2. 华中农业大学, 武汉 430070
2. Huazhong Agricultural University, Wuhan 430070, China
近年来,抗生素滥用造成的环境问题和动物健康问题引起人们越来越多的重视,寻找合理的替抗方案显得尤为迫切。农业农村部公布自2020年1月1日起,退出除中药外的所有促生长类药物饲料添加剂品种,自2020年7月1日起,饲料生产企业停止生产含有促生长类药物饲料添加剂(中药类除外)的商品饲料。中草药、植物提取物等作为一种被认为“安全、可靠、环保”的替抗产品越来越受到重视。大豆异黄酮(ISO)是来源于豆科植物的一类多酚化合物,具有强抗氧化性和弱雌激素活性。在畜禽饲料中添加适量大豆异黄酮有提高畜禽生产性能、增强动物机体的抗氧化能力、改善肠道健康、调控激素分泌、增强机体免疫力的功能。鉴于大豆异黄酮的诸多功能,且同时具有来源广泛、安全无污染、副作用小等优点,因此在后抗生素时代大豆异黄酮作为替代抗生素使用的新型饲料添加剂可能会有巨大的市场潜力。本文将近年来国内外对大豆异黄酮在猪禽生产中的研究进展和本课题组前期对大豆异黄酮的研究结果进行综述,以期为后续更加合理地应用大豆异黄酮资源提供依据。
1 大豆异黄酮的结构和功能 1.1 大豆异黄酮的来源及结构大豆异黄酮是来源于豆科植物的12种天然异黄酮的统称,主要存在于豆科植物种子和幼苗中[1],其主要结构形式是3-苯并吡喃酮为母核的化合物群,由于其化学结构与雌激素类似,又被称为植物雌激素。大豆异黄酮可分为大豆苷类、染料木苷类和黄豆黄素苷类,每类又分为游离型、葡萄糖苷型、乙酰基葡萄糖苷型和丙二酰葡萄糖苷型4种存在形式,化学结构式如图 1所示。在通常情况下,大豆异黄酮类化合物是固体,常温下性质稳定,不溶于水,但溶于氯仿等有机溶剂[2]。由于大豆品种、种植及加工方法的差异导致其组成及含量存在差异,最新的研究显示大豆异黄酮中游离型苷元占16.2%~29.0%,结合型糖苷占71.0%~83.0%[3]。
![]() |
图 1 大豆异黄酮化学结构式 Fig. 1 Chemical structure of soybean isoflavone[1] |
大豆异黄酮的主要活性成分为游离型苷元,研究指出大豆异黄酮中游离苷元比结合型糖苷更容易被动物机体吸收,生物利用度更高[4-7]。大豆异黄酮的糖苷经过肠道被β-葡萄糖苷酶水解为苷元,才能进入血液循环[8-9],没有被水解的大豆异黄酮会经过肠肝循环进入结肠,在结肠微生物的作用下转化为具有更高生物活性的雌马酚从而参与动物机体的代谢活动[10-13]。在畜禽生产中,大豆异黄酮可以增强机体抗氧化活性,改善肠道健康,提高畜禽生产性能。且作为天然的植物雌激素,具有许多重要的生理生化功能[14],参与机体的生长繁殖过程[7]。
2 大豆异黄酮在猪禽生产上的应用 2.1 大豆异黄酮对猪禽生产性能的影响大豆异黄酮作为饲料添加剂,可提高母猪泌乳性能,改善乳成分,提高乳蛋白和乳脂的含量,提高哺乳仔猪平均日增重[15-17]。在断奶仔猪和肥育猪上的应用,程忠刚等[18]在仔猪饲粮中添加大豆黄酮,结果表明大豆黄酮可以提升仔猪生长性能,在肥育猪中应用的结果[19-20]趋于一致。降低饲粮中豆粕的含量使肥育猪生长性能显著降低[21],其原因可能不仅仅是饲粮中蛋白质含量的减少,还可能与大豆异黄酮摄入量的降低有关。Thomas等[22]在低豆粕建模的低蛋白质饲粮饲养试验中发现,添加0.05%大豆异黄酮可抚平低蛋白质饲粮对肥育猪生长性能的影响。
大豆异黄酮在肉鸡、蛋鸡生产中也多有应用,添加适量大豆异黄酮可以提高肉鸡的饲料转化率[23],提高蛋鸡种蛋孵化率[24-25],提高蛋鸡产蛋率及蛋品质。Shiralinezhad等[26]研究表明,添加100 mg/kg的大豆异黄酮可提高雏鸡1~14日龄的饲料转化率,但是更低剂量的大豆异黄酮对其生长性能无显著影响。在鸡养殖中应用最多的大豆异黄酮为大豆苷元,鸡对大豆苷元有较好的耐受性,添加剂量达到200 mg/kg对鸡无显著毒性[24]。大豆苷元的剂量与蛋鸡生产性能呈二次曲线回归[27]。高剂量的大豆苷元可以促进钙磷代谢,提高蛋鸡蛋品质[28]。大豆苷元还常常被报道和中草药联合使用,提高蛋鸡产蛋率[29]。
2.2 大豆异黄酮对猪禽抗氧化功能的影响大豆异黄酮具有良好的抗氧化能力,这与其结构密不可分,大豆异黄酮结构中的多个酚羟基可以成为自由基的供氢体,并与有害金属离子螯合,增强其与自由基结合的能力,从而清除自由基。此外,大豆异黄酮的代谢产物雌马酚,也可作为氢或电子的受体,能与自由基结合后随机体排出体外,起到抗氧化作用[30-32]。体外试验研究表明,用量不超过100 μmol/L时,大豆异黄酮对鸡骨骼肌细胞的增殖和抗氧化活性具有积极的作用,并抑制细胞脂质过氧化[33-35]。这在猪脂肪细胞和乳腺细胞试验中也得到了验证[36-38]。大豆异黄酮的抗氧化作用是通过作用于β-雌激素受体来实现的。染料木素与雌激素受体(ER)结合后可以激活大鼠肉瘤蛋白(Ras)-快速纤维肉瘤蛋白(RAF)-丝裂原活化蛋白激酶激酶(MEK)进而促进细胞外调节蛋白激酶1/2(ERK1/2)的磷酸化,而磷酸化后的ERK1/2可以使核转录因子-κB(NF-κB)抑制蛋白(IκB)的2个亚基磷酸化,进而激活NF-κB,从而上调锰超氧化物歧化酶(MnSOD)基因的表达,起到抗氧化作用(图 2)。Jiang等[39]研究表明,在含有氧化鱼油的饲粮中添加20 mg/kg的大豆异黄酮,可以改善鸡的抗氧化状态。大豆异黄酮可以降低机体血清、肠道黏膜、骨骼肌等组织中丙二醛(MDA)的含量[40-41]。饲喂添加适宜剂量的大豆异黄酮饲粮可以改善肌肉的抗氧化能力,从而改善肉质,延长肉类商品货柜期[42-45]。大豆异黄酮提高肌肉抗氧化性能、改善肉质的原因可能是大豆异黄酮可以改善骨骼肌细胞膜的流动性,提高骨骼肌细胞抵抗氧化损伤的能力[46]。但是也有研究指出,高剂量的大豆异黄酮会在特定的组织和细胞中起到促氧化作用。Jiang等[40]使用80 μmol/L的大豆异黄酮培养猪骨骼肌细胞,结果表明该浓度下的大豆异黄酮对骨骼肌细胞有促氧化的作用。Chen等[47-48]使用200和400 μmol/L的染料木素培养猪原代肌肉细胞,结果显示细胞内脂质过氧化指标MDA含量显著增加,这表明此剂量下的染料木素有显著的促氧化作用,而在肥育猪上使用640 mg/kg的大豆苷试验结果也证实了高剂量大豆异黄酮的促氧化作用。大豆异黄酮通过促进5-脂氧合酶(5-LOX)表达进而提高了细胞活性氧(ROS)的产生,从而起到促氧化效果[48]。因此,尽管动物对大豆异黄酮有很高的耐受剂量,但是高剂量的大豆异黄酮在动物养殖中可能效果不理想。
![]() |
Isoflavone:大豆异黄酮;Estrogen receptor:雌激素受体;MEK:丝裂原活化蛋白激酶激酶mitogen-activated protein kinase kinase;MAPK:丝裂原活化蛋白激酶mitogen-activated protein kinase;Lower oxidative stress:降低氧化应激。 图 2 大豆异黄酮的抗氧化机制 Fig. 2 Antioxidant mechanism of isoflavones[7] |
动物肠道是动物机体与外界环境进行物质交换的重要场所,也是隔离外界刺激的重要免疫屏障。大豆异黄酮提高畜禽生产性能可能还与其改善肠道健康有关。一方面大豆异黄酮通过上调过氧化氢酶、谷胱甘肽还原酶和超氧化物歧化酶等抗氧化酶的活性,减少肠道上皮细胞氧化应激的作用;另一方面大豆异黄酮可以通过抑制肠道炎症反应关键信号通路,Janus激酶(JAK)/信号传导及转录激活蛋白(STAT)和Toll样受体4(TLR4)/NF-κB中的特定过程,减轻肠道炎症反应[49-50]。在饲喂氧化鱼油的新生仔猪的饲粮中添加大豆异黄酮可有效减轻氧化应激造成的肠道损伤,提高肠道的免疫功能[43]。染料木素是大豆异黄酮中生理活性最高的异黄酮,研究表明染料木素可以改善细胞的活力和细胞通透性,通过抑制TLR4/NF-κB信号通路减少肠道炎性反应[51-52]。在无抗情况下,大豆异黄酮能抑制脂多糖引起的仔猪空肠黏膜中p38蛋白和TLR4通路的激活,降低炎症反应,维持仔猪肠道健康[53]。此外,大豆异黄酮还可以促进畜禽肠道发育,并参与肠道菌群调控[54]。Shiralinezhad等[26]研究表明,100 mg/kg的大豆异黄酮可以促进鸡空肠绒毛的生长,降低肠隐窝深度。且有研究发现,大豆异黄酮可提高仔猪肠道菌群丰度,这些菌群可能对维持肠道屏障的功能和完整性具有重要意义[55]。
