2. 青岛康大食品有限公司, 青岛 266555
2. Qingdao Kangda Food Co., Ltd., Qingdao 266555, China
锌是动物机体必不可少的矿物元素,广泛分布于动物体内各组织中,在体内众多的生理代谢活动中发挥作用[1]。研究发现,锌不仅参与了动物机体内多种酶的代谢[2],而且还与动物生长、繁殖、免疫等多种生理过程密切相关[3]。另外,锌是很多功能蛋白如受体、核蛋白、金属硫蛋白等的重要组成成分。由于锌在生物机体内发挥的功能非常广泛,被称为“生命元素”[4]。Attia等[5]研究发现,锌可提高动物的肉品质,并可促进动物皮毛的生长。白玉恒等[6]研究结果表明,在陕北白绒山羊饲粮中添加70 mg/kg锌可显著促进羊绒再生,提高产绒性能。随着饲粮中锌水平的提高,蓝狐的绒毛长度和针毛长度逐渐增加[7]。同时,也有研究表明,饲粮中缺锌会导致动物被毛生长缓慢,降低毛质并影响毛皮的经济价值[8]。而饲粮中严重缺锌时则会影响动物对氮和硫的吸收,进而严重影响被毛生长,甚至出现掉毛以及皮肤损伤等现象[9]。本课题组前期研究结果表明,饲粮中添加不同水平锌虽然对生长獭兔的末期体重(FBW)、平均日增重(ADG)、平均日采食量(ADFI)和料重比(F/G)均没有显著影响,但饲粮中添加40、80 mg/kg锌显著提高了生长獭兔的皮板厚度、被毛生长及皮张面积[10]。由此可以看出,目前研究者关于锌对动物毛皮生长影响的研究结果比较相似,认为锌可以促进动物毛皮生长。中国是家兔生产大国,兔皮和兔毛是兔产业中十分重要的部分,毛囊密度决定了兔皮品质和兔毛产量。虽然通过已有研究可知毛皮动物饲粮中的锌对被毛的生长和再生发挥着重要作用,但关于锌对毛囊发育的调控机制还不明确。鉴于此,本试验通过在基础饲粮添加不同水平的锌,研究饲粮中锌添加水平对獭兔毛囊发育及相关基因表达的影响,以期阐明饲粮中锌对獭兔毛囊发育的影响机制。
1 材料与方法 1.1 试验动物分组及饲养管理饲养试验在山东农业大学南校区科技试验站进行。选取160只3月龄的健康獭兔,采用单因素随机区组设计,将试验獭兔随机分为4组,每组40个重复,每个重复1只。在基础饲粮中以硫酸锌的形式添加锌制备试验饲粮,4组獭兔分别饲喂锌添加水平为0、40、80、120 mg/kg的试验饲粮,饲粮中锌含量实测值分别为9.7、49.4、87.0和127.4 mg/kg。基础饲粮参照NRC(1977)[11]生长兔饲养标准配制而成,其饲料组成及营养水平见表 1。基础饲粮中氨基酸含量为参考《中国饲料成分及营养价值表(2007年第18版)》[12]中各饲料原料氨基酸含量所得计算值。试验前将试验环境彻底清洗消毒,采用常规免疫程序,试验兔单笼饲养,期间保持自然采光、通风,07:30和16:30各饲喂1次,自由采食和饮水。饲养试验开展日期为2017年10月9日至2017年12月4日,共56 d,其中预试期7 d,正试期49 d。
![]() |
表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet (air-dry basis) |
在饲养试验结束后,每组随机选取8只试验兔。在试验兔的肩、背、臀处分别采集皮肤组织样品,一部分立即置于液氮中保存,用于基因表达的测定;一部分置于多聚甲醛溶液中固定,用于毛囊密度(肩、背、臀处的平均值)的测定。
1.3 毛囊密度测定将采集的皮肤组织样品采用苏木精-伊红(HE)染色法染色制作石蜡切片[13],并在显微镜下进行图像观察与分析,计算毛囊密度[14]。
1.4 总RNA的提取与基因表达皮肤组织样品总RNA采用Trizol法[15]提取,利用琼脂糖凝胶电泳和生物分光光度计分别检测总RNA的质量和浓度。用罗氏反转录试剂盒将提取的总RNA反转录为cDNA,反转录体系如表 2所示。采用SYBR® Green Ⅰ嵌合荧光法(SYBR® Green Premix Pro Taq HS qPCR Kit,湖南艾科瑞生物工程有限公司),在瑞士Roche LightCycler96实时荧光定量PCR仪上对目的基因进行扩增,反应体系如下:2×SYBR Green Pro Taq HS Premix 10 μL、模板100 ng、正向引物(10 pmol/μL)1 μL、反向引物(10 pmol/μL) 1 μL、ROX Reference Dye 1 μL,然后由无RNA酶水补足至20 μL。以甘油醛-3-磷酸脱氢酶(GAPDH)作为参照基因,用2-ΔΔCt法分析目的基因相对表达量,表 3为相关基因的引物序列。
![]() |
表 2 反转录体系组成 Table 2 Composition of RT system |
![]() |
表 3 相关基因的引物序列 Table 3 Primer sequences of related genes |
