近年来,遗传育种、营养调控、环境条件控制等现代养殖技术的应用使肉禽生长速度和肌肉产量均显著提高,这有力保障了禽肉的供给量。但是,同时也出现了肉禽对应激更敏感,禽肉品质普遍不高,类苍白、松软、汁液渗出样(PSE)肉、木质化鸡胸肉等异质肉的发生率也不断升高,严重影响了禽肉的感官品质、食用品质及加工性能,不仅引起消费者抱怨,而且造成巨大的经济损失。饲粮是影响家禽生长性能和肉品质的重要因素之一,通过营养调控手段改善禽肉品质已受到了国内外研究者的广泛关注,并取得了一定进展。
肌酸(creatine,Cr)是一种在细胞能量稳态中起重要作用的天然氨基酸衍生物,人体中约有95%的Cr储存在骨骼肌中,剩余的5%主要分布在大脑、肾脏、肝脏和睾丸中[1]。Cr主要存在于肉类与鱼类等动物源食物中,并作为一种功能性膳食补充剂被广泛应用于食品、医药等领域。人和动物体内约2/3的Cr与无机磷酸盐(inorganic phosphate,Pi)结合并以磷酸肌酸(phosphocreatine,PCr)的形式储存,其余以游离Cr的形式储存[2]。当体内ATP消耗过多时,PCr可向二磷酸腺苷(adenosine diphosphate,ADP)提供高能磷酸键以再生ATP,是骨骼肌和大脑等高能耗组织ATP合成的储备物质,对机体能量代谢起重要调控作用[3]。随着人们对Cr的营养作用认识的深入,越来越多的肌酸补充剂也被应用到肉禽养殖实践中,此类添加剂在促进肉禽生长、缓解应激、改善肉品质等方面体现出了积极效果,具有广阔的应用前景[4-5]。本文介绍了当前市场上4种主要肌酸补充剂的理化特性、代谢途径和生物学功能,并总结了肌酸补充剂在肉鸡、肉鸭和肉鹅养殖实践中的研究进展,指出了当前肌酸补充剂应用中存在的问题及未来研究方向,以期为新型饲料添加剂开发和优质禽肉生产提供参考。
1 肌酸补充剂主要种类及理化性质目前,肌酸补充剂应用最广泛的是一水肌酸(creatine monohydrate,CMH),CMH的安全性已经得到了大量研究的证实,未对人体机能产生副作用[6-7]。然而,CMH微溶于水,这在一定程度上影响了其在人和动物消化道的吸收效率。为了克服溶解性差、利用率不高的问题,研发出了胍基乙酸(guanidinoacetic acid,GAA)、丙酮酸肌酸(creatine pyruvate,CrPyr)和肌酸硝酸盐(creatine nitrate,CrN)等新型肌酸补充剂[8],其主要理化性质见表 1[8-11]。
![]() |
表 1 不同类型肌酸补充剂的理化性质 Table 1 Physical and chemical characteristics of different creatine supplements |
动物主要通过机体内源合成和饲粮提供2个途径获取Cr,其内源合成包括2个关键步骤(图 1):第一步主要发生在肾脏和胰腺中,L-精氨酸和甘氨酸在L-精氨酸甘氨酸脒基转移酶(L-arginine-glycine amidinotransferase,AGAT)的催化下生成GAA和鸟氨酸;第二步,GAA通过血液循环到达肝脏,在胍基乙酸甲基转移酶(guanidinoacetate methyltransferase,GAMT)的催化下与S-腺苷蛋氨酸(S-adenosyl methionine,SAM)反应合成Cr。理论上讲,膳食中添加肌酸补充剂具有节约精氨酸、甘氨酸和蛋氨酸的效果,使其更多用于蛋白质合成[12]。内源合成和外源摄取的Cr可通过血液循环系统运输到骨骼肌和大脑等消耗能量比较多的组织和器官,再经肌酸转运载体(creatine transporter,CreaT)转运进入细胞[13-14]。细胞内的Cr在肌酸激酶(creatine kinase,CK)磷酸化的作用下生成PCr,作为能量的暂时储存物质。当肌细胞内ATP消耗速度过快时,PCr可提供高能磷酸键用于ADP再合成ATP[15-16]。CK存在多种亚型,在Cr和PCr构成的能量穿梭系统中(亦称Cr/PCr系统)凭借不同亚型的CK及其亚细胞定位充当高能磷酸盐的能量穿梭机。CK在线粒体ATP产生位点和ATP使用位点之间转运能量,当存在Cr时,位于线粒体内外膜之间线粒体肌酸激酶(mitochondrial creatine kinase,MtCK)可催化氧化磷酸化产生的部分ATP转化为PCr以存储能量[17-18]。
![]() |
