动物营养学报
         首页        期刊介绍        编委会         编辑部         投稿须知        英文刊IFA        会议信息        联系我们      留言与回复
动物营养学报 2019, Vol. 31 Issue (3) :1198-1209    DOI: 10.3969/j.issn.1006-267x.2019.03.025
反刍与草食动物营养 Ruminant and herbivore nutrition 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << Previous Articles | Next Articles >>
体外法研究延胡索酸对瘤胃甲烷、氢气产量和挥发性脂肪酸组成的影响
王荣1,2, 文江南1,2, 王敏2, 邓近平1,3, 谭支良2
1. 湖南农业大学动物科学技术学院, 长沙 410128;
2. 中国科学院亚热带农业生态研究所, 长沙 410125;
3. 华南农业大学动物科学技术学院, 广州 510642
Effects of Fumarate on Ruminal Methane, Hydrogen Gas Production and Volatile Fatty Acid Composition Using an in Vitro Method
WANG Rong1,2, WEN Jiangnan1,2, WANG Min2, DENG Jinping1,3, TAN Zhiliang2
1. College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
2. Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
3. College of Animal Science, South China Agricultural University, Guangzhou 510642, China
Download: PDF (1270KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 本试验旨在研究不同添加水平的延胡索酸对体外发酵甲烷、氢气产量、挥发性脂肪酸组成以及微生物数量的影响。选用3只装有永久性瘤胃瘘管的成年湘东黑山羊作为瘤胃液供体。试验采用2×4双因子试验设计,以发酵底物和延胡索酸作为影响因素,其中发酵底物分别是菊苣和玉米粉,延胡索酸设定0、3、6和12 mmol/L 4个添加水平,另外设空白组,即发酵瓶中不添加发酵底物,仅添加0、3、6和12 mmol/L延胡索酸用来矫正数据,每组2个平行,重复测定3次。采用全自动体外模拟瘤胃发酵设备,进行72 h体外模拟瘤胃发酵试验。结果表明:1)玉米粉的72 h产气量、干物质消失率均显著高于菊苣(P<0.05)。延胡索酸显著增加了72 h产气量(P<0.05),但对72 h矫正产气量(去除各个添加水平延胡索酸自身的产气量)、干物质消失率无显著影响(P>0.05)。发酵底物和延胡索酸对72 h产气量和干物质消化率不存在显著交互作用(P>0.05)。2)玉米粉的氢气产量和矫正氢气产量只有在12 h显著高于菊苣(P<0.05),而2种底物在其他时间点的氢气产量和矫正氢气产量无显著差异(P>0.05);玉米粉不同时间点甲烷产量和矫正甲烷产量均显著高于菊苣(P<0.05)。延胡索酸对不同时间点甲烷产量、矫正甲烷产量和氢气产量、氢气矫正产量均无显著影响(P>0.05)。延胡索酸和底物对不同时间点的氢气和甲烷产量不存在显著交互作用(P>0.05)。3)延胡索酸显著增加了乙酸、丙酸和总挥发性脂肪酸浓度(P<0.05),显著降低了乙丙比和pH(P<0.05)。但是,延胡索酸对矫正总挥发性脂肪酸浓度没有显著影响(P>0.05)。4)延胡索酸对微生物数量均没有显著影响(P>0.05)。结果提示,和菊苣相比,玉米粉富含更多易发酵碳水化合物,这有助于产生更多的气体和挥发性脂肪酸。延胡索酸可以增加体外产气量和挥发性脂肪酸浓度主要因为延胡索酸在发酵过程中自身可以代谢产生额外的气体和挥发性脂肪酸,这会使产气量和挥发性脂肪酸浓度增加,而对于发酵底物自身的降解和微生物数量没有显著影响。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词延胡索酸   体外模拟瘤胃发酵   发酵类型   氢气产量   挥发性脂肪酸     
Abstract: This study was conducted to investigate the effects of different supplemental levels of fumarate on methane and hydrogen gas production, volatile fatty acids composition and microbial population through in vitro fermentation. Rumen fluid was collected from three adult Xiangdong black goats fitted with permanent rumen cannulation. Using a 2×4 two-factor experimental design, corn flour and chicory were selected as substrates, fumarate had four (0, 3, 6 and 12 mmol/L) final concentrations, and blank groups were set for correcting the results, which were contained no substrate, just contained fumarate at concentrations of 0, 3, 6 or 12 mmol/L, respectively. Each group had 2 replicates, and were replicated 3 times. The 72 h in vitro ruminal incubation was performed using automatic fermentation incubation system. The results showed as follows:1) the 72 h gas production and dry matter degradation of corn flour were significantly higher than those of chicory (P<0.05). Fumarate supplementation had greater 72 h gas production (P<0.05); however, fumarate supplementation did not alter corrected 72 h gas production and dry matter degradation (P>0.05). There is no interaction between substrates and fumarate on 72 h gas production and dry matter degradation (P>0.05). 2) Hydrogen production and corrected hydrogen production of corn flour at 12 h were significantly higher than those of chicory (P<0.05), those at other time points did not have significant differences (P>0.05); methane production and corrected methane production of corn flour at each time points were significantly higher than those of chicory (P<0.05). Fumarate had no significant effect on methane production, corrected methane production, hydrogen production and corrected hydrogen production at each time points (P>0.05). There is no interaction between substrates and fumarate on hydrogen production and methane production (P>0.05). 3) Fumarate supplementation significantly increaed acetate, propionate and total volatile fatty acids concentrations (P<0.05), and significantly decreased pH and acetate to propionate ratio (P<0.05). But fumarate supplementation had no significant effect on corrected total volatile fatty acids concentrations(P>0.05). 4) Fumarate supplementation did not significantly affect microbial population (P>0.05). This study indicates that corn flour contains more fermentable carbohydrates than chicory, which help produce more gas and volatile fatty acids. Fumarate supplementation causes an increase in gas production and total volatile fatty acids concentration, which is mainly due to produce more gas and total volatile fatty acids during fumarate fermentation process, but has no significant effect on substrate self-degradation and microbial population.