数据用平均值、均方根误差表示,采用SAS 9.1.3统计软件的ANOVA程序进行单因素方差分析,采用Duncan氏法进行多重比较,P < 0.05为差异显著。
2 结果与分析 2.1 饲粮中锌添加水平对生长獭兔毛囊密度的影响由表 4可知,与对照组相比,饲粮中添加40和80 mg/kg锌时獭兔的毛囊密度显著升高(P < 0.05),饲粮中添加120 mg/kg锌对獭兔的毛囊密度无显著影响(P>0.05)。
![]() |
表 4 饲粮中锌添加水平对生长獭兔毛囊密度的影响 Table 4 Effects of dietary zinc supplemental level on hair follicle density of growing Rex rabbits (n=8) |
由表 5可知,与对照组相比,饲粮中锌添加水平为40和80 mg/kg时獭兔的神经诱导蛋白(Noggin)基因的相对表达量显著升高(P < 0.05),骨形态发生蛋白4(BMP4)基因的相对表达量显著降低(P < 0.05),而饲粮中锌添加水平为120 mg/kg时獭兔的Noggin基因的相对表达量无显著变化(P>0.05),BMP4基因的相对表达量显著升高(P < 0.05)。饲粮中添加不同水平锌对獭兔的胞外基质蛋白多糖(Versican)、碱性磷酸酶(ALP)、肝细胞生长因子(HGF)、骨形态发生蛋白2(BMP2)和胰岛素样生长因子-1(IGF-1)基因的相对表达量均没有显著影响(P>0.05)。
![]() |
表 5 饲粮中锌添加水平对生长獭兔毛囊发育相关基因表达的影响 Table 5 Effects of dietary zinc supplemental level on expression of hair follicle development-related genes of growing Rex rabbits (n=8) |
已有研究结果证明,锌可以在转录水平上直接作用于基因调节蛋白,从而调控基因的特异性表达[16]。在动物毛囊的生长过程中,锌通过调节毛囊发育相关基因的表达和催化动物机体毛囊生长,从而调控被毛的生长发育[17]。闫海亮[18]研究发现,在獭兔饲粮中添加蛋氨酸锌能够提高獭兔的被毛密度及被毛质量。本课题组前期研究结果也表明,在生长獭兔饲粮中以硫酸锌形式添加锌显著促进了獭兔被毛的生长[10]。同时,锌在其他毛皮动物上也有相似的结果,补充锌后显著提高了山羊的产毛量,促进了其被毛生长[19-21]。蓝狐[7]、银狐[22]的针毛长度、绒毛长度也随饲粮中锌添加水平的提高而有所增加。Plonka等[23]利用C57BL/6小鼠毛发研究模型进行试验后发现,大剂量口服锌能够显著抑制小鼠毛发生长。本试验结果与前人的研究结果一致,表明适宜剂量的锌能够促进动物的毛囊发育,这可能与下文提到的适宜剂量的锌促进獭兔毛囊发育相关基因表达有关。
3.2 饲粮中锌添加水平对生长獭兔毛囊发育相关基因表达的影响Versican主要存在于细胞外基质中,是一种大分子质量的硫酸软骨素蛋白多糖,在细胞黏附、迁移、增殖和分化中起重要作用[24]。有研究表明,Versican参与毛发形态的发生、毛发生长的维持和毛发再生的启动等过程[25]。Soma等[26]研究发现Versican在毛囊真皮乳头的不同生长阶段表达量不同,在生长期表达量增加,而在退化期表达量明显下降。近期的研究表明,在临床中口服Versican蛋白聚糖的提取物可显著减少脱发,促进毛发生长[27]。ALP可作为毛乳头诱导毛囊形成能力的一项重要指标。有研究表明,小鼠真皮毛乳头细胞中高表达ALP能诱导毛囊的再生重建[28]。锌是ALP活性中心的组成成分,并参与ALP的激活。有研究发现补锌后显著增强了獭兔[29]与雏鸭[30]血清中ALP的活性,在300、500、800 mg/kg的高锌范围内,高锌组奶牛血清ALP活性也得到显著提高[31]。HGF是一种多肽类的生长因子,研究表明HGF能够明显促进体外培养毛囊的生长发育[32]。Jindo等[33]的研究发现,在体外培养小鼠触须毛囊的试验中,10 μg/mL HGF对小鼠毛发生长有明显的促进作用,DNA合成能力增强。过表达HGF的转基因小鼠的毛囊数量呈现显著增加,毛囊发育提前,退化期显著推迟[34]。本试验中,饲粮中添加不同水平锌对生长獭兔Versican、ALP、HGF基因的相对表达量均无显著影响,这些基因都参与毛囊生长发育过程,该结果表明锌促进獭兔毛囊发育可能并不是通过Versican、ALP、HGF基因发挥调节作用来实现的。IGF-1被证明能够与其结合蛋白相互作用进而刺激毛囊增殖,维持毛发的初期生长[35]。饲粮中添加43.57 mg/kg锌后显著升高了鹅毛囊中IGF-1基因的表达量[17]。