2.4 大豆异黄酮对猪禽激素分泌的影响大豆异黄酮与17β-雌二醇(17β-E2)有着相似的化学结构,因此可以与ER结合,有雌激素和抗雌激素活性[7, 56-58]。研究表明,染料木素可以通过促进鸡卵泡颗粒细胞类固醇激素合成,急性调节蛋白(StAR)、细胞色素P450胆固醇侧链裂解酶(P450scc)和3β-羟基类固醇脱氢酶(3β-HSD)等基因的表达,提高孕酮的分泌[59]。研究发现,添加50 mg/kg大豆苷元可以显著提高鸡卵巢组织细胞中的卵泡刺激素受体(FSHR)的表达,对ER和黄体生成素受体(LHR)的表达也有促进趋势,但是在剂量高达100 mg/kg时3种激素受体的表达都受到了不同程度的抑制[23, 60-62]。大豆异黄酮可通过调控激素分泌影响卵巢卵泡发育,进而影响蛋鸡的产蛋性能。添加15~60 mg/kg的大豆异黄酮可显著提高蛋鸡雌二醇、β-内啡肽和卵黄蛋白原的分泌,显著提高卵泡的发育程度,提高产蛋后期蛋鸡生产性能和蛋品质[25, 63-64]。有研究指出,染料木素会抑制猪卵泡颗粒细胞孕酮的生成,促进雌二醇的分泌[65-66]。张琦琦等[67]研究表明,200 mg/kg的大豆苷元可以提高母猪的繁殖性能,显著提高了妊娠母猪的血清孕酮和胰岛素样生长因子-1(IGF-1)含量,显著提高了血清雌激素和瘦素的含量。体外研究也表明,大豆苷元通过直接调节FSH而上调瘦素的释放[68]。此外,本课题组在仔猪研究上发现大豆黄酮可以上调血清中生长激素(三碘甲腺原氨酸、甲状腺素)和性激素(雌二醇、睾酮)的含量[18];在肥育猪上,大豆黄酮有上调血清生长激素(三碘甲腺原氨酸、甲状腺素)的趋势[19-20]。因此,大豆异黄酮影响畜禽的生产性能,调控激素分泌是非常重要的一个环节,不同的物种适宜剂量不同,过高的剂量可能会起到负面作用。
2.5 大豆异黄酮对猪禽免疫力及抗病能力的影响大豆异黄酮的应用可降低养殖动物病死率。大豆异黄酮对病原体有直接抑制作用[69],同时大豆异黄酮可提高机体免疫力。研究表明,添加大豆异黄酮可使机体抗体分泌升高[70]。王志龙等[71]发现,大豆异黄酮与黄芪多糖复配使用可以提高哺乳母猪血清免疫球蛋白G(IgG)和白细胞介素-2(IL-2)的含量。猪繁殖与呼吸综合征病毒(PRRSV)感染会严重影响猪只的生长发育和繁殖性能,甚至导致死亡[72]。Smith等[73]在饲粮中添加1 600 mg/kg大豆异黄酮,断奶公猪接种PRRSV后,发现大豆异黄酮可以显著降低PRRSV感染后的仔猪死亡率。而此前,Rochell等[74]研究表明,与饲喂含17.5%豆粕饲粮的保育猪相比,饲喂含29.0%的豆粕饲粮的保育猪感染PRRSV后免疫应激反应有所缓解,猪的生长性能有改善的趋势。但在Bryan等[75-76]的研究中,饲粮添加高于1 500 mg/kg大豆异黄酮对改善生长猪PRRSV免疫反应无显著影响。以上3个有关PRRSV的试验结果不太一致,可能原因是大豆异黄酮的使用剂量及试验周期不同。与Smith等[73]和Rochell等[74]的试验相比,Bryan等[75-76]的试验周期更长(21~166 d),大豆异黄酮可能只是在PRRSV感染的早期急性免疫阶段起到了作用,而对之后病情影响不大。综上所述,大豆异黄酮提高动物生产性能与其抗氧化、维持肠道健康、促进激素分泌和提高抗病力的功效密不可分。
3 大豆异黄酮作为替抗饲料添加剂的潜力与存在的问题饲粮中添加抗生素的主要目的有以下几点:1)预防和治疗某些疾病;2)促进动物生长;3)提高饲料报酬;4)提高动物机体抗病能力。但抗生素的长期滥用会造成药残、耐药等问题。自农业部公告停止生产或使用除中药外的含有促生长类药物饲料添加剂后,中药等植物提取物则又引起了研究热潮。大豆异黄酮作为天然绿色安全饲料添加剂,可以被动物机体吸收代谢,不存在药残、耐药问题。且有研究显示,大豆异黄酮对机体生长性能、肉品质和抗氧化能力等的提高效果甚至优于抗生素[77]。
目前为止,大豆异黄酮作为饲料添加剂在畜禽生产中应用的报道多为正面,但也不能忽略在实际生产过程中可能存在负面影响。早在20世纪90年代就有学者指出,长期使用植物雌激素可能会对家畜的生殖机能造成损害[78-79]。而近年来也有一些关于大豆异黄酮的使用造成动物机体内分泌紊乱,生殖机能受到影响的报道。这也暗示着大豆异黄酮所具有的潜在风险,尽管这些报道多见于反刍动物,但在猪禽上是否会存在潜在的影响也值得我们思考。另外,过量的大豆异黄酮的使用也会加重骨骼肌卫星细胞、原代肌肉细胞、肝脏和脂肪组织的氧化损伤,这也提示我们在实际生产过程中使用大豆异黄酮需要控制剂量[39-41]。合理、经济的添加量、适宜的使用阶段及使用时长值得我们继续探索。
目前,对于大豆异黄酮的研究更多的集中在染料木素和大豆苷元,除此之外是大豆异黄酮混合物。大豆异黄酮作为混合物的运用效果可能好于单一提取物,而也有学者指出大豆异黄酮与维生素、微量元素、蛋白质、抗雌激素药物、抗氧化剂等多种物质存在正向相互作用[80]。综上所述,建议在使用单一大豆异黄酮时,添加剂量宜保持在中等水平,并缩短饲喂期;与其他物质复配使用时,选择具有正向相互作用的物质进行复配。
4 小结综上所述,大豆异黄酮能够提高动物的生产性能,改善动物肠道健康,提高动物机体的免疫力,有着替代抗生素的巨大潜力。大豆异黄酮来源广泛、成本低廉,这也使得大豆异黄酮作为替代抗生素的饲料添加剂推广成为可能。但目前为止,不同物种、不同生长阶段,适宜添加剂量需要我们进一步探究,此外,面对多元化的替抗方案,大豆异黄酮与其他替抗产品的复配作用效果,也值得我们继续研究。因此,后续研究需要重点关注以下几个方面:1)大豆异黄酮在猪禽生长的不同阶段使用合理剂量和最优剂量;2)大豆异黄酮与其他替抗产品或功能性产品的复配作用;3)系统研究大豆异黄酮改善猪禽机体免疫力、抗氧化、内分泌等方面功能的机制研究,为合理利用大豆异黄酮资源提供理论依据,为促进畜禽生产的发展提供新的思路。
[1] |
MURPHY P A, BARUA K, HAUCK C C. Solvent extraction selection in the determination of isoflavones in soy foods[J]. Journal of Chromatography B, 2002, 777(1/2): 129-138. |
[2] |
蒋守群, 蒋宗勇. 大豆异黄酮在畜牧上的研究与应用[J]. 饲料工业, 2006, 27(12): 1-6. JIANG S Q, JIANG Z Y. Study and application of soybean isoflavones in animal husbandry[J]. Feed Industry, 2006, 27(12): 1-6 (in Chinese). |
[3] |
CHO C H, JUNG Y S, NAM T G, et al. PH-adjusted solvent extraction and reversed-phase HPLC quantification of isoflavones from soybean (Glycine max L. Merr.)[J]. Journal of Food Science, 2020, 85(3): 673-681. DOI:10.1111/1750-3841.15051 |
[4] |