ADP:二磷酸腺苷adenosine diphosphate;ATP:三磷酸腺苷adenosine triphosphate;AGAT:L-精氨酸甘氨酸脒基转移酶L-arginine-glycine amidinotransferase;CK:肌酸激酶creatine kinase;Cr:肌酸creatine;CreaT:肌酸转运载体creatine transporter;ETC:电子传递链electron transport chain;GAMT:胍基乙酸甲基转移酶guanidinoacetate methyltransferase;MtCK:线粒体肌酸激酶mitochondrial creatine kinase;PCr:磷酸肌酸phosphocreatine。 图 1 Cr合成和代谢途径 Fig. 1 Cr synthesis and metabolic pathways[22] |
体内Cr/PCr系统是细胞内ATP快速再生的重要能量来源,该系统作为ADP与ATP循环的备份,可通过ADP和Pi的重组再生ATP,在短时间内储存和调动能量以满足骨骼肌、大脑等高耗能组织的能量需要,并且维持ATP/ADP比率和细胞稳态[19]。然而,骨骼肌或大脑等组织中PCr和ATP的总储量较小,在高强度工作中会迅速消耗。当肌细胞中的PCr储备耗尽,ATP的再合成必须通过厌氧糖酵解进行,ATP的输出功率也随之下降[20]。因此,提高肌细胞中Cr和PCr的含量有助于增强Cr/PCr系统的供能作用,从而延缓厌氧糖酵解的进程,减少乳酸的积累[21]。
3 肌酸补充剂的主要生物学功能 3.1 增加体内总肌酸池容量Cr和PCr共同构成Cr/PCr池,在骨骼肌、大脑、巨噬细胞和精子细胞等能量需要高的组织和细胞的能量代谢中起重要的调节作用。机体内细胞获取Cr主要通过特定的钠离子(Na+)依赖性肌酸转运蛋白从血浆中获取,并转运Cr到骨骼肌等耗能较高的组织发挥作用[23]。育肥猪饲粮中添加0.8% CMH或0.1% GAA均可显著提高背最长肌中Cr和PCr的含量,并提高半腱肌中PCr和肝脏中Cr的含量[24];肉鸡(1~39日龄)饲粮中添加0.6或1.2 g/kg的GAA可显著提高胸肌PCr、Cr和总肌酸(PCr+Cr)含量[25]。这些研究结果表明,补充外源Cr或其合成的前体物均可增加肌肉组织中Cr/PCr池的能量储备。
3.2 延缓肌肉糖酵解动物宰后血液循环中止导致肌肉组织供氧不足,此时供能途径以厌氧糖酵解为主,在产生少量ATP的同时伴随大量乳酸的生成,而乳酸的过度积累会造成肌肉pH和系水力过低,甚至产生PSE猪肉、类PSE禽肉等异质肉[26]。诸多文献报道,肌酸补充剂能够延缓宰后肌肉的糖酵解速率,降低乳酸和氢离子(H+)的生成。饲粮添加1 g/kg的GAA可显著降低育肥猪背最长肌中己糖激酶活性和乳酸的含量,延缓糖酵解,提高猪肉的pH和系水力[27]。宰前2周饲粮中添加1 200 mg/kg的CMH显著提高肉鸡胸大肌中Cr和PCr含量,延缓宰后肌肉糖酵解,缓解由宰前运输应激引起的鸡胸肉品质的下降[28]。上述研究结果表明,饲粮中添加适量的肌酸补充剂能够改善肌细胞能量状态,延缓宰后糖酵解,减少乳酸的生成,提高肌肉pH和系水力,起到改善肉质的作用。一磷酸腺苷活化蛋白激酶(AMP-activated protein kinase,AMPK)是一种代谢传感器,它能感知细胞内能量变化,调控能量代谢,调节宰后肌肉糖酵解速率[29-30]。Cr调控肌肉糖酵解的可能途径是通过抑制AMPK信号通路的表达,降低肌肉糖酵解限速酶的活性进而减弱糖酵解代谢,减少乳酸的积累,最终起到改善肉品质的作用[29]。
3.3 抗氧化作用正常生理状态下,机体细胞线粒体氧化磷酸化过程可持续产生少量的活性氧(reactive oxygen species,ROS)作为信号分子调控细胞基本生命活动,此时ROS的生成和抗氧化之间保持动态平衡;但是,体内ROS过量则会攻击细胞膜以及其他生物膜,损坏膜的结构与功能,并通过受损的细胞膜进入细胞中,使细胞内的蛋白质、核酸等生物大分子发生氧化反应,引起机体细胞异常的物质代谢,造成氧化应激[31]。Lawler等[32]通过体外试验发现,Cr具有清除2, 2′-联氮-双-(3-乙基苯并噻唑啉-6-磺酸)二铵盐自由基(ABTS+)、超氧阴离子自由基(O2-·)和过氧亚硝酸自由基(OONO-)等自由基离子的能力,首次证明了Cr的直接抗氧化特性。