补充乳酸锌后肉兔血清中IGF-1基因的表达量也得到提高[36]。本试验中,饲粮中添加不同水平锌对生长獭兔IGF-1基因的相对表达量没有产生显著影响,这与上述前人的研究结果不一致。动物对不同锌源的生物学利用率不同,在不同组织中的消化吸收效率也有很大差异[37],而饲粮中的钙、植酸等营养成分也会影响机体对锌的吸收[38],这可能是造成研究结果不一致的原因。而锌对不同物种的靶向调控机制不同,且不同组织中的毛囊增殖能力和毛囊生长的调控机制也存在差异,具体原因仍需进一步探究。骨形态发生蛋白(BMP)信号通路在毛囊形态发生发育过程中起抑制性作用,被称为毛囊生长期启动的抑制剂[39],主要通过抑制毛囊基板的形成而使毛囊由退行期向休止期转化[40]。研究发现,BMP2基因在低被毛密度獭兔中的表达量显著高于高被毛密度獭兔[41],而休止期的绒山羊皮肤毛囊中BMP2基因的表达量是兴盛期的27.8倍,BMP2能够抑制内蒙古绒山羊毛囊发育,主要在绒山羊皮肤毛囊的毛干周围发挥作用[42]。由此可见,BMP2在毛囊生长周期的不同阶段特异性表达,能够维持毛囊处于休止期,从而影响毛囊的形态发生。BMP4基因在出生后毛囊发育过程中主要起抑制作用[43],毛囊细胞保持在休止期的关键就在于BMP4基因对毛囊细胞生长的抑制[44]。Noggin是目前已确认的参与神经元再生的重要蛋白,可以诱导神经元的再生[45]。Botchkarev等[46]研究表明,Noggin在机体胚胎时期的毛囊真皮毛乳头中表达,能够激活毛囊上皮细胞的增殖,诱导毛囊的生长。Noggin的缺失会减慢毛囊的生长周期和减少毛囊数量[47-48]。Noggin是BMP的拮抗体,可以与BMP2和BMP4结合,从而抑制BMP信号通路[49-50]。在胚胎期的毛囊形成初期,Noggin能够解除毛囊基板细胞中BMP对紧邻的毛囊上皮细胞中Wnt信号的抑制作用,进而激活毛囊基板上皮细胞的增殖[51]。Noggin对BMP的负反馈调节作用诱导了胚胎期的毛囊形成和胚后的毛囊生长[52]。有研究表明添加锌离子能显著提升小鼠成骨细胞中BMP2基因的表达[53]。本试验结果显示,补锌对生长獭兔毛囊中BMP2基因的相对表达量无显著影响。这与前人的研究结果不一致,表明参与毛囊发育的BMP2基因可能并不是锌在獭兔中起作用的靶基因,锌是通过调控BMP4与Noggin基因对獭兔毛囊发育进行调控的。综上所述,补锌能够增加獭兔毛囊密度的作用机制可能是通过下调BMP4基因的表达,进而减少对毛囊生长的抑制,上调毛囊中Noggin基因的表达,Noggin分泌到邻近的毛囊上皮细胞,并与BMP4相结合,从而激活毛囊上皮细胞的增殖。
4 结论以硫酸锌形式在3~5月龄生长獭兔饲粮中添加40或80 mg/kg锌时,可通过上调Noggin基因的表达,下调BMP4基因的表达,减少对毛囊生长的抑制并激活毛囊上皮细胞增殖,从而促进毛囊的形成和发育。
[1] |
杜敏, 杨玉艾, 张晓敏, 等. 微量元素锌的研究进展[J]. 黑龙江畜牧兽医, 2014(9): 61-63. DU M, YANG Y A, ZHANG X M, et al. Research progress of trace element zinc[J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2014(9): 61-63 (in Chinese). |
[2] |
ADEBAYO O L, ADENUGA G A, SANDHIR R. Selenium and zinc protect brain mitochondrial antioxidants and electron transport chain enzymes following postnatal protein malnutrition[J]. Life Sciences, 2016, 152: 145-155. DOI:10.1016/j.lfs.2016.03.008 |
[3] |
郝丽媛, 马峰涛, 孙鹏. 饲粮添加蛋氨酸锌或氧化锌对新生犊牛锌代谢的影响[J]. 动物营养学报, 2020, 32(8): 3725-3731. HAO L Y, MA F T, SUN P. Effects of dietary zinc methionine or zinc oxide on zinc metabolism in neonatal calves[J]. Chinese Journal of Animal Nutrition, 2020, 32(8): 3725-3731 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.08.031 |
[4] |