OKABE Y, SHIMAZU T, TANIMOTO H. Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women[J]. Journal of the Science of Food and Agriculture, 2011, 91(4): 658-663. DOI:10.1002/jsfa.4228 |
[5] |
CHANG Y, CHOUE R. Plasma pharmacokinetics and urinary excretion of isoflavones after ingestion of soy products with different aglycone/glucoside ratios in South Korean women[J]. Nutrition Research and Practice, 2013, 7(5): 393-399. DOI:10.4162/nrp.2013.7.5.393 |
[6] |
NAGINO T, KANO M, MASUOKA N, et al. Intake of a fermented soymilk beverage containing moderate levels of isoflavone aglycones enhances bioavailability of isoflavones in healthy premenopausal Japanese women: a double-blind, placebo-controlled, single-dose, crossover trial[J]. Bioscience of Microbiota, Food and Health, 2016, 35(1): 9-17. DOI:10.12938/bmfh.2015-011 |
[7] |
CHADHA R, BHALLA Y, JAIN A, et al. Dietary soy isoflavone: a mechanistic insight[J]. Natural Product Communications, 2017, 12(4): 627-634. |
[8] |
SETCHELL K D R, BROWN N M, ZIMMER-NECHEMIAS L, et al. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability[J]. The American Journal of Clinical Nutrition, 2002, 76(2): 447-453. DOI:10.1093/ajcn/76.2.447 |
[9] |
CAO H F, ZHANG Y Q, SHI P J, et al. A highly glucose-tolerant GH1β-glucosidase with greater conversion rate of soybean isoflavones in monogastric animals[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(6): 369-378. DOI:10.1007/s10295-018-2040-6 |
[10] |
BARNES S, PRASAIN J, D'ALESSANDRO T, et al. The metabolism and analysis of isoflavones and other dietary polyphenols in foods and biological systems[J]. Food & Function, 2011, 2(5): 235-244. |
[11] |
SÁNCHEZ-CALVO J M, RODRÍGUEZ-IGLESIAS M A, MOLINILLO J M G, et al. Soy isoflavones and their relationship with microflora: beneficial effects on human health in equol producers[J]. Phytochemistry Reviews, 2013, 12(4): 979-1000. DOI:10.1007/s11101-013-9329-x |
[12] |
UTIAN W H, JONES M, SETCHELL K D R. S-equol: a potential nonhormonal agent for menopause-related symptom relief[J]. Journal of Women's Health, 2015, 24(3): 200-208. DOI:10.1089/jwh.2014.5006 |
[13] |
MAYO B, VÁZQUEZ L, FLÓREZ A B. Equol: a bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects[J]. Nutrients, 2019, 11(9): 2231. DOI:10.3390/nu11092231 |
[14] |
ISHIMI Y, TAKANO F, YAMAUCHI J, et al. Study on food labeling and the content of soybean isoflavones in health foods[J]. The Japanese Journal of Nutrition and Dietetics, 2009, 67(2): 49-57. DOI:10.5264/eiyogakuzashi.67.49 |
[15] |
陈丰, 蒋宗勇, 林映才, 等. 大豆异黄酮对哺乳母猪生产性能及抗氧化性能的影响[J]. 饲料博览, 2010(8): 1-5. CHEN F, JIANG Z Y, LIN Y C, et al. Effects of soybean isoflavones on production performance and antioxidant performance of lactating sows[J]. Feed Expo, 2010(8): 1-5 (in Chinese). DOI:10.3969/j.issn.1001-0084.2010.08.001 |
[16] |
HU Y J, GAO K G, ZHENG C T, et al. Effect of dietary supplementation with glycitein during late pregnancy and lactation on antioxidative indices and performance of primiparous sows[J]. Journal of Animal Science, 2015, 93(5): 2246-2254. DOI:10.2527/jas.2014-7767 |
[17] |
林厦菁, 陈芳, 蒋守群, 等. 大豆异黄酮对早期断奶仔猪生长性能、抗氧化功能及肠黏膜形态结构的影响[J]. 中国农业科学, 2020, 53(10): 2101-2111. LIN X J, CHEN F, JIANG S Q, et al. Effects of soybean isoflavones on growth performance, antioxidant performance and intestinal morphology of early-weaned piglets[J]. Scientia Agricultura Sinica, 2020, 53(10): 2101-2111 (in Chinese). DOI:10.3864/j.issn.0578-1752.2020.10.016 |
[18] |