Hosamani等[33]以黑腹果蝇为试验对象,研究CMH对鱼藤酮诱导的氧化应激和神经毒性的保护作用,发现CMH显著降低内源性氧化标志物丙二醛和过氧化氢水平(CMH添加浓度为2~10 mmol/L),并显著缓解鱼藤酮诱导的线粒体氧化应激(CMH添加浓度为10 mmol/L)。此外,在氧化损伤的人脐静脉内皮细胞中添加10 mmol/L CMH,发现Cr有助于维持线粒体完整性,保护线粒体DNA和RNA免受氧化损伤[34]。金宏等[35]发现,持续1周补充0.1 mol/kg体重的Cr可以减少游泳大鼠骨骼肌乳酸及线粒体脂质过氧化物的产生,改善骨骼肌线粒体的功能。Cr的间接抗氧化机制可能与提高细胞能量(PCr)的缓冲能力,增强细胞膜的稳定性和线粒体的完整性等相关。然而,有关Cr确切的抗氧化机制尚不完全明确,有待深入研究。
4 肌酸补充剂在肉禽生产上的应用效果 4.1 CMHCMH是肌酸的一水化合物,分子式为C4H9N3O2·H2O,肉鸡养殖试验结果显示,CMH具有提高生长性能、改善肉品质和增强能量代谢等作用。据报道,体重1 kg左右肉鸡的Cr需求量为98.3 mg/d,2.05 kg肉鸡的Cr需求量增加到137.6 mg/d,并且分别对应的2种体重肉鸡饲粮中Cr的最佳添加水平分别为0.077%和0.068%[36]。吴昊等[37]向32~47日龄的爱拔益加(AA)肉鸡(预试期5 d)饲粮中分别添加0.4%、0.8%或1.6%的CMH,发现3个添加组肉鸡的平均日增重、胸肌率和腿肌率均显著提高,建议0.4%为这一生长阶段肉鸡的适宜添加量。但也有部分研究并未发现CMH对肉鸡的生长性能有促进作用。Xia等[38]研究发现,42~63日龄黄羽肉鸡饲粮中添加250、500或1 000 mg/kg的CMH对其生长性能和胴体性状均无显著影响。此外,程灵豪等[39]研究发现,向25~40日龄的樱桃谷肉鸭饲粮中添加0.05%或0.40%的CMH均可显著提高肉鸭的腿肌率和瘦肉率,且缓解肉鸭宰后胸肌、腿肌pH的下降,具有提高系水力的趋势。同样,吴娟等[40]研究发现,26~36日龄樱桃谷肉鸭饲粮中添加0.4%的CMH可显著提高肉鸭宰后胸肌pH和血清中Cr含量,显著降低胸肌乳酸含量。以上试验结果表明,CMH的添加效果与肉禽的生长阶段、CMH的添加量及试验持续的时间有关。
应激是肉禽养殖中不可忽视的问题之一,多种应激都会对肉禽养殖业造成巨大的经济损失。AA肉鸡宰前2周(28~42日龄)饲粮中添加600和1 200 mg/kg的CMH对肉鸡的生长性能和3 h运输后肌肉的抗氧化能力均无显著改善作用,但1 200 mg/kg的CMH可显著降低血浆皮质酮含量,缓解肉鸡的应激反应,降低肌肉糖酵解速率,提高胸肉pH和系水力,其机理是CMH显著上调胸肌中CreaT表达,提高Cr/PCr系统能量缓冲作用,改善肌肉能量状态,抑制运输应激导致的肝激酶B1(liver kinase B1,LKB1)/AMPK通路的激活,从而降低肌肉糖酵解速率,改善胸肉品质[28-29, 41]。这与张柏林等[42]在研究补饲0.12% CMH对宰前运输黔东南小香鸡生长性能和肉品质影响的试验结果较一致。此外,29~42日龄北京鸭饲粮中添加700和1 400 mg/kg的CMH可显著提高2 h运输后肉鸭血清葡萄糖含量和肌肉供能效率,降低胸大肌中乳酸含量,延缓肌肉糖酵解,有利于维持胸肉品质[42]。上述研究结果表明,CMH具有缓解宰前运输对肉鸡和肉鸭造成的应激反应,改善宰后禽肉品质,这对于保障优质禽肉生产具有重要意义。
4.2 GAA植物性饲料原料为主的家禽饲粮中不含Cr,这就导致除外源添加外,禽类对Cr的需求只能依赖于自身内源性的合成,这增加了机体对精氨酸、甘氨酸和蛋氨酸等合成Cr的前体氨基酸的需求[43]。GAA作为体内Cr合成的前体物,成本更低且饲粮添加GAA能有效地节约精氨酸、甘氨酸在内源性GAA合成过程的消耗,这使得GAA在畜禽生产中的应用更广泛[44]。GAA对肉禽的生长性能、屠宰性能、肉品质和抗氧化能力等有一定的促进作用。在精氨酸缺乏的饲粮中添加0.12% GAA可显著提高雏鸡的生长性能,表明补充GAA理论上能有效地节约精氨酸的利用,还能通过促进Cr合成为机体的生长和其他生理代谢活动提供充足的能量[45]。Borges等[46]报道,饲粮添加0.20% GAA可提高1~14日龄肉鸡的体增重,降低料重比。