左楠. 微量元素锌对机体免疫功能的影响研究进展[J]. 兽医导刊, 2016(4): 215. ZUO N. Research progress on the effect of trace element zinc on immune function[J]. Veterinary Orientation, 2016(4): 215 (in Chinese). DOI:10.3969/j.issn.1673-8586.2016.04.210 |
[5] |
ATTIA Y A, BOVERA F, ABD EI-HAMID A E, et al. Effect of zinc bacitracin and phytase on growth performance, nutrient digestibility, carcass and meat traits of broilers[J]. Journal of Animal Physiology and Animal Nutrition, 2016, 100(3): 485-491. DOI:10.1111/jpn.12397 |
[6] |
白玉恒, 王荣斌, 刘锦旺, 等. 饲粮锌水平对生绒期陕北白绒山羊生长性能、产绒性能及绒生长相关激素含量的影响[J]. 动物营养学报, 2018, 30(6): 2202-2208. BAI Y H, WANG R B, LIU J W, et al. Effects of dietary zinc level on growth performance, production performance and growth-related hormone content of white cashmere goats in northern Shaanxi during the cashmere growing period[J]. Chinese Journal of Animal Nutrition, 2018, 30(6): 2202-2208 (in Chinese). DOI:10.3969/j.issn.1006-267x.2018.06.023 |
[7] |
郭强. 饲粮锌水平和锌源对蓝狐生产性能的影响[D]. 硕士学位论文. 北京: 中国农业科学院, 2014. GUO Q. Effects of dietary zinc levels and zinc sources on the production performance of blue foxes[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese) |
[8] |
LIUZZI J P, BLANCHARD R K, COUSINS R J. Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats[J]. The Journal of Nutrition, 2001, 131(1): 46-52. DOI:10.1093/jn/131.1.46 |
[9] |
KRAMETTER-FROETSCHER R, HAUSER S, BAUMGARTNER W. Zinc-responsive dermatosis in goats suggestive of hereditary malabsorption: two field cases[J]. Veterinary Dermatology, 2005, 16(4): 269-275. DOI:10.1111/j.1365-3164.2005.00459.x |
[10] |
杨国雨, 刘公言, 陈晓阳, 等. 饲粮锌添加水平对生长獭兔生长性能、屠宰性能、肌肉品质、毛皮质量及氮代谢的影响[J]. 动物营养学报, 2019, 31(4): 1936-1942. YANG G Y, LIU G Y, CHEN X Y, et al. Add fodder zinc levels on the growth of rabbit fur growth performance, slaughter performance and meat quality, the quality and the effect of nitrogen metabolism[J]. Chinese Journal of Animal Nutrition, 2019, 31(4): 1936-1942 (in Chinese). |
[11] |
NRC. Nutrient requirements of rabbits[S]. 2nd ed. Washington, D.C. : National Academy Press, 1977.