程忠刚, 林映才, 周桂莲, 等. 大豆黄酮对仔猪生产性能及血液生化指标的影响[J]. 河南科技大学学报(农学版), 2003, 23(4): 44-48. CHENG Z G, LIN Y C, ZHOU G L, et al. Effects of soybean flavone on piglet performance and blood biochemical indexes[J]. Journal of Henan University of Science and Technology (Agronomic Edition), 2003, 23(4): 44-48 (in Chinese). |
[19] |
林映才, 蒋宗勇, 刘建中, 等. 大豆黄素对生长猪的生产性能和血液免疫指标的影响[J]. 饲料博览, 2001(6): 4-6. LIN Y C, JIANG Z Y, LIU J Z, et al. Effects of soy flavin on growth performance and blood immunity in growing pigs[J]. Feed Review, 2001(6): 4-6 (in Chinese). DOI:10.3969/j.issn.1001-0084.2001.06.001 |
[20] |
孙志伟. 大豆黄酮对生长肥育猪生长性能、胴体性状和肉品质的影响[D]. 硕士学位论文. 雅安: 四川农业大学, 2019. SUN Z W. Effects of daidzein on growth performance, carcass characteristics, and meat quality in growing-finishing pigs[D]. Master's Thesis. Ya'an: Sichuan Agricultural University, 2019. (in Chinese) |
[21] |
SOTO J, TOKACH M D, DRITZ S S, et al. Optimum level of dietary crude protein for growth performance and carcass characteristics of finishing pigs from 245 to 300 lb[J]. Kansas Agricultural Experiment Station Research Reports, 2017, 3(7): 38. |
[22] |
THOMAS L L, TOKACH M D, WOODWORTH J C, et al. Effects of added soybean isoflavones in low crude protein diets on growth and carcass performance of finishing pigs from 260 to 320 lb[J]. Kansas Agricultural Experiment Station Research Reports, 2018, 4(9): 36. |
[23] |
SHI S R, GU H, CHANG L L, et al. Safety evaluation of daidzein in laying hens: part Ⅰ.Effects on laying performance, clinical blood parameters, and organs development[J]. Food and Chemical Toxicology, 2013, 55: 684-688. DOI:10.1016/j.fct.2013.01.009 |
[24] |
LU J, QU L, SHEN M M, et al. Safety evaluation of daidzein in laying hens: effects on laying performance, hatchability, egg quality, clinical blood parameters, and organ development[J]. Poultry Science, 2017, 96(7): 2098-2103. DOI:10.3382/ps/pew483 |
[25] |
杨硕, 徐元庆, 邢媛媛, 等. 植物源黄酮类化合物对动物免疫和抗氧化功能影响的研究进展[J]. 动物营养学报, 2019, 31(7): 2958-2964. YANG S, XU Y Q, XING Y Y, et al. Research advances on effects of plant-based flavonoids on immune and antioxidative functions in animals[J]. Chinese Journal of Animal Nutrition, 2019, 31(7): 2958-2964 (in Chinese). DOI:10.3969/j.issn.1006-267x.2019.07.003 |
[26] |
SHIRALINEZHAD A, SHAKOURI M D. Improvement of growth performance and intestinal digestive function in broiler chickens by supplementation of soy isoflavone in corn-soy diet[J]. Journal of Animal and Plant Sciences, 2017, 27(1): 28-33. |
[27] |
CAI J, GU H, SHI S R, et al. Effects of high-dose daidzein on laying performance, egg quality and antioxidation in laying hens[J]. The Journal of Poultry Science, 2013, 50(3): 237-241. DOI:10.2141/jpsa.0120118 |
[28] |
GU H, SHI S R, CHANG L L, et al. Safety evaluation of daidzein in laying hens: part Ⅱ.Effects on calcium-related metabolism[J]. Food and Chemical Toxicology, 2013, 55: 689-692. DOI:10.1016/j.fct.2012.12.064 |
[29] |
XIAO Y Q, SHAO D, SHENG Z W, et al. A mixture of daidzein and Chinese herbs increases egg production and eggshell strength as well as blood plasma Ca, P, antioxidative enzymes, and luteinizing hormone levels in post-peak, brown laying hens[J]. Poultry Science, 2019, 98(8): 3298-3303. DOI:10.3382/ps/pez178 |
[30] |
JOURDEHI A Y, SUDAGAR M, BAHMANI M, et al. Comparative study of dietary soy phytoestrogens genistein and equol effects on growth parameters and ovarian development in farmed female beluga sturgeon, Huso huso[J]. Fish Physiology and Biochemistry, 2014, 40(1): 117-128. DOI:10.1007/s10695-013-9829-z |