He等[47]研究发现,补饲600、800、1 000或1 200 mg/kg的GAA通过影响肉鸡体内Cr代谢和必需氨基酸利用效率,提高1~42日龄肉鸡的平均日增重和饲料转化率,有效提高肉鸡生长性能,并认为600 mg/kg的GAA是提高肉鸡生长性能的最小添加剂量。这与Boney等[48]的研究结果相似。王亚琼等[49]报道,10~42日龄樱桃谷肉鸭饲粮中添加0.05%的GAA可提高上市日龄肉鸭的半净膛率、全净膛率和腿肌率。此外,肉鸡、肉鸭和肉鹅上的研究结果均表明,GAA具有促生长、改善肉品质的效果,且与蛋氨酸联合使用的效果优于GAA单独添加效果[50-53]。也有研究发现,GAA具有抗氧化、抗应激的作用。周璐[53]研究发现,饲粮添加0.02%~0.08% GAA能提高肉鹅血清中总抗氧化能力(T-AOC)、还原性谷胱甘肽(GSH)含量以及超氧化物歧化酶(SOD)等抗氧化酶的活性。此外,GAA能通过提高肉鸡胸肌中Cr和PCr的含量,改善细胞能量状态,缓解肉鸡运输应激,提高热应激肉鸡的饲料转化率和存活率[25, 54]。总体而言,植物性饲粮中补充GAA具有改善肉禽生长性能、抗应激和改善肉品质等作用效果,表明GAA是Cr的有效补充剂。
4.3 其他肌酸补充剂目前,除CMH和GAA外,市场上还有CrPyr和CrN等新型肌酸补充剂。有报道指出,肉鸡饲粮中添加5% CrPyr能通过降低肝脏甘油三酯和血清总胆固醇含量以及抑制ATP合酶、胆固醇酯转移蛋白和肌肉抑制素的表达,降低高密度脂蛋白、甘油三酯含量;增加真核翻译起始因子(eIF)2B、eIF3a、载脂蛋白AⅣ的表达,从而减少脂肪和胆固醇累积,促进蛋白质的合成[55-56]。Chen等[57]研究也发现,在肉鸡饲粮中添加5% CrPyr可改善肉仔鸡的脂质和蛋白质代谢。CrN也是一种新型的肌酸补充剂,与CMH相比其具有较大的溶解性和体内吸收保留率[58]。Duan等[59]研究发现,宰前2周的肉鸡饲粮中添加600或900 mg/kg的CrN可显著提高宰后24 h胸肌pH,降低滴水损失,其主要通过提高肌肉中Cr和PCr含量,抑制LKB1/AMPK信号通路延缓宰后糖酵解,进而改善鸡肉品质,且同等剂量下CrN增强肉鸡肌肉能量状态和改善肉品质的效果优于GAA。目前,CrPyr和CrN等新型肌酸补充剂在家禽上的应用研究相对较少,其作用效果、安全性及作用机理尚未完全清楚,需要进一步开展系统深入的研究。
5 小结Cr是天然存在于动物肌肉等组织中用于合成储能物质PCr的重要原料,是保证骨骼肌ATP合成的后备物质,因此家禽体内Cr的合成效率与储量均对肌细胞能量代谢具有重要调节作用。诸多研究结果表明,肌酸补充剂在改善肉禽生长、缓解宰前应激、改善肉品质等方面均体现了积极效果。但不同研究所得到的添加剂量、作用效果间存在较大差异;肌酸补充剂在肉禽生产实践中的规范应用仍缺乏理论指导,不同类型肌酸补充剂之间也缺乏效价比较研究。因此,肌酸补充剂未来的研究方向应集中在其安全性、效价比较、作用机理及适宜的添加条件等方面。
[1] |
WALKER J B. Creatine: biosynthesis, regulation, and function[J]. Advances in Enzymology and Related Areas of Molecular Biology, 1979, 50: 177-242. |
[2] |
KREIDER R B, STOUT J R. Creatine in health and disease[J]. Nutrients, 2021, 13(2): 447. DOI:10.3390/nu13020447 |
[3] |
SEE H H, SCHMIDT-MARZINKOWSKI J, PORMSILA W, et al. Determination of creatine and phosphocreatine in muscle biopsy samples by capillary electrophoresis with contactless conductivity detection[J]. Analytica Chimica Acta, 2012, 727: 78-82. DOI:10.1016/j.aca.2012.03.055 |
[4] |