|
[12] |
中国饲料数据库. 中国饲料成分及营养价值表(2007年第18版)[J]. 中国饲料, 2007(21): 34-39. CFDB. Tables of feed composition and nutritive values in China (18th edition, 2007)[J]. China Feed, 2007(21): 34-39 (in Chinese). DOI:10.3969/j.issn.1004-3314.2007.21.013 |
[13] |
李红芬, 郑肇巽, 马品耀, 等. HE染色原理和试剂配制及染色过程中的若干问题的探讨[J]. 医学信息, 2011, 24(4): 1985-1986. LI H F, ZHENG Z X, MA P Y, et al. HE dyeing principle and reagent preparation and the discussion of some problems in the process of[J]. Journal of Medical Information, 2011, 24(4): 1985-1986 (in Chinese). |
[14] |
范康, 傅祥超, 范成强, 等. 獭兔毛囊分化与被毛生长规律研究[J]. 中国养兔, 2011(12): 6-9. FAN K, FU X C, FAN C Q, et al. Differentiation of rabbit hair follicles and coat growth rule research[J]. Chinese Journal of Rabbit Farming, 2011(12): 6-9 (in Chinese). DOI:10.3969/j.issn.1005-6327.2011.12.002 |
[15] |
王丹丹, 肖向红, 吴立舒, 等. 改良TRIzol法高效提取东北林蛙皮肤总RNA[J]. 野生动物, 2012, 33(3): 127-128, 138. WANG D D, XIAO X H, WU L S, et al. The modified Trizol method was used to efficiently extract total RNA from the skin of Rana chinensis[J]. Journal of Animal Science, 2012, 33(3): 127-128, 138 (in Chinese). DOI:10.3969/j.issn.1000-0127.2012.03.005 |
[16] |
COUSINS R J. A role of zinc in the regulation of gene expression[J]. Proceedings of the Nutrition Society, 1998, 57(2): 307-311. DOI:10.1079/PNS19980045 |
[17] |
王惠影, 刘毅, 雷胡龙, 等. 饲粮锌水平对鹅再生羽绒品质、血清指标及毛囊发育相关基因表达的影响[J]. 动物营养学报, 2020, 32(4): 1616-1623. WANG H Y, LIU Y, LEI H L, et al. Effects of dietary zinc level on quality, serum index and hair follicle-developing-related gene expression in geese[J]. Chinese Journal of Animal Nutrition, 2020, 32(4): 1616-1623 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.04.019 |
[18] |
闫海亮. 日粮蛋氨酸锌对獭兔生产性能、生化指标的影响[D]. 硕士学位论文. 长春: 吉林大学, 2008. YAN H L. Effects of dietary zinc methionine on performance and biochemical indices of Rex rabbits[D]. Master's Thesis. Changchun: Jilin University, 2008. (in Chinese) |
[19] |
SALAMA A A K, CAJA G, ALBANELL E, et al. Effects of dietary supplements of zinc-methionine on milk production, udder health and zinc metabolism in dairy goats[J]. Journal of Dairy Research, 2003, 70(1): 9-17. DOI:10.1017/S0022029902005708 |
[20] |
刘海英, 杨桂芹, 李学俭, 等. 不同日粮锌水平对辽宁绒山羊公羊绒毛生长, 血浆睾酮和锌含量的影响[C]//2015年全国养羊生产与学术研讨会论文集. 登封: 中国畜牧兽医学会养羊学分会, 2015: 1. LIU H Y, YANG G Q, LI X J, et al. Effects of different dietary zinc levels on cashmere hair growth, plasma testosterone and zinc content of Liaoning cashmere ram[C]//Proceedings of 2015 National Sheep Production and Academic Symposium. Dengfeng: Chinese Society of Animal Husbandry and Veterinary Medicine Sheep Science Branch, 2015: 1. (in Chinese) |
[21] |
WHITE C L, MARTIN G B, HYND P I, et al. The effect of zinc deficiency on wool growth and skin and wool follicle histology of male Merino lambs[J]. British Journal of Nutrition, 1994, 71(3): 425-435. DOI:10.1079/BJN19940149 |
