 柳黄酮抗疲劳作用的实验研究[J]. 食品科学, 2006, 27(8): 251-253.
CHANG Y Q, ZHENG H Y, QU H G, et al. Study on antifatigue effect of anthoxanthin of Salix[J]. Food Science, 2006, 27(8): 251-253 (in Chinese).
[52]
MCWILLIAM E L, BARRY T N, LOPEZ-VILLALOBOS N, et al. The effect of different levels of poplar (Populus) supplementation on the reproductive performance of ewes grazing low quality drought pasture during mating[J]. Animal Feed Science and Technology, 2004, 115(1/2): 1-18.
[53]
SALEM A Z M, BUENDÍA-RODRÍGUEZ G, ELGHANDOUR M M M, et al. Effects of cellulase and xylanase enzymes mixed with increasing doses of Salix babylonica extract on in vitro rumen gas production kinetics of a mixture of corn silage with concentrate[J]. Journal of Integrative Agriculture, 2015, 14(1): 131-139.
[54]
SALEM A Z M, OLIVARES M, LOPEZ S, et al. Effect of natural extracts of Salix babylonica and Leucaena leucocephala on nutrient digestibility and growth performance of lambs[J]. Animal Feed Science and Technology, 2011, 170(1/2): 27-34.
[55]
MUKLADA H, KLEIN J D, GLASSER T A, et al. Initial evaluation of willow (Salix acmophylla) irrigated with treated wastewater as a fodder crop for dairy goats[J]. Small Ruminant Research, 2018, 163: 76-83.
[56]
SALEM A Z M, KHOLIF A E, ELGHANDOUR M M Y, et al. Influence of oral administration of Salix babylonica extract on milk production and composition in dairy cows[J]. Italian Journal of Animal Science, 2014, 13(1): 2978.
[57]
ABUHAFSA S H, HASSAN A A, CAMACHO L M, et al. Replacement of berseem hay by Salix tetrasperma on physiological performance of New Zealand White rabbits under subtropical conditions of Egypt[J]. Tropical Animal Health and Production, 2014, 46(7): 1119-1125.
[58]
SUGITO S, ERDIANSYAH R, MIRA D, et al. Effect of Salix tetrasperma Roxb. extract on the value of feed conversion ratio, carcass weight, and abdominal fat content of broiler chicken with heat stress condition[J]. E3S Web of Conferences, 2020, 151: 01034.
[59]
LAVIN S R, SULLIVAN K E, WOOLEY S C, et al. Near infrared reflectance spectroscopy (NIRS) analyses of nutrient composition and condensed tannin concentrations in carolina willow (Salix caroliniana)[J]. Zoo Biology, 2015, 34(6): 576-582.
[60]
FARINACCI M, COLITTI M, SGORLON S, et al. Immunomodulatory activity of plant residues on ovine neutrophils[J]. Veterinary Immunology and Immunopathology, 2008, 126(1/2): 54-63.
[61]
MUKLADA H, VOET H, DEUTCH T, et al. The effect of willow fodder feeding on immune cell populations in the blood and milk of late-lactating dairy goats[J]. Animal, 2020, 14(12): 2511-2522.