李子平, 田树飞, 牛建东. 不同蛋白质水平日粮添加胍基乙酸对热应激肉鸡生长性能、应激指标及肠道形态的影响[J]. 中国饲料, 2020(4): 59-63. LI Z P, TIAN S F, NIU J D. Effects of additional of guanidylacetic acid in different protein levels diets on growth performance, stress index and intestinal morphology of broilers exposed to heat stress[J]. China Feed, 2020(4): 59-63 (in Chinese). |
[5] |
张柏林, 刘宁, 李家惠, 等. 饲粮添加一水肌酸对宰前运输应激黔东南小香鸡血液指标、肉品质及肌肉糖酵解的影响[J]. 动物营养学报, 2021, 33(7): 3768-3777. ZHANG B L, LIU N, LI J H, et al. Effects of dietary creatine monohydrate on blood indexes, meat quality and muscle glycolysis of Qiandongnan Xiaoxiang chickens subjected to pre-slaughter transportation stress[J]. Chinese Journal of Animal Nutrition, 2021, 33(7): 3768-3777 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.07.019 |
[6] |
POORTMANS J R, FRANCAUX M. Long-term oral creatine supplementation does not impair renal function in healthy athletes[J]. Medicine & Science in Sports & Exercise, 1999, 31(8): 1108-1110. |
[7] |
KREIDER R B, MELTON C, RASMUSSEN C J, et al. Long-term creatine supplementation does not significantly affect clinical markers of health in athletes[J]. Molecular and Cellular Biochemistry, 2003, 244(1/2): 95-104. DOI:10.1023/A:1022469320296 |
[8] |
JÄGER R, PURPURA M, SHAO A, et al. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine[J]. Amino Acids, 2011, 40(5): 1369-1383. DOI:10.1007/s00726-011-0874-6 |
[9] |
姚方, 徐天有. 一水肌酸的合成方法[J]. 天津化工, 2003, 17(2): 55-57. YAO F, XU T Y. Study on the synthesis of creatine-monohydrate[J]. Tianjin Chemical Industry, 2003, 17(2): 55-57 (in Chinese). DOI:10.3969/j.issn.1008-1267.2003.02.022 |
[10] |
王向明, 刘则学. 胍基乙酸在猪营养中的研究进展[J]. 养猪, 2021(2): 17-21. WANG X M, LIU Z X. Research progress of guanidine acetic acid in pig nutrition[J]. Swine Production, 2021(2): 17-21 (in Chinese). DOI:10.3969/j.issn.1002-1957.2021.02.008 |
[11] |
KRAMER R, NIKOLAIDIS A. Amino acid compounds: US12946114[P]. 2010-11-15.