[22] |
耿文静. 不同锌水平对银狐生产性能和血液生化指标的影响[D]. 硕士学位论文. 北京: 中国农业科学院, 2010. GENG W J. Effects of different zinc levels on the production performance and blood biochemical indexes of silver foxes[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese) |
[23] |
PLONKA P M, HANDJISKI B, POPIK M, et al. Zinc as an ambivalent but potent modulator of murine hair growth in vivo-preliminary observations[J]. Experimental Dermatology, 2005, 14(11): 844-853. DOI:10.1111/j.1600-0625.2005.00365.x |
[24] |
YANG B L, ZHANG Y, CAO L, et al. Cell adhesion and proliferation mediated through the G1 domain of Versican[J]. Journal of Cellular Biochemistry, 1999, 72(2): 210-220. DOI:10.1002/(SICI)1097-4644(19990201)72:2<210::AID-JCB5>3.0.CO;2-E |
[25] |
刘欣, 祝宁侠. 蛋白聚糖在毛囊中的研究进展[J]. 医学理论与实践, 2020, 33(5): 721-723. LIU X, ZHU N X. Research progress of proteoglycan in hair follicles[J]. Medical theory and practice, 2020, 33(5): 721-723 (in Chinese). |
[26] |
SOMA T, TAJIMA M, KISHIMOTO J. Hair cycle-specific expression of Versican in human hair follicles[J]. Journal of Dermatological Science, 2005, 39(3): 147-154. DOI:10.1016/j.jdermsci.2005.03.010 |
[27] |
WADSTEIN J, THOM E, GADZHIGOROEVA A. Integral roles of specific proteoglycans in hair growth and hair loss: mechanisms behind the bioactivity of proteoglycan replacement therapy with nourkrin with Marilex in pattern hair loss and telogen effluvium[J]. Dermatology Research and Practice, 2020, 2020: 8125081. |
[28] |
高琴. 日粮钴添加水平对生长獭兔生产性能、氮代谢性能和毛囊发育的影响[D]. 硕士学位论文. 泰安: 山东农业大学, 2017. GAO Q. Effects of dietary cobalt supplementation on production performance, nitrogen metabolism and hair follicle development of growing Rex rabbits[D]. Master's Thesis. Tai'an: Shandong Agricultural University, 2017. (in Chinese) |
[29] |
杨翠军, 葛剑, 吴淑琴. 日粮锌水平对生长期獭兔生长性能和血清生化指标的影响[J]. 中国养兔, 2019(2): 4-7. YANG C J, GE J, WU S Q. Effects of dietary zinc levels on growth performance and serum biochemical indexes of Rex rabbits in growing period[J]. Chinese Journal of Rabbit Farming, 2019(2): 4-7 (in Chinese). DOI:10.3969/j.issn.1005-6327.2019.02.002 |
[30] |
苏莉娜, 王安. 锌对蛋雏鸭生长性能和血液生化指标的影响[J]. 中国饲料, 2012(12): 35-37, 42. SU L N, WANG A. Effects of zinc on growth performance and blood biochemical indices of egg ducklings[J]. China Feed, 2012(12): 35-37, 42 (in Chinese). DOI:10.3969/j.issn.1004-3314.2012.12.011 |
[31] |
芦春莲, 李建国, 李艳琴, 等. 高锌对奶牛血液理化指标的影响[J]. 黑龙江畜牧兽医, 2003(9): 11-13. LU C L, LI J G, LI Y Q, et al. Effects of high Zn on blood parameters of cows[J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2003(9): 11-13 (in Chinese). DOI:10.3969/j.issn.1004-7034.2003.09.007 |
[32] |
范卫新, 朱文元. 肝细胞生长因子对小鼠触须毛囊体外培养的研究[J]. 中华皮肤科杂志, 1999, 32(5): 347-348. FAN W X, ZHU W Y. Studies on hepatocyte growth factor in vitro culture of mouse tentacle hair follicles[J]. Chinese Journal of Dermatology, 1999, 32(5): 347-348 (in Chinese). DOI:10.3760/j.issn:0412-4030.1999.05.023 |