Keywordsfumarate,   in vitro simulated rumen fermentation,   fermentation pattern,   hydrogen production,   volatile fatty acids     
收稿日期: 2018-08-17;
基金资助:

国家科技计划项目(2018YFD0501800,2016YFD050054);国家自然科学基金项目(31561143009,31472133);湖南省重大专项(2017NK1020);中国科学院青年促进会项目(2016327);中国科学院特聘研究员项目(2018VBA0031)

通讯作者 王敏,副研究员,E-mail:wing_mail@hotmail.com;邓近平,研究员,博士生导师,E-mail:dengjinping@scau.edu.cn     Email: wing_mail@hotmail.com;dengjinping@scau.edu.cn
作者简介: 王荣(1990-),男,河南淮阳人,博士研究生,从事反刍动物营养与饲料科学研究。E-mail:wangrongfd@126.com
引用本文:   
. 体外法研究延胡索酸对瘤胃甲烷、氢气产量和挥发性脂肪酸组成的影响[J]. 动物营养学报, 2019,V31(3): 1198-1209
. Effects of Fumarate on Ruminal Methane, Hydrogen Gas Production and Volatile Fatty Acid Composition Using an in Vitro Method[J]. Chinese Journal of Animal Nutrition, 2019,V31(3): 1198-1209.
链接本文:  
http://www.chinajan.com/CN/10.3969/j.issn.1006-267x.2019.03.025     或     http://www.chinajan.com/CN/Y2019/V31/I3/1198
 
[1] XU G Q,ZOU W,CHEN X L,et al.Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering[J].PLoS One,2012,7(12):e52086.
[2] UNGERFELD E M.A theoretical comparison between two ruminal electron sinks[J].Frontiers in Microbiology,2013,4:319.
[3] ABDL-RAHMAN M A.In vitro manipulation of rumen fermentation efficiency by fumaric acid-bentonite coupled addition as an alternative to antibiotics[J].Journal of Agricultural Science,2010,2(2):174-180.
[4] PAL K,PATRA A K,SAHOO A,et al.Effect of nitrate and fumarate in Prosopis cineraria and Ailanthus excelsa leaves-based diets on methane production and rumen fermentation[J].Small Ruminant Research,2014,121(2/3):168-174.
[5] KOLVER E S,ASPIN P W,JARVIS G N,et al.Fumarate reduces methane production from pasture fermented in continuous culture[C]//Proceedings of the New Zealand Society of Animal Production.Hamilton:New Zealand Society of Animal Production,2004,155-159.
[6] AOAC.Official methods of analysis of AOAC international[M].18th ed.Washington,D.C.:AOAC International,2005.
[7] WANG M,JANSSEN P H,SUN X Z,et al.A mathematical model to describe in vitro kinetics of H2 gas accumulation[J].Animal Feed Science and Technology,2013,184(1/2/3/4):1-16.
[8] MENKE K H,RAAB L,SALEWSKI A,et al.Estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas-production when they are incubated with rumen liquor in vitro[J].Journal of Agricultural Science,1979,93:217-222.
[9] SVEINBJORNSSON J,MURPHY M,UDEN P.In vitro evaluation of starch degradation from feeds with or without various heat treatments[J].Animal Feed Science and Technology,2007,132:171-185.
[10] DEMEYER D,HENDERICKX H.Competitive inhibition of "in vitro" methane production by mixed rumen bacteria[J].Archives Internationales de Physiologie et de Biochimie,1967,75(1):157-159.
[11] KITTELMANN S,PINARES-PATINO C S,SEEDORF H,et al.Two different bacterial community types are linked with the low-methane emission trait in sheep[J].Plos One,2014,9:e103171.