|
[12] |
WU G Y. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health[J]. Amino Acids, 2020, 52(3): 329-360. DOI:10.1007/s00726-020-02823-6 |
[13] |
LOIKE J D, ZALUTSKY D L, KABACK E, et al. Extracellular creatine regulates creatine transport in rat and human muscle cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(3): 807-811. DOI:10.1073/pnas.85.3.807 |
[14] |
GUIMBAL C, KILIMANN M W. A Na+-dependent creatine transporter in rabbit brain, muscle, heart, and kidney.cDNA cloning and functional expression[J]. Journal of Biological Chemistry, 1993, 268(12): 8418-8421. DOI:10.1016/S0021-9258(18)52891-X |
[15] |
WYSS M, KADDURAH-DAOUK R. Creatine and creatinine metabolism[J]. Physiological Reviews, 2000, 80(3): 1107-1213. DOI:10.1152/physrev.2000.80.3.1107 |
[16] |
JONCQUEL-CHEVALIER CURT M, VOICU P M, FONTAINE M, et al. Creatine biosynthesis and transport in health and disease[J]. Biochimie, 2015, 119: 146-165. DOI:10.1016/j.biochi.2015.10.022 |
[17] |
WALLIMANN T, WYSS M, BRDICZKA D, et al. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis[J]. Biochemical Journal, 1992, 281(Pt 1): 21-40. |
[18] |
SCHLATTNER U, TOKARSKA-SCHLATTNER M, WALLIMANN T. Mitochondrial creatine kinase in human health and disease[J]. Biochimica et Biophysica acta, 2006, 1762(2): 164-180. DOI:10.1016/j.bbadis.2005.09.004 |
[19] |
SAKS V A, KONGAS O, VENDELIN M, et al. Role of the creatine/phosphocreatine system in the regulation of mitochondrial respiration[J]. Acta Physiologica Scandinavica, 2000, 168(4): 635-641. DOI:10.1046/j.1365-201x.2000.00715.x |
[20] |
TERJUNG R L, CLARKSON P, EICHNER E R, et al. American college of sports medicine roundtable.The physiological and health effects of oral creatine supplementation[J]. Medicine and Science in Sports and Exercise, 2000, 32(3): 706-717. DOI:10.1097/00005768-200003000-00024 |
[21] |
WELLS G D, SELVADURAI H, TEIN I. Bioenergetic provision of energy for muscular activity[J]. Paediatric Respiratory Reviews, 2009, 10(3): 83-90. DOI:10.1016/j.prrv.2009.04.005 |
[22] |
CLARKE H, KIM D H, MEZA C A, et al. The evolving applications of creatine supplementation: could creatine improve vascular health?[J]. Nutrients, 2020, 12(9): 2834. DOI:10.3390/nu12092834 |
[23] |
ODOOM J E, KEMP G J, RADDA G K. The regulation of total creatine content in a myoblast cell line[J]. Molecular and Cellular Biochemistry, 1996, 158(2): 179-188. |
[24] |
LI J L, ZHANG L, FU Y N, et al. Creatine monohydrate and guanidinoacetic acid supplementation affects the growth performance, meat quality, and creatine metabolism of finishing pigs[J]. Journal of Agricultural and Food Chemistry, 2018, 66(38): 9952-9959. DOI:10.1021/acs.jafc.8b02534 |
[25] |
MAJDEDDIN M, BRAUN U, LEMME A, et al. Guanidinoacetic acid supplementation improves feed conversion in broilers subjected to heat stress associated with muscle creatine loading and arginine sparing[J]. Poultry Science, 2020, 99(9): 4442-4453. DOI:10.1016/j.psj.2020.05.023 |
[26] |
BARBUT S, SOSNICKI A A, LONERGAN S M, et al. Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat[J]. Meat Science, 2008, 79(1): 46-63. DOI:10.1016/j.meatsci.2007.07.031 |
[27] |
LIU Y, LI J L, LI Y J, et al. Effects of dietary supplementation of guanidinoacetic acid and combination of guanidinoacetic acid and betaine on postmortem glycolysis and meat quality of finishing pigs[J]. Animal Feed Science and Technology, 2015, 205: 82-89. DOI:10.1016/j.anifeedsci.2015.03.010 |
[28] |
ZHANG L, LI J L, GAO T, et al. Effects of dietary supplementation with creatine monohydrate during the finishing period on growth performance, carcass traits, meat quality and muscle glycolytic potential of broilers subjected to transport stress[J]. Animal, 2014, 8(12): 1955-1962. DOI:10.1017/S1751731114001906 |
[29] |