[33] |
JINDO T, TSUBOI R, IMAI R, et al. Hepatocyte growth factor/scatter factor stimulates hair growth of mouse vibrissae in organ culture[J]. The Journal of Investigative Dermatology, 1994, 103(3): 306-309. DOI:10.1111/1523-1747.ep12394731 |
[34] |
于秀菊, 高淑媛, 程笳琪, 等. HGF/c-met在小鼠毛囊生长周期中的表达[J]. 中国实验动物学报, 2015, 23(4): 406-409. YU X J, GAO S Y, CHENG J Q, et al. Expression of HGF/c-met in mouse hair follicle growth cycle[J]. Chinese Journal of Experimental Animals, 2015, 23(4): 406-409 (in Chinese). DOI:10.3969/j.issn.1005-4847.2015.04.014 |
[35] |
STEWART C E, ROTWEIN P. Growth, differentiation, and survival: multiple physiological functions for insulin-like growth factors[J]. Physiological Reviews, 1996, 76(4): 1005-1026. DOI:10.1152/physrev.1996.76.4.1005 |
[36] |
俞成浩, 郭志强, 雷岷, 等. 乳酸锌对断奶肉兔生长性能、肠道发育和血清生化指标的影响[J]. 动物营养学报, 2021, 33(2): 1055-1062. YU C, GUO Z Q, LEI M, et al. Effects of zinc lactate on growth performance, intestinal development and serum biochemical indexes in weaned rabbits[J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 1055-1062 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.02.045 |
[37] |
朱雯, 刘建新, 叶均安. 微量元素锌在奶牛中的应用研究进展[J]. 中国畜牧杂志, 2014, 50(15): 83-86. ZHU W, LIU J X, YE J A. Trace element zinc application in dairy research progress[J]. Chinese Journal of Animal Husbandry, 2014, 50(15): 83-86 (in Chinese). DOI:10.3969/j.issn.0258-7033.2014.15.020 |
[38] |
FREDLUND K, ISAKSSON M, ROSSANDER-HULTHÉN L, et al. Absorption of zinc and retention of calcium: dose-dependent inhibition by phytate[J]. Journal of Trace Elements in Medicine and Biology, 2006, 20(1): 49-57. DOI:10.1016/j.jtemb.2006.01.003 |
[39] |
FLINIAUX I, MIKKOLA M L, LEFEBVRE S, et al. Identification of dkk4 as a target of Eda-A1/Edar pathway reveals an unexpected role of ectodysplasin as inhibitor of Wnt signalling in ectodermal placodes[J]. Developmental Biology, 2008, 320(1): 60-71. DOI:10.1016/j.ydbio.2008.04.023 |
[40] |
RISHIKAYSH P, DEV K, DIAZ D, et al. Signaling involved in hair follicle morphogenesis and development[J]. International Journal of Molecular Sciences, 2014, 15(1): 1647-1670. DOI:10.3390/ijms15011647 |
[41] |
李冰, 李福昌, 朱岩丽, 等. 不同被毛密度獭兔皮肤差异表达基因的研究[J]. 畜牧兽医学报, 2014, 45(10): 1631-1639. LI B, LI F C, ZHU Y L, et al. Studies on the different-expressed genes in the skin of Rex rabbits with different coat density[J]. Chinese Journal of Animal Husbandry and Veterinary Science, 2014, 45(10): 1631-1639 (in Chinese). DOI:10.11843/j.issn.0366-6964.2014.10.008 |
[42] |
苏蕊, 张文广, 尹俊, 等. 骨形态发生蛋白2(BMP2)基因在内蒙古绒山羊皮肤毛囊发育不同时期的表达[J]. 华北农学报, 2008, 23(2): 110-113. SU R, ZHANG W G, YIN J, et al. Expression of bone morphogenetic protein 2(BMP2) gene at different stages of Inner Mongolia cashmere goat skin hair follicle development[J]. Journal of North China Agronomy, 2008, 23(2): 110-113 (in Chinese). |