[31] |
苟钟勇, 蒋守群, 郑春田, 等. 雌马酚对鸡巨噬细胞抗氧化保护和免疫调控作用的研究[C]//全国动物生理生化: 第七届全国代表大会暨第十三次学术交流会论文摘要汇编. 沈阳: 中国畜牧兽医学会动物生理生化学分会, 2014: 207. GOU Z Y, JIANG S Q, ZHENG C T, et al. Study on antioxidant protection and immune regulation of stilbestrol on chicken macrophages[C]//Animal physiology and biochemistry: summary of papers of the 7th national congress and the 13th academic exchange meeting. Shenyang: Animal Physiology & Biochemistry Branch of Chinese Society of Animal Husbandry and Veterinary, 2014: 207. (in Chinese) |
[32] |
林厦菁, 蒋守群. 雌马酚对鸡小肠上皮细胞氧化应激模型的影响[C]//全国动物生理生化学分会: 第七届全国代表大会暨第十三次学术交流会论文摘要汇编. 沈阳: 中国畜牧兽医学会动物生理生化学分会, 2014: 198-199. LIN X J, JIANG S Q. Effects of estradiol on oxidative stress model of chicken small intestinal epithelial cells[C]//The 7th national congress of animal physiology & biochemistry branch and the 13th academic exchange meeting. Shenyang: Animal Physiology & Biochemistry Branch of Chinese Society of Animal Husbandry and Veterinary, 2014: 198-199. (in Chinese) |
[33] |
JIANG S Q, JIANG Z Y, WU T X, et al. Protective effects of a synthetic soybean isoflavone against oxidative damage in chick skeletal muscle cells[J]. Food Chemistry, 2007, 105(3): 1086-1090. DOI:10.1016/j.foodchem.2007.05.010 |
[34] |
JIANG Z Y, JIANG S Q, LIN Y C, et al. Effect of genistein on antioxidative defence system and membrane fluidity in chick skeletal muscle cells[J]. Asian-Australasian Journal of Animal Sciences, 2008, 21(8): 1220-1225. DOI:10.5713/ajas.2008.70698 |
[35] |
蒋守群, 蒋宗勇, 林映才, 等. 染料木黄酮对离体培养鸡骨骼肌细胞脂质过氧化、抗氧化酶活性和基因表达的影响[C]//家禽营养与饲料科技进展: 第二届全国家禽营养与饲料科技研讨会论文集. 北京: 中国畜牧兽医学会动物营养学分会, 2007: 52-56. JIANG S Q, XI P B. Effects of zewood flavone on lipid peroxidation, antioxidant enzyme activity and gene expression in isolated cultured chicken skeletal muscle cells[C]//Progress in poultry nutrition and feed technology: the second national poultry nutrition and feed technology seminar. Beijing, Animal Nutrition Branch Chinese Association of Animal Science and Veterinary Medicine, 2007: 52-56. (in Chinese) |
[36] |
蒋宗勇, 周桂莲, 林映才, 等. 大豆异黄酮抵抗体外培养猪脂肪细胞氧化损伤的作用[J]. 中国畜牧杂志, 2010, 46(9): 29-32. JIANG Z Y, ZHOU G L, LIN Y C, et al. Resistance of soybean isoflavones to oxidative damage in cultured porcine adipocytes[J]. Chinese Journal of Animal Science, 2010, 46(9): 29-32 (in Chinese). |
[37] |
MA Y, BAO Y R, WANG S, et al. Anti-inflammation effects and potential mechanism of saikosaponins by regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism[J]. Inflammation, 2016, 39(4): 1453-1461. DOI:10.1007/s10753-016-0377-4 |
[38] |
高开国, 王丽, 马现永, 等. 异黄酮缓解泌乳母猪氧化应激的研究进展[J]. 养猪, 2016(3): 22-24. GAO K G, WANG L, MA X Y, et al. Research progress of isoflavones in relieving oxidative stress in lactating pigs[J]. Pig Raising, 2016(3): 22-24 (in Chinese). |
[39] |
JIANG S Q, JIANG Z Y, LIN Y C, et al. Effects of soy isoflavone on performance, meat quality and antioxidative property of male broilers fed oxidized fish oil[J]. Asian-Australasian Journal of Animal Sciences, 2007, 20(8): 1252-1257. DOI:10.5713/ajas.2007.1252 |
[40] |
JIANG Z Y, ZHOU G L, LIN Y C, et al. Effects of soybean isoflavones on in vitro antioxidative capacity of satellite cells of porcine skeletal muscles[J]. Agricultural Sciences in China, 2011, 10(1): 120-125. DOI:10.1016/S1671-2927(11)60314-3 |
[41] |