ZHANG L, WANG X F, LI J L, et al. Creatine monohydrate enhances energy status and reduces glycolysis via inhibition of AMPK pathway in pectoralis major muscle of transport-stressed broilers[J]. Journal of Agricultural and Food Chemistry, 2017, 65(32): 6991-6999. DOI:10.1021/acs.jafc.7b02740 |
[30] |
SHEN Q W, MEANS W J, THOMPSON S A, et al. Pre-slaughter transport, AMP-activated protein kinase, glycolysis, and quality of pork loin[J]. Meat Science, 2006, 74(2): 388-395. DOI:10.1016/j.meatsci.2006.04.007 |
[31] |
LUSHCHAK V I. Free radicals, reactive oxygen species, oxidative stress and its classification[J]. Chemico-Biological Interactions, 2014, 224: 164-175. DOI:10.1016/j.cbi.2014.10.016 |
[32] |
LAWLER J M, BARNES W S, WU G Y, et al. Direct antioxidant properties of creatine[J]. Biochemical and Biophysical Research Communications, 2002, 290(1): 47-52. DOI:10.1006/bbrc.2001.6164 |
[33] |
HOSAMANI R, RAMESH S R, MURALIDHARA. Attenuation of rotenone-induced mitochondrial oxidative damage and neurotoxicty in Drosophila melanogaster supplemented with creatine[J]. Neurochemical Research, 2010, 35(9): 1402-1412. DOI:10.1007/s11064-010-0198-z |
[34] |
GUIDI C, POTENZA L, SESTILI P, et al. Differential effect of creatine on oxidatively-injured mitochondrial and nuclear DNA[J]. Biochimica et Biophysica acta, 2008, 1780(1): 16-26. DOI:10.1016/j.bbagen.2007.09.018 |
[35] |
金宏, 许志勤, 王先远, 等. 补充肌酸对游泳大鼠骨骼肌代谢的影响[J]. 中国运动医学杂志, 2002, 21(1): 95-97. JIN H, XU Z Q, WANG X Y, et al. Effects of creatine supplementation on skeletal muscle metabolism in swimming rats[J]. Chinese Journal of Sports Medicine, 2002, 21(1): 95-97 (in Chinese). DOI:10.3969/j.issn.1000-6710.2002.01.027 |
[36] |
TOSSENBERGER J, RADEMACHER M, N METH K, et al. Digestibility and metabolism of dietary guanidino acetic acid fed to broilers[J]. Poultry Science, 2016, 95(9): 2058-2067. DOI:10.3382/ps/pew083 |
[37] |
吴昊, 韩东, 赵云, 等. 一水肌酸对AA肉鸡生长性能及肉品质的影响[J]. 饲料工业, 2013, 34(6): 31-34. WU H, HAN D, ZHAO Y, et al. Effect of creatine monohydrate on growth performance and meat quality in AA broilers[J]. Feed Industry, 2013, 34(6): 31-34 (in Chinese). |
[38] |
XIA W G, ABDULLAHI A Y, ZUO J J, et al. Effects of creatine monohydrate on growth performance, carcass characteristics and meat quality of yellow-feathered broilers[J]. Journal of Animal and Veterinary Advances, 2012, 11(23): 4382-4388. |
[39] |
程灵豪, 高峰, 温若竹, 等. 一水肌酸对肉鸭胴体组成及肌肉系水力的影响[J]. 浙江大学学报(农业与生命科学版), 2010, 36(6): 635-640. CHENG L H, GAO F, WEN R Z, et al. Effect of creatine monohydrate on carcass characteristics and drip loss in meat duck[J]. Journal of Zhejiang University(Agriculture & Life Sciences), 2010, 36(6): 635-640 (in Chinese). |
[40] |
吴娟, 程灵豪, 高峰, 等. 一水肌酸对肉鸭胴体组成及肉品质的影响[J]. 南京农业大学学报, 2011, 34(4): 100-104. WU J, CHENG L H, GAO F, et al. Effects of creatine monohydrate on carcass composition and meat quality in ducks[J]. Journal of Nanjing Agricultural University, 2011, 34(4): 100-104 (in Chinese). |
[41] |
WANG X F, ZHU X D, LI Y J, et al. Effect of dietary creatine monohydrate supplementation on muscle lipid peroxidation and antioxidant capacity of transported broilers in summer[J]. Poultry Science, 2015, 94(11): 2797-2804. DOI:10.3382/ps/pev255 |
[42] |
祁晶, 张亚茹, 施尧, 等. 一水肌酸对宰前运输应激北京鸭血液指标和肉品质的影响[J]. 中国家禽, 2017, 39(2): 43-47. QI J, ZHANG Y R, SHI Y, et al. Effects of creatine monohydrate on plasma variables and meat quality of Pekin ducks subjected to preslaughter transport stress[J]. China Poultry, 2017, 39(2): 43-47 (in Chinese). |
[43] |
LI P, WU G Y. Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets[J]. Amino Acids, 2020, 52(4): 523-542. DOI:10.1007/s00726-020-02833-4 |
[44] |
OSTOJIC S M. Guanidinoacetic acid as a performance-enhancing agent[J]. Amino Acids, 2016, 48(8): 1867-1875. DOI:10.1007/s00726-015-2106-y |
[45] |