[43] |
KULESSA H, TURK G, HOGAN B L. Inhibition of BMP signaling affects growth and differentiation in the anagen hair follicle[J]. The EMBO Journal, 2000, 19(24): 6664-6674. DOI:10.1093/emboj/19.24.6664 |
[44] |
MILLAR S E. Molecular mechanisms regulating hair follicle development[J]. Journal of Investigative Dermatology, 2002, 118(2): 216-225. DOI:10.1046/j.0022-202x.2001.01670.x |
[45] |
KURODA H, WESSELY O, DE ROBERTIS E M. Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via chordin, noggin, β-catenin, and cerberus[J]. PLoS Biology, 2004, 2(5): e92. DOI:10.1371/journal.pbio.0020092 |
[46] |
BOTCHKAREV V A, BOTCHKAREVA N V, ROTH W, et al. Noggin is a mesenchymally derived stimulator of hair-follicle induction[J]. Nature Cell Biology, 1999, 1(3): 158-164. DOI:10.1038/11078 |
[47] |
GUHA U, MECKLENBURG L, COWIN P, et al. Bone morphogenetic protein signaling regulates postnatal hair follicle differentiation and cycling[J]. The American Journal of Pathology, 2004, 165(3): 729-740. DOI:10.1016/S0002-9440(10)63336-6 |
[48] |
凌学剑, 杨青春, 张彦定, 等. 毛囊真皮鞘细胞中过表达Noggin对皮肤及毛囊生长的作用[J]. 中国组织工程研究, 2020, 24(31): 5013-5017. LING X J, YANG Q C, ZHANG Y D, et al. Effect of Noggin overexpression in hair follicle dermal sheath cells on the growth of skin and hair follicles[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(31): 5013-5017 (in Chinese). DOI:10.3969/j.issn.2095-4344.2091 |
[49] |
ZIMMERMAN L B, DE JESÚS-ESCOBAR J M, HARLAND R M. The spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4[J]. Cell, 1996, 86(4): 599-606. DOI:10.1016/S0092-8674(00)80133-6 |
[50] |
刘公言, 白莉雅, 李福昌, 等. 毛囊发育与周期性生长的调控信号通路研究进展[J]. 畜牧与兽医, 2021, 53(1): 125-129. LIU G Y, BAI L Y, LI F C, et al. Advances in regulating signaling pathway of development and cycling of hair follicles[J]. Animal Husbandry and Veterinary Medicine, 2021, 53(1): 125-129 (in Chinese). |
[51] |
BLANPAIN C, FUCHS E. Epidermal stem cells of the skin[J]. Annual Review of Cell and Developmental Biology, 2006, 22: 339-373. DOI:10.1146/annurev.cellbio.22.010305.104357 |
[52] |
杨梦洁, 林蕾, 高晶. 毛囊发育和循环生长的信号机制的研究进展[J]. 现代实用医学, 2014, 26(6): 781-784. YANG M J, LIN L, GAO J. Advances in research on signal mechanism of hair follicle development and circulation growth[J]. Modern Practical Medicine, 2014, 26(6): 781-784 (in Chinese). DOI:10.3969/j.issn.1671-0800.2014.06.082 |
[53] |
谈济洲, 聂二民, 张春元, 等. 锌离子对炎症微环境下成骨细胞成骨相关蛋白表达的影响[J]. 中华口腔医学杂志, 2016, 51(8): 486-490. TAN J Z, NIE E M, ZHANG C Y, et al. Effects of zinc ions on osteoblastic protein expression in inflammatory microenvironment of osteoblasts[J]. Chinese Journal of Stomatology, 2016, 51(8): 486-490 (in Chinese). DOI:10.3760/cma.j.issn.1002-0098.2016.08.010 |