HUANG L, MA X Y, JIANG Z Y, et al. Effects of soybean isoflavone on intestinal antioxidant capacity and cytokines in young piglets fed oxidized fish oil[J]. Journal of Zhejiang University-Science B, 2016, 17(12): 965-974. DOI:10.1631/jzus.B1600078 |
[42] |
KAMBOH A A, MEMON A M, MUGHAL M J, et al. Dietary effects of soy and citrus flavonoid on antioxidation and microbial quality of meat in broilers[J]. Journal of Animal Physiology and Animal Nutrition, 2018, 102(1): 235-240. DOI:10.1111/jpn.12683 |
[43] |
LING X B, WEI H W, WANG J, et al. Mammalian metallothionein-2A and oxidative stress[J]. International Journal of Molecular Sciences, 2016, 17(9): 1483. DOI:10.3390/ijms17091483 |
[44] |
韩立明, 蒋宗勇, 周桂莲, 等. 大豆异黄酮对肥育猪抗氧化能力和肉质的影响[C]//全国动物生理生化第十一次学术交流会论文摘要汇编. 昆明: 中国畜牧兽医学会, 2010: 197. HAN L M, JIANG Z Y, ZHOU G L, et al. Effects of soybean isoflavones on antioxidant capacity and meat quality of fattening pigs[C]//Summary of the 11th national conference on animal physiology and biochemistry. Kunming: Chinese Association of Animal Science and Veterinary Medicine 2010: 197. (in Chinese) |
[45] |
JIANG S Q, JIANG Z Y, ZHOU G L, et al. Effects of dietary isoflavone supplementation on meat quality and oxidative stability during storage in Lingnan yellow broilers[J]. Journal of Integrative Agriculture, 2014, 13(2): 387-393. DOI:10.1016/S2095-3119(13)60386-X |
[46] |
ARORA A, BYREM T M, NAIR M G, et al. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids[J]. Archives of Biochemistry and Biophysics, 2000, 373(1): 102-109. DOI:10.1006/abbi.1999.1525 |
[47] |
CHEN W, LIN Y C, MA X Y, et al. High concentrations of genistein exhibit pro-oxidant effects in primary muscle cells through mechanisms involving 5-lipoxygenase-mediated production of reactive oxygen species[J]. Food and Chemical Toxicology, 2014, 67: 72-79. DOI:10.1016/j.fct.2014.02.004 |
[48] |
CHEN W, MA X Y, LIN Y C, et al. Dietary supplementation with a high dose of daidzein enhances the antioxidant capacity in swine muscle but experts pro-oxidant function in liver and fat tissues[J]. Journal of Animal Science and Biotechnology, 2016, 7(1): 43. DOI:10.1186/s40104-016-0102-z |
[49] |
JURITSCH A F, MOREAU R. Role of soybean-derived bioactive compounds in inflammatory bowel disease[J]. Nutrition Reviews, 2018, 76(8): 618-638. DOI:10.1093/nutrit/nuy021 |
[50] |
MALEKI S J, CRESPO J F, CABANILLAS B. Anti-inflammatory effects of flavonoids[J]. Food Chemistry, 2019, 299: 125124. DOI:10.1016/j.foodchem.2019.125124 |
[51] |
ZHANG R, XU J, ZHAO J, et al. Genistein improves inflammatory response and colonic function through NF-κB signal in DSS-induced colonic injury[J]. Oncotarget, 2017, 8(37): 61385-61392. DOI:10.18632/oncotarget.18219 |
[52] |
WANG B, WU C B. Dietary soy isoflavones alleviate dextran sulfate sodium-induced inflammation and oxidative stress in mice[J]. Experimental and Therapeutic Medicine, 2017, 14(1): 276-282. DOI:10.3892/etm.2017.4469 |
[53] |
ZHU C, WU Y P, JIANG Z Y, et al. Dietary soy isoflavone attenuated growth performance and intestinal barrier functions in weaned piglets challenged with lipopolysaccharide[J]. International Immunopharmacology, 2015, 28(1): 288-294. DOI:10.1016/j.intimp.2015.04.054 |
[54] |
HAMEED A S S, RAWAT P S, MENG X F, et al. Biotransformation of dietary phytoestrogens by gut microbes: a review on bidirectional interaction between phytoestrogen metabolism and gut microbiota[J]. Biotechnology Advances, 2020, 43: 107576. DOI:10.1016/j.biotechadv.2020.107576 |