DILGER R N, BRYANT-ANGELONI K, PAYNE R L, et al. Dietary guanidino acetic acid is an efficacious replacement for arginine for young chicks[J]. Poultry Science, 2013, 92(1): 171-177. DOI:10.3382/ps.2012-02425 |
[46] |
BORGES K M, DE C MELLO H H, CAF E M B, et al. Effect of dietary inclusion of guanidinoacetic acid on broiler performance[J]. Revista Colombiana de Ciencias Pecuarias, 2021, 34(2): 95-104. |
[47] |
HE D T, YANG L B, LI J T, et al. Effects of guanidinoacetic acid on growth performance, creatine metabolism and plasma amino acid profile in broilers[J]. Journal of Animal Physiology and Animal Nutrition, 2019, 103(3): 766-773. DOI:10.1111/jpn.13081 |
[48] |
BONEY J W, PATTERSON P H, SOLIS F. The effect of dietary inclusions of guanidinoacetic acid on D1-42 broiler performance and processing yields[J]. Journal of Applied Poultry Research, 2020, 29(1): 220-228. DOI:10.1016/j.japr.2019.10.008 |
[49] |
王亚琼, 刘强, 姜发彬, 等. 胍基乙酸对樱桃谷肉鸭生产性能和抗氧化能力的影响[J]. 南京农业大学学报, 2016, 39(2): 269-274. WANG Y Q, LIU Q, JIANG F B, et al. Effects of guanidinoacetic acid on performance and antioxidant capacity in Cherry Valley ducks[J]. Journal of Nanjing Agricultural University, 2016, 39(2): 269-274 (in Chinese). |
[50] |
MAJDEDDIN M, GOLIAN A, KERMANSHAHI H, et al. Effects of methionine and guanidinoacetic acid supplementation on performance and energy metabolites in breast muscle of male broiler chickens fed corn-soybean diets[J]. British Poultry Science, 2019, 60(5): 554-563. DOI:10.1080/00071668.2019.1631447 |
[51] |
IBRAHIM D, EL SAYED R, ABDELFATTAH-HASSAN A, et al. Creatine or guanidinoacetic acid?Which is more effective at enhancing growth, tissue creatine stores, quality of meat, and genes controlling growth/myogenesis in Mulard ducks[J]. Journal of Applied Animal Research, 2019, 47(1): 159-166. DOI:10.1080/09712119.2019.1590205 |
[52] |
LI S Z, YANG L, CHANG W H, et al. Supplementation of guanidinoacetic acid and betaine improve growth performance and meat quality of ducks by accelerating energy metabolism[J]. Italian Journal of Animal Science, 2021, 20(1): 1656-1663. DOI:10.1080/1828051X.2021.1978336 |
[53] |
周璐. 胍基乙酸对肉鹅的生产性能、抗氧化能力和血清生化指标的影响[J]. 中国饲料, 2020(2): 39-42. ZHOU L. Effect of thioglycolic acid on production performance, antioxidant capacity and serum biochemical indexes of meat goose[J]. China Feed, 2020(2): 39-42 (in Chinese). |
[54] |
ZHANG L, LI J L, WANG X F, et al. Attenuating effects of guanidinoacetic acid on preslaughter transport-induced muscle energy expenditure and rapid glycolysis of broilers[J]. Poultry Science, 2019, 98(8): 3223-3232. DOI:10.3382/ps/pez052 |
[55] |
CHEN J, WANG M, KONG Y, et al. Comparison of the novel compounds creatine and pyruvateon lipid and protein metabolism in broiler chickens[J]. Animal, 2011, 5(7): 1082-1089. DOI:10.1017/S1751731111000085 |
[56] |
CHEN J, HUANG J Z, DENG J, et al. Use of comparative proteomics to identify the effects of creatine pyruvate on lipid and protein metabolism in broiler chickens[J]. The Veterinary Journal, 2012, 193(2): 514-521. DOI:10.1016/j.tvjl.2012.01.034 |
[57] |
CHEN J, MA H T, WANG M, et al. Creatine pyruvate enhances lipolysis and protein synthesis in broiler chicken[J]. Agricultural Sciences in China, 2011, 10(12): 1977-1985. DOI:10.1016/S1671-2927(11)60199-5 |
[58] |
GALVAN E, WALKER D K, SIMBO S Y, et al. Acute and chronic safety and efficacy of dose dependent creatine nitrate supplementation and exercise performance[J]. Journal of the International Society of Sports Nutrition, 2016, 13(1): 12. DOI:10.1186/s12970-016-0124-0 |
[59] |
DUAN B B, XU J W, XING T, et al. Creatine nitrate supplementation strengthens energy status and delays glycolysis of broiler muscle via inhibition of LKB1/AMPK pathway[J]. Poultry Science, 2022, 101(3): 101653. DOI:10.1016/j.psj.2021.101653 |