[12] JANSSEN P H.Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics[J].Animal Feed Science and Technology,2010,160:1-22.
[13] CASTRO-MONTOYA J,DE CAMPENEERE S,VAN RANST G,et al.Interactions between methane mitigation additives and basal substrates on in vitro methane and VFA production[J].Animal Feed Science and Technology,2012,176(1/2/3/4):47-60.
[14] BAYARU E,SYUHEI K,TOSHIHIKO K.Effect of fumaric acid on methane production,rumen fermentation and digestibility of cattle fed roughage alone[J].Animal Science Journal,2001,72:139-146.
[1] 王荣, 文江南, 王敏, 邓近平, 谭支良.延胡索酸对妊娠后期山羊营养物质表观消化率、瘤胃挥发性脂肪酸含量、血清生化指标和繁殖性能的影响[J]. 动物营养学报, 2019,31(2): 850-857
[2] 李洋, 高民, 胡红莲, 孙燕勇.反刍动物瘤胃挥发性脂肪酸的吸收机制[J]. 动物营养学报, 2018,30(6): 2070-2078
[3] 毛宏祥, 任傲, 王敏, 高凤仙, 张秀敏, 马致远, 谭支良.化学计量学模型预测中国泌乳奶牛瘤胃挥发性脂肪酸组成的精度分析[J]. 动物营养学报, 2018,30(5): 1748-1759
[4] 常双双, 柳青秀, 张敏红, 石玉祥, 冯京海.饲养密度对肉鸡盲肠菌群多样性、挥发性脂肪酸和血清脑肠肽的影响[J]. 动物营养学报, 2018,30(3): 938-946
[5] 秦枫, 潘孝青, 邵乐, 杨杰, 翟频, 李晟, 李健.延胡索酸对夏季幼兔生长性能、空肠发育及血清抗氧化和免疫指标的影响[J]. 动物营养学报, 2018,30(3): 1103-1109
[6] 常双双, 石玉祥, 厉秀梅, 张敏红, 冯京海.持续偏热环境对肉鸡血清和下丘脑脑肠肽含量、盲肠挥发性脂肪酸含量和菌群多样性的影响[J]. 动物营养学报, 2018,30(2): 560-569
[7] 常双双, 马贵达, 张敏红, 石玉祥, 冯京海.持续偏热环境下饲养密度对肉鸡盲肠菌群多样性、挥发性脂肪酸和血清脑肠肽的影响[J]. 动物营养学报, 2018,30(2): 570-577
[8] 蒲俊宁, 王华杰, 陈代文, 田刚, 何军, 郑萍, 毛湘冰, 虞洁, 黄志清, 罗钧秋, 罗玉衡, 余冰.饲粮直链/支链淀粉比对育肥猪生长性能、营养物质表观消化率、肠道食糜菌群数量与挥发性脂肪酸浓度以及肌内脂肪含量的影响[J]. 动物营养学报, 2018,30(12): 4874-4885
[9] 陈亮, 揭红东, 任傲, 周传社, 谭支良, 李斌.酿酒酵母对湘中黑牛营养物质消化率、瘤胃发酵及血浆生化指标的影响[J]. 动物营养学报, 2017,29(9): 3359-3365
[10] 金三俊, 董佳琦, 任红立, 汪晶晶, 高鹏辉, 刁新平.复合微生态制剂对断奶仔猪生长性能、血清生化和免疫指标及粪便中挥发性脂肪酸含量的影响[J]. 动物营养学报, 2017,29(12): 4477-4484
[11] 范小红, 薛艳锋, 郝力壮, 刘书杰, 柴沙驼, 牛建章, 张晓卫, 王迅.饲粮碘含量对牦牛体外瘤胃发酵的影响[J]. 动物营养学报, 2017,29(12): 4613-4620
[12] 龙栋磊, 文江南, 王敏, 王荣, 张秀敏, 毛宏祥, 邓近平, 谭支良.全自动体外模拟瘤胃发酵系统:19 kPa以下排气压力不影响发酵特征[J]. 动物营养学报, 2017,29(11): 4171-4179
[13] 张毕阳, 赵桂琴, 焦婷, 柴继宽, 苟智强, 许兴泽, 闫车太.燕麦干草与全株玉米青贮不同组合对绵羊瘤胃发酵的影响[J]. 动物营养学报, 2017,29(10): 3563-3573
[14] 贺琴, 王自蕊, 游金明, 陈丽玲, 熊昊.酵母壁多糖对断奶仔猪肠道挥发性脂肪酸和微生物菌群的影响[J]. 动物营养学报, 2017,29(1): 177-183
[15] 郭云霞, 郝庆红, 刘月琴, 张英杰, 任淑月.微贮玉米秸秆对道寒杂交断奶羔羊瘤胃发酵及微生物区系的影响[J]. 动物营养学报, 2017,29(1): 239-248
Copyright 2010 by 动物营养学报