[55] |
KINSTLER S. Effects of alternative carbohydrate sources and soybean-derived isoflavones on the microbiome and immune system of nursery piglets and intestinal porcine epithelial cell line j-2[D]. Master's Thesis. Lincoln: University of Nebraska, 2019.
|
[56] |
RIETJENS I M C M, LOUISSE J, BEEKMANN K. The potential health effects of dietary phytoestrogens[J]. British Journal of Pharmacology, 2017, 174(11): 1263-1280. DOI:10.1111/bph.13622 |
[57] |
PIKE A C W, BRZOZOWSKI A M, HUBBARD R E, et al. Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist[J]. The EMBO Journal, 1999, 18(17): 4608-4618. DOI:10.1093/emboj/18.17.4608 |
[58] |
MESSINA M. Soy and health update: evaluation of the clinical and epidemiologic literature[J]. Nutrients, 2016, 8(12): 754. DOI:10.3390/nu8120754 |
[59] |
XIAO Y Q, SHAO D, TONG H B, et al. Genistein increases progesterone secretion by elevating related enzymes in chicken granulosa cells[J]. Poultry Science, 2019, 98(4): 1911-1917. DOI:10.3382/ps/pey411 |
[60] |
SHEN Y R, WANG Q, SHAO D, et al. Effects of daidzein on egg production and gonadotropin related gene expression in the ovary and follicles of laying hens[J]. European Poultry Science, 2016, 80. DOI:10.1399/eps.2016.160 |
[61] |
NYNCA A, JABLONSKA O, SLOMCZYNSKA M, et al. Effects of phytoestrogen daidzein and estradiol on steroidogenesis and expression of estrogen receptors in porcine luteinized granulosa cells from large follicles[J]. Acta Physiologica Polonica, 2009, 60(2): 95-105. |
[62] |
NYNCA A, NYNCA J, WASOWSKA B, et al. Effects of the phytoestrogen, genistein, and protein tyrosine kinase inhibitor-dependent mechanisms on steroidogenesis and estrogen receptor expression in porcine granulosa cells of medium follicles[J]. Domestic Animal Endocrinology, 2013, 44(1): 10-18. DOI:10.1016/j.domaniend.2012.07.002 |
[63] |
张硕, 李瑞萍, 陈菲, 等. 植物黄酮在养鸡生产中的应用研究进展[J]. 家畜生态学报, 2020, 41(10): 84-88. ZHANG S, LI R P, CHEN F, et al. Research progress of application of plant flavonoids in chicken industry[J]. Journal of Domestic Animal Ecology, 2020, 41(10): 84-88 (in Chinese). |
[64] |
张玲, 钟光, 顾文婕, 等. 饲粮添加大豆黄酮对产蛋后期蛋鸡产蛋性能、蛋品质和血浆激素指标的影响[J]. 动物营养学报, 2020, 32(9): 4110-4115. ZHANG L, ZHONG G, GU W J, et al. Effects of dietary daidzein on laying performance, egg quality and plasma hormone indices of laying hens during late laying cycle[J]. Chinese Journal of Animal Nutrition, 2020, 32(9): 4110-4115 (in Chinese). |
[65] |
NYNCA A, SŁONINA D, JABLOŃSKA O, et al. Daidzein affects steroidogenesis and oestrogen receptor expression in medium ovarian follicles of pigs[J]. Acta Veterinaria Hungarica, 2013, 61(1): 85-98. DOI:10.1556/avet.2012.060 |
[66] |
NYNCA A, SADOWSKA A, ORLOWSKA K, et al. The effects of phytoestrogen genistein on steroidogenesis and estrogen receptor expression in porcine granulosa cells of large follicles[J]. Folia Biologica, 2015, 63(2): 119-128. DOI:10.3409/fb63_2.119 |
[67] |
张琦琦, 李延, 陈代文, 等. 大豆黄酮对妊娠母猪繁殖性能、血清激素含量、抗氧化能力及免疫机能的影响[J]. 动物营养学报, 2019, 31(10): 4710-4716. ZHANG Q Q, LI Y, CHEN D W, et al. Effects of daidzein on reproductive performance, serum hormone contents, antioxidant capacity and immune function of pregnant sows[J]. Chinese Journal of Animal Nutrition, 2019, 31(10): 4710-4716 (in Chinese). |
[68] |
SIROTKIN A V, ALEXA R, KÁDASI A, et al. The isoflavone daidzein directly affects porcine ovarian cell functions and modifies the effect of follicle-stimulating hormone[J]. Journal of Animal Physiology and Animal Nutrition, 2017, 101(1): 127-135. DOI:10.1111/jpn.12520 |
[69] |
AZZAM M M, JIANG S Q, CHEN J L, et al. Effect of soybean isoflavones on growth performance, immune function, and viral protein 5 mRNA expression in broiler chickens challenged with infectious bursal disease virus[J]. Animals, 2019, 9(5): 247. DOI:10.3390/ani9050247 |
[70] |
刘婵娟, 周珊, 陈作栋, 等. 日粮中添加大豆素对犊公牛生长性能, 机体抗氧化能力及免疫性能的影响[J]. 江西农业大学学报, 2018, 40(4): 797-802. LIU C J, ZHOU S, CHEN Z D, et al. Effects of daidzein on growth performance, antioxidant capacity and immune function of bull calves[J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(4): 797-802 (in Chinese). |
[71] |
王志龙, 武洪志, 王芳芳, 等. 大豆异黄酮和黄芪多糖对哺乳母猪生产性能、血清生化和免疫指标以及乳成分的影响[J]. 动物营养学报, 2016, 28(12): 3970-3976. WANG Z L, WU H Z, WANG F F, et al. Effects of soybean isoflavones and Astragalus polysaccharide on production performance, serum biochemical and immune indexes and milk composition of lactating sows[J]. Chinese Journal of Animal Nutrition, 2016, 28(12): 3970-3976 (in Chinese). |
[72] |
NAN Y C, WU C Y, GU G Q, et al. Improved vaccine against PRRSV: current progress and future perspective[J]. Frontiers in Microbiology, 2017, 8: 1635. DOI:10.3389/fmicb.2017.01635 |
[73] |
SMITH B N, OELSCHLAGER M L, ABDUL RASHEED M S, et al. Dietary soy isoflavones reduce pathogen-related mortality in growing pigs under porcine reproductive and respiratory syndrome viral challenge[J]. Journal of Animal Science, 2020, 98(2): skaa024. DOI:10.1093/jas/skaa024 |
[74] |
ROCHELL S J, ALEXANDER L S, ROCHA G C, et al. Effects of dietary soybean meal concentration on growth and immune response of pigs infected with porcine reproductive and respiratory syndrome virus[J]. Journal of Animal Science, 2015, 93(6): 2987-2997. DOI:10.2527/jas.2014-8462 |
[75] |
BRYAN E, SMITH B, HONEGGAR L, et al. The effects of dietary soy isoflavone supplementation on carcass cutability and meat quality of pigs infected with porcine reproductive and respiratory virus[C]//ASAS Midwestern Section Meeting. [s. l. ]: [s. n. ], 2019.
|
[76] |
BRYAN E E, SMITH B N, HONEGGER L T, et al. Effect of porcine reproductive and respiratory syndrome virus infection and soy isoflavone supplementation on carcass cutability and meat quality of pigs[J]. Journal of Animal Science, 2020, 98(4): skaa080. DOI:10.1093/jas/skaa080 |
[77] |
林厦菁, 蒋守群, 林哲敏, 等. 大豆异黄酮和抗生素对文昌鸡生长性能、肉品质和血浆抗氧化指标的影响[J]. 华南农业大学学报, 2012, 39(1): 1-6. LIN X J, JIANG S Q, LIN Z M, et al. Effects of soybean isoflavones and antibiotics on growth performance, meat quality and plasma antioxidant indexes of Wenchang chicken[J]. Journal of South China Agricultural University, 2012, 39(1): 1-6 (in Chinese). DOI:10.3969/j.issn.1001-411X.2012.01.001 |
[78] |
ADAMS N R. Detection of the effects of phytoestrogens on sheep and cattle[J]. Journal of Animal Science, 1995, 73(5): 1509-1515. DOI:10.2527/1995.7351509x |
[79] |
LUNDH T. Metabolism of estrogenic isoflavones in domestic animals[J]. Proceedings of the Society for Experimental Biology and Medicine, 1995, 208(1): 33-39. DOI:10.3181/00379727-208-43828 |
[80] |
XU M L, LIU J B, ZHU C Y, et al. Interactions between soy isoflavones and other bioactive compounds: a review of their potentially beneficial health effects[J]. Phytochemistry Reviews, 2015, 14(3): 459-467. DOI:10.1007/s11101-015